Interactive and Online Buffer-Overlay Analytics of Large-Scale Spatial Data
<p>Distortion of vector-based and raster-based results while zooming in.</p> "> Figure 2
<p>Buffer-overlay analysis flow using traditional methods.</p> "> Figure 3
<p>Buffer-overlay analysis flow in HiBO.</p> "> Figure 4
<p>Inner and outer boxes of pixel P with a given radius R [<a href="#B21-ijgi-08-00021" class="html-bibr">21</a>].</p> "> Figure 5
<p>Set operations of overlay analysis in HiBO.</p> "> Figure 6
<p>Architecture of HiBO.</p> "> Figure 7
<p>Buffer-Overlay analysis of a tile range with <math display="inline"><semantics> <mrow> <mn>256</mn> <mo>×</mo> <mn>256</mn> </mrow> </semantics></math> pixels in an MPI process with 4 OpenMP threads.</p> "> Figure 8
<p>Input of the housing site selection in Spain.</p> "> Figure 9
<p>Analysis result of the housing site selection in Spain.</p> "> Figure 10
<p>Tile rendering time distributions.</p> ">
Abstract
:1. Introduction
2. Methodology
2.1. Spatial-Index-Based Buffer Generation
2.1.1. SIBBG for Point and Linestring
Algorithm 1 SIBBG for point and linestring objects [21] |
Input: Pixel P, radius R, spatial index Rtree. Output: True or False (whether P is in the buffers of spatial objects with a given radius R).
|
2.1.2. SIBBG for Polygon
Algorithm 2 SIBBG for polygon objects |
Input: Pixel P, radius R, spatial indexes RtreeB and RtreeMBR. Output: True or False (whether P is in the buffers of spatial objects with a given radius R).
|
2.2. Set-Transformation-Based Overlay Optimization
Step 1 Simplify Expressions
Step 2 Reorder Parameters
3. Architecture
3.1. Multi-Thread Tile Service
3.2. In-Memory Messaging Framework
3.3. Hybrid-Parallel Analysis Engine
4. Validation
4.1. Setup
4.2. Demonstration
4.3. Experimental Evaluation
5. Conclusions and Future Work
Author Contributions
Funding
Conflicts of Interest
References
- Sommer, S.; Wade, T. A to Z GIS: An Illustrated Dictionary of Geographic Information Systems; Esri Press: Redlands, CA, USA, 2006; pp. 263–264. [Google Scholar]
- Diamond, J.T.; Wright, J.R. Design of an integrated spatial information system for multiobjective land-use planning. Environ. Plan. B 1988, 15, 205–214. [Google Scholar] [CrossRef]
- Malczewski, J. GIS-based multicriteria decision analysis: A survey of the literature. Int. J. Geogr. Inf. Sci. 2006, 20, 703–726. [Google Scholar] [CrossRef]
- Al-Anbari, M.A.; Thameer, M.Y.; Al-Ansari, N. Landfill Site Selection by Weighted Overlay Technique: Case Study of Al-Kufa, Iraq. Sustainability 2018, 10, 999. [Google Scholar] [CrossRef]
- Peng, H.; Lian, Y.; Chuan-Yong, Y.; Yan-Lan, W. Map Algebra; Wuhan University Press: Wuhan, China, 2006. [Google Scholar]
- Wang, J.; Li, L.I.; Shen, D. Optimization of Boundary Tracing Algorithm on Buffer Generation. Geogr. Geo-Inf. Sci. 2009, 25, 95–98. [Google Scholar]
- Wu, H.; Gong, J.; Li, D. Buffer curve and buffer generation algorithm in aid of edge-constrained triangle network. Acta Geod. Cartogr. Sin. 1999, 28, 355–359. [Google Scholar]
- Li, J.; Qin, Q.; Chen, C.; Zhao, Y.; Xie, C. A method of approximately simulating buffers based on mathematical equations for accelerating buffer analysis. J. Remote Sens. 2013, 17, 1131–1145. [Google Scholar]
- Wang, T.; Zhao, L.; Wang, L.; Chen, L.; Cao, Q. Parallel research and opitmization of buffer algorithm based on equivalent arc partition. Remote Sens. Inf. 2016, 147–152. [Google Scholar]
- Shen, J.; Chen, L.; Wu, Y.; Jing, N. Approach to Accelerating Dissolved Vector Buffer Generation in Distributed In-Memory Cluster Architecture. ISPRS Int. J. Geo-Inf. 2018, 7, 26. [Google Scholar] [CrossRef]
- Wang, Y.; Liu, Z.; Liao, H.; Li, C. Improving the performance of GIS polygon overlay computation with MapReduce for spatial big data processing. Cluster Comput. 2015, 18, 507–516. [Google Scholar] [CrossRef]
- Agarwal, D.; Puri, S.; He, X.; Prasad, S.K.; Shi, X. Crayons—A cloud based parallel framework for GIS overlay operations. Distrib. Mob. Syst. Lab 2011. Available online: https://www.researchgate.net/profile/Hesham_Hefny/publication/309433917_New_Architecture_for_Mobile_GIS_Cloud_Computing/links/5824e6da08aeb45b588f513c/New-Architecture-for-Mobile-GIS-Cloud-Computing.pdf (accessed on 25 October 2018).
- Agarwal, D.; Puri, S.; He, X.; Prasad, S.K. A system for GIS polygonal overlay computation on linux cluster—An experience and performance report. In Proceedings of the 2012 IEEE 26th International Parallel and Distributed Processing Symposium Workshops & PhD Forum, Shanghai, China, 21–25 May 2012; pp. 1433–1439. [Google Scholar]
- Audet, S.; Albertsson, C.; Murase, M.; Asahara, A. Robust and efficient polygon overlay on parallel stream processors. In Proceedings of the 21st ACM SIGSPATIAL International Conference on Advances in Geographic Information Systems, Orlando, FL, USA, 5–8 November 2013; pp. 304–313. [Google Scholar]
- Martinez, F.; Ogayar, C.; Jiménez, J.R.; Rueda, A.J. A simple algorithm for Boolean operations on polygons. Adv. Eng. Softw. 2013, 64, 11–19. [Google Scholar] [CrossRef]
- Puri, S.; Prasad, S.K. A parallel algorithm for clipping polygons with improved bounds and a distributed overlay processing system using mpi. In Proceedings of the 2015 15th IEEE/ACM International Symposium on Cluster, Cloud and Grid Computing (CCGrid), Shenzhen, China, 4–7 May 2015; pp. 576–585. [Google Scholar]
- Puri, S. Efficient Parallel and Distributed Algorithms for GIS Polygon Overlay Processing. Ph.D. Thesis, Georgia State University, Atlanta, GA, USA, 2015. [Google Scholar]
- Apache Spark. 2018. Available online: https://spark.apache.org/ (accessed on 25 October 2018).
- Fan, J.; Ji, M.; Gu, G.; Sun, Y. Optimization approaches to mpi and area merging-based parallel buffer algorithm. Bol. Ciênc. Geod. 2014, 20, 237–256. [Google Scholar] [CrossRef]
- Huang, X. Parallel Buffer Generation Algorithm for GIS. J. Geol. Geosci. 2013, 2, 115. [Google Scholar] [CrossRef]
- Ma, M.; Wu, Y.; Luo, W.; Chen, L.; Li, J.; Jing, N. HiBuffer: Buffer Analysis of 10-Million-Scale Spatial Data in Real Time. Int. J. Geo-Inf. 2018, 7, 467. [Google Scholar] [CrossRef]
- Cheung, K.L.; Fu, A.W.C. Enhanced nearest neighbour search on the R-tree. ACM SIGMOD Rec. 1998, 27, 16–21. [Google Scholar] [CrossRef] [Green Version]
- Shimrat, M. Algorithm 112: Position of point relative to polygon. Commun. ACM 1962, 5, 434. [Google Scholar] [CrossRef]
Methods | Advantages | Disadvantages |
---|---|---|
Vector-based | (i) Small storage space; (ii) no resolution loss while zooming in. | (i) High computational complexity; (ii) distortion occurs while zooming in (see Figure 1a: In vector polygons, circles or circular-arcs are simplified to regular-polygons or regular-polygon segments). |
Raster-based | Low computational complexity in overlay generation | (i) Large storage space; (ii) sawtooth distortion while zooming in (see Figure 1b). |
Algorithm | 40,927 Linestrings | 208,067 Linestrings | 597,829 Linestrings |
---|---|---|---|
HPBM [10] | 10.334 s | 26.859 s | 172.889 s |
OA1 [19] | 17.041 s | 84.311 s | 672.722 s |
OA2 [20] | 14.266 s | 280.771 s | 661.857 s |
OA3 [9] | 19.082 s | 280.8 s | 2534.29 s |
PostGIS | 34.9 s | 295.8 s | 2380.2 s |
QGIS | 129 s | 2788 s | >7200 s |
ArcGIS | 139 s | 2365 s | >7200 s |
20.134 s | 200.436 s | >7200 s |
Contents | Value Types |
---|---|
Point | point (x,y) |
Linestring | segment (point (x,y), point (x,y)) |
Spatial Indexes | Contents | Value Types |
---|---|---|
RtreeB | Polygon Boundary | tuple (segment (point (x,y), point (x,y)), PolygonID, IsLevel) |
RtreeMBR | Polygon MBR | pair (box (point (minx,miny), point (maxx,maxy)), PolygonID) |
Set Laws | Transformation | C | C |
---|---|---|---|
Idempotence | Reduced | Reduced | |
Distributivity | Reduced | Reduced | |
Reduced | Reduced | ||
DeMorgan’s laws | Reduced | Reduced | |
Reduced | Reduced | ||
Absorption | Reduced | Reduced | |
Reduced | Reduced | ||
Complements | Reduced | Reduced | |
Unchanged | Reduced | ||
Empty & | Reduced | Reduced | |
Universal Set | Unchanged | Reduced |
(i) Condition: |
(ii) Condition: |
(iii) Condition: |
(iv) Condition: |
Default: Do not reorder parameters. |
Servers | CPU | Memory |
---|---|---|
ECS | 4 cores*2, Intel(R) Xeon(R) [email protected] GHz | 32 GB |
SMP | 32 cores*2, Intel(R) Xeon(R) [email protected] GHz | 256 GB |
Dataset | Type | Records | Size |
---|---|---|---|
Spain Highway | Linestring | 3,132,496 | 42,497,196 segments |
Spain Education | Point | 6994 | 6994 points |
Spain Healthcare | Point | 14,757 | 14,757 points |
Spain Entertainment, Arts & Culture | Point | 6928 | 6928 points |
Spain Waterway | Linestring | 33,214 | 4,254,732 segments |
Spain Water Area | Polygon | 60,319 | 2,044,622 edges |
Spain Railway | Linestring | 97,675 | 309,716 segments |
Dataset | Abbreviation | Type | Records | Size |
---|---|---|---|---|
China roads | L | Linestring | 21,898,508 | 163,171,928 segments |
China points | P | Point | 20,258,450 | 20,258,450 points |
China farmland | A | Polygon | 10,520,644 | 133,830,561 edges |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ma, M.; Wu, Y.; Chen, L.; Li, J.; Jing, N. Interactive and Online Buffer-Overlay Analytics of Large-Scale Spatial Data. ISPRS Int. J. Geo-Inf. 2019, 8, 21. https://doi.org/10.3390/ijgi8010021
Ma M, Wu Y, Chen L, Li J, Jing N. Interactive and Online Buffer-Overlay Analytics of Large-Scale Spatial Data. ISPRS International Journal of Geo-Information. 2019; 8(1):21. https://doi.org/10.3390/ijgi8010021
Chicago/Turabian StyleMa, Mengyu, Ye Wu, Luo Chen, Jun Li, and Ning Jing. 2019. "Interactive and Online Buffer-Overlay Analytics of Large-Scale Spatial Data" ISPRS International Journal of Geo-Information 8, no. 1: 21. https://doi.org/10.3390/ijgi8010021
APA StyleMa, M., Wu, Y., Chen, L., Li, J., & Jing, N. (2019). Interactive and Online Buffer-Overlay Analytics of Large-Scale Spatial Data. ISPRS International Journal of Geo-Information, 8(1), 21. https://doi.org/10.3390/ijgi8010021