A Novel 3D Anisotropic Total Variation Regularized Low Rank Method for Hyperspectral Image Mixed Denoising
<p>The flow chart of the proposed 3DATVLR method.</p> "> Figure 2
<p>Visual illustration and statistical table of each gradient image of HSI (Washington DC).</p> "> Figure 3
<p>Simulated Indian Pines dataset used in the experiment (false color image composed of bands 6, 88, 220 for the red, green and blue wavelength, respectively).</p> "> Figure 4
<p>False color image composed of bands 6, 88, 220 (top row) and its corresponding zoomed-in portion (bottom row) marked with white rectangle in the clean image of the simulated Indian Pines dataset with noise Case 4. (<b>a</b>) clean image; (<b>b</b>) noisy image (PSNR = 15.67 dB); (<b>c</b>) BM4D (PSNR = 30.01 dB); (<b>d</b>) PCABM4D (PSNR = 30.40 dB); (<b>e</b>) PARAFAC (PSNR = dB); (<b>f</b>) 3DTV (PSNR = 32.44 dB); (<b>g</b>) TDL (PSNR = 30.40 dB); (<b>h</b>) LRMR (PSNR = 35.63 dB); (<b>i</b>) LRTV (PSNR = 38.06 dB); (<b>j</b>) 3DATVLR (PSNR = 39.65 dB).</p> "> Figure 5
<p>Mean spectra of the original spectra and the reconstructed spectra in class 2 of the simulated Indian Pines dataset with Case 4. (<b>a</b>) Noisy. (<b>b</b>) BM4D; (<b>c</b>) PCABM4D; (<b>d</b>) PARAFAC; (<b>e</b>) 3DTV; (<b>f</b>) TDL; (<b>g</b>) LRMR; (<b>h</b>) LRTV; (<b>i</b>) 3DATVLR.</p> "> Figure 6
<p>Restored results of band 123 in Simulated Indian Pines dataset with noise of Case 5. (<b>a</b>) original; (<b>b</b>) noisy; (<b>c</b>) BM4D; (<b>d</b>) PCABM4D; (<b>e</b>) PARAFAC; (<b>f</b>) 3DTV; (<b>g</b>) TDL; (<b>h</b>) LRMR; (<b>i</b>) LRTV; (<b>j</b>) 3DATVLR.</p> "> Figure 7
<p>Restored results of band 166 in Simulated Indian Pines dataset with noise of Case 6. (<b>a</b>) original; (<b>b</b>) noisy; (<b>c</b>) BM4D; (<b>d</b>) PCABM4D; (<b>e</b>) PARAFAC; (<b>f</b>) 3DTV; (<b>g</b>) TDL; (<b>h</b>) LRMR; (<b>i</b>) LRTV; (<b>j</b>) 3DATVLR.</p> "> Figure 8
<p>PSNR and SSIM values in each band of the reconstructed simulated Indian Pines dataset with different algorithms. (<b>a</b>,<b>b</b>) Case 1; (<b>c</b>,<b>d</b>) Case 2; (<b>e</b>,<b>f</b>) Case 3; (<b>g</b>,<b>h</b>) Case 4; (<b>i</b>,<b>j</b>) Case 5; (<b>k</b>,<b>l</b>) Case 6.</p> "> Figure 9
<p>MPSNR, MSSIM and MSA values as a function of parameter <math display="inline"><semantics> <msub> <mi>λ</mi> <mrow> <mi>t</mi> <mi>v</mi> </mrow> </msub> </semantics></math> and desired rank <span class="html-italic">r</span>. (<b>a</b>) MPSNR versus <math display="inline"><semantics> <msub> <mi>λ</mi> <mrow> <mi>t</mi> <mi>v</mi> </mrow> </msub> </semantics></math> and <span class="html-italic">r</span>; (<b>b</b>) MSSIM versus <math display="inline"><semantics> <msub> <mi>λ</mi> <mrow> <mi>t</mi> <mi>v</mi> </mrow> </msub> </semantics></math> and <span class="html-italic">r</span>; (<b>c</b>) MSA versus <math display="inline"><semantics> <msub> <mi>λ</mi> <mrow> <mi>t</mi> <mi>v</mi> </mrow> </msub> </semantics></math> and <span class="html-italic">r</span>.</p> "> Figure 10
<p>MPSNR values as a function of parameter <math display="inline"><semantics> <mi>ρ</mi> </semantics></math> while fixing the other variables in different noise levels for a simulated Indian Pines dataset.</p> "> Figure 11
<p>MPSNR, MSSIM values as a function of the iterations for the proposed method in Simulated Indian Pines. (<b>a</b>) MPSNR versus the iterations; (<b>b</b>) MSSIM versus the iterations.</p> "> Figure 12
<p>Restored results of band 139 in Urban dataset. (<b>a</b>) Observed; (<b>b</b>) BM4D; (<b>c</b>) PCABM4D; (<b>d</b>) PARAFAC; (<b>e</b>) 3DTV; (<b>f</b>) TDL; (<b>g</b>) LRMR; (<b>h</b>) NAIRLMA; (<b>i</b>) LRTV; (<b>j</b>) 3DATVLR.</p> "> Figure 13
<p>Restored results of band 151 in Urban dataset. (<b>a</b>) observed; (<b>b</b>) BM4D; (<b>c</b>) PCABM4D; (<b>d</b>) PARAFAC; (<b>e</b>) 3DTV; (<b>f</b>) TDL; (<b>g</b>) LRMR; (<b>h</b>) NAIRLMA; (<b>i</b>) LRTV; (<b>j</b>) 3DATVLR.</p> "> Figure 14
<p>Horizontal mean profile of band 151 in Urban dataset. (<b>a</b>) Observed; (<b>b</b>) BM4D; (<b>c</b>) PCABM4D; (<b>d</b>) PARAFAC; (<b>e</b>) 3DTV; (<b>f</b>) TDL; (<b>g</b>) LRMR; (<b>h</b>) NAIRLMA; (<b>i</b>) LRTV; (<b>j</b>) 3DATVLR.</p> ">
Abstract
:1. Introduction
- By treating an HSI as a 3D cube, 3D anisotropic total variation (3DATV) is adopted to exploit the spatial smoothness and spectral consistency simultaneously along with the low-rank regularization.
- The TV denoising process is updated iteratively in a spatial-spectral manner in the alternating direction method of multipliers (ADMM) algorithm instead of in a band-by-band manner, and it can be effectively solved by an n-D fast Fourier transform (nFFT).
- When low-rank regularization fails to remove the structured sparse noise, i.e., structured stripes or dead lines, 3DATV could effectively get rid of them by simultaneously exploring the spatial and spectral consistency while LRTV even makes this case in a dilemma since the band-by-band TV preserves the stripes or deadlines along one of the directions.
2. Basic Formulation
2.1. Observation Model
2.2. Restoration Model
2.3. Prior Regularizations
2.3.1. Low Rank Regularization
- Due to the independent distribution of Gaussian noise in each pixel, Equation (3) can not completely remove the heavy Gaussian noise.
- Equation (3) can not remove the structured sparse noise, i.e., stripes or dead lines locate at the same place in each band because the low rank method will treat them as one of the low rank components.
2.3.2. Total Variation Regularization
3. 3D Anisotropic TV Regularized Low-Rank Model for HSI Restoration
3.1. 3D Anisotropic Total Variation Regularization
3.2. Proposed 3DATVLR Model
3.3. Optimization Algorithm
Algorithm 1 Extended ADMM for the 3DATVLR method. |
|
3.4. Parameters Determination
4. Experimental Results and Discussion
4.1. Comparison Methods and Assessment Metrics
4.2. Experiments on Simulated Datasets
4.2.1. Datasets and Experimental Settings
- (1)
- Case 1: Zero-mean Gaussian noise with the same variance of 0.01 was added to each band.
- (2)
- Case 2: Zero-mean Gaussian noise with the same variance of 0.01, as well as the impulse noise with the same density of 15%, was added to each band.
- (3)
- Case 3: In this case, the Gaussian noise and impulse noise were added just like that in Case 2. In addition, the deadlines were added from band 111 to band 150 with the number of deadlines being randomly selected from 3 to 10, and the width of each deadline was randomly generated from 1 to 3.
- (4)
- Case 4: In this case, the noise intensity was different for each band. First, zero-mean Gaussian noise with different variances varying from 0 to 0.02 was added to each band randomly. Second, impulse noise with a density percentage varying from 0 to 20% was randomly added to each band. Finally, dead lines were simulated the same as that in Case 3.
- (5)
- Case 5: In this case, the Gaussian noise, impulse noise and dead lines are simulated the same as that in Case 4. In addition, some periodical stripes are added from band 146 to 165; the number of stripes in each band is 30.
- (6)
- Case 6: In this case, the Gaussian noise, impulse noise and stripes are simulated the same as that in Case 5. However, the dead lines are simulated to be located in the same place as the 40 bands randomly selected from all of the bands; the number of dead lines in each band is 15. This case is to simulate the structured sparse noise for the most severe noise situation.
4.2.2. Visual Performance Evaluation
4.2.3. Quantitative Performance Evaluation
4.2.4. Parameters’ Sensitive Analysis
4.3. Experiments on a Real Dataset
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Bioucas-Dias, J.M.; Plaza, A.; Camps-Valls, G.; Scheunders, P.; Nasrabadi, N.; Chanussot, J. Hyperspectral remote sensing data analysis and future challenges. IEEE Geosci. Remote Sens. Mag. 2013, 1, 6–36. [Google Scholar] [CrossRef]
- Sun, L.; Wu, Z.; Xiao, L.; Liu, J.; Wei, Z.; Dang, F. A novel l1/2 sparse regression method for hyperspectral unmixing. Int. J. Remote Sens. 2013, 34, 6983–7001. [Google Scholar] [CrossRef]
- Sun, L.; Ge, W.; Chen, Y.; Zhang, J.; Jeon, B. Hyperspectral unmixing employing l1-l2 sparsity and total variation regularization. Int. J. Remote Sens. 2018, 34, 1–24. [Google Scholar] [CrossRef]
- Wu, Z.; Shi, L.; Li, J.; Wang, Q.; Sun, L.; Wei, Z.; Plaza, J.; Plaza, A. GPU parallel implementation of spatially adaptive hyperspectral image classification. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2018, 11, 1131–1143. [Google Scholar] [CrossRef]
- Gu, B.; Sheng, V.S. A robust regularization path algorithm for ν-support vector classification. IEEE Trans. Neural Netw. Learn. Syst. 2017, 28, 1241–1248. [Google Scholar] [CrossRef] [PubMed]
- Zhang, L.; Zhao, C. A spectral-spatial method based on low-rank and sparse matrix decomposition for hyperspectral anomaly detection. Int. J. Remote Sens. 2017, 38, 4047–4068. [Google Scholar] [CrossRef]
- Elad, M.; Aharon, M. Image denoising via sparse and redundant representations over learned dictionaries. IEEE Trans. Image Process. 2006, 15, 3736–3745. [Google Scholar] [CrossRef] [PubMed]
- Buades, A.; Coll, B.; Morel, J. A non-local algorithm for image denoising. In Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR’05), San Diego, CA, USA, 20–25 June 2005; Volume 2, pp. 60–65. [Google Scholar] [CrossRef]
- Kumar, B.S. Image denoising based on non-local means filter and its method noise thresholding. Signal Image Video Process. 2013, 7, 1211–1227. [Google Scholar] [CrossRef]
- Dabov, K.; Foi, A.; Katkovnik, V.; Egiazarian, K. Image denoising by sparse 3-D transform-domain collaborative filtering. IEEE Trans. Image Process. 2007, 16, 2080–2095. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Li, T.; Shi, Y.Q.; Lian, S.; Ye, J. Forensics feature analysis in quaternion wavelet domain for distinguishing photographic images and computer graphics. Multimed. Tools Appl. 2017, 76, 23721–23737. [Google Scholar] [CrossRef]
- Xiong, L.; Xu, Z.; Shi, Y.Q. An integer wavelet transform based scheme for reversible data hiding in encrypted images. Multidimens. Syst. Signal Process. 2017, 29, 1–12. [Google Scholar] [CrossRef]
- Wang, J.; Lian, S.; Shi, Y.Q. Hybrid multiplicative multi-watermarking in DWT domain. Multidimens. Syst. Signal Process. 2017, 28, 617–636. [Google Scholar] [CrossRef]
- Yuan, C.; Sun, X.; Lv, R. Fingerprint liveness detection based on multi-scale LPQ and PCA. China Commun. 2016, 13, 60–65. [Google Scholar] [CrossRef]
- Othman, H.; Qian, S. Noise reduction of hyperspectral imagery using hybrid spatial-spectral derivative-domain wavelet shrinkage. IEEE Trans. Geosci. Remote Sens. 2006, 44, 397–408. [Google Scholar] [CrossRef]
- Chen, G.; Qian, S. Simultaneous dimensionality reduction and denoising of hyperspectral imagery using bivariate wavelet shrinking and principal component analysis. Can. J. Remote Sens. 2008, 34, 447–454. [Google Scholar] [CrossRef]
- Chen, G.; Qian, S.E. Denoising of hyperspectral imagery using principal component analysis and wavelet shrinkage. IEEE Trans. Geosci. Remote Sens. 2011, 49, 973–980. [Google Scholar] [CrossRef]
- Chen, G.; Bui, T.D.; Quach, K.G.; Qian, S.E. Denoising hyperspectral imagery using principal component analysis and block-matching 4D filtering. Can. J. Remote Sens. 2014, 40, 60–66. [Google Scholar] [CrossRef]
- Brook, A. Three-dimensional wavelets-based denoising of hyperspectral imagery. J. Electron. Imaging 2015, 24, 013034. [Google Scholar] [CrossRef]
- Rasti, B.; Sveinsson, J.; Ulfarsson, M.; Benediktsson, J. Hyperspectral image denoising using first order spectral roughness penalty in wavelet domain. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2014, 7, 2458–2467. [Google Scholar] [CrossRef]
- Rasti, B.; Sveinsson, J.R.; Ulfarsson, M.O. Wavelet-based sparse reduced-rank regression for hyperspectral image restoration. IEEE Trans. Geosci. Remote Sens. 2014, 52, 6688–6698. [Google Scholar] [CrossRef]
- Renard, N.; Bourennane, S.; Blanc-Talon, J. Denoising and dimensionality reduction using multilinear tools for hyperspectral images. IEEE Geosci. Remote Sens. Lett. 2008, 5, 138–142. [Google Scholar] [CrossRef]
- Guo, X.; Huang, X.; Zhang, L.; Zhang, L. Hyperspectral image noise reduction based on rank-1 tensor decomposition. ISPRS J. Photogramm. Remote Sens. 2013, 83, 50–63. [Google Scholar] [CrossRef]
- Lu, T.; Li, S.; Fang, L.; Ma, Y.; Benediktsson, J. Spectral–spatial adaptive sparse representation for hyperspectral image denoising. IEEE Trans. Geosci. Remote Sens. 2016, 54, 373–385. [Google Scholar] [CrossRef]
- Li, J.; Yuan, Q.; Shen, H.; Zhang, L. Noise removal from hyperspectral image with joint spectral–spatial distributed sparse representation. IEEE Trans. Geosci. Remote Sens. 2016, 54, 5425–5439. [Google Scholar] [CrossRef]
- Fu, Y.; Lam, A.; Sato, I.; Sato, Y. Adaptive spatial-spectral dictionary learning for hyperspectral image restoration. Int. J. Comput. Vis. 2017, 122, 228–245. [Google Scholar] [CrossRef]
- Tian, Q.; Chen, S. Cross-heterogeneous-database age estimation through correlation representation learning. Neurocomputing 2017, 238, 286–295. [Google Scholar] [CrossRef]
- Yuan, Y.; Zheng, X.; Lu, X. Spectral–spatial kernel regularized for hyperspectral image denoising. IEEE Trans. Geosci. Remote Sens. 2015, 53, 3815–3832. [Google Scholar] [CrossRef]
- Xie, W.; Li, Y. Hyperspectral imagery denoising by deep learning with trainable nonlinearity function. IEEE Geosci. Remote Sens. Lett. 2017, 14, 1963–1967. [Google Scholar] [CrossRef]
- Wang, B.; Gu, X.; Ma, L.; Yan, S. Temperature error correction based on BP neural network in meteorological wireless sensor network. Int. J. Sens. Netw. 2017, 23, 265–278. [Google Scholar] [CrossRef]
- Qu, Z.; Keeney, J.; Robitzsch, S.; Zaman, F.; Wang, X. Multilevel pattern mining architecture for automatic network monitoring in heterogeneous wireless communication networks. China Commun. 2016, 13, 108–116. [Google Scholar] [CrossRef]
- Xu, L.; Li, F.; Sato, I.; Wong, A.; Clausi, D. Hyperspectral image denoising using a spatial–spectral Monte Carlo sampling approach. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2015, 8, 3025–3038. [Google Scholar] [CrossRef]
- Zheng, Y.; Jeon, B.; Sun, L.; Zhang, J.; Zhang, H. Student’s t-hidden Markov model for unsupervised learning using localized feature selection. IEEE Trans. Circuits Syst. Video Technol. 2017, 1–14. [Google Scholar] [CrossRef]
- Xu, Y.; Wu, Z.; Li, J.; Plaza, A.; Wei, Z. Anomaly detection in hyperspectral images based on low-rank and sparse representation. IEEE Trans. Geosci. Remote Sens. 2016, 54, 1990–2000. [Google Scholar] [CrossRef]
- Sun, L.; Wang, S.; Wang, J.; Zheng, Y.; Jeon, B. Hyperspectral classification employing spatial–spectral low rank representation in hidden fields. J. Ambient Intell. Hum. Comput. 2017, 1–12. [Google Scholar] [CrossRef]
- Lu, X.; Wang, Y.; Yuan, Y. Graph-regularized low-rank representation for destriping of hyperspectral images. IEEE Trans. Geosci. Remote Sens. 2013, 51, 4009–4018. [Google Scholar] [CrossRef]
- Zhang, H.; He, W.; Zhang, L.; Shen, H.; Yuan, Q. Hyperspectral image restoration using low-rank matrix recovery. IEEE Trans. Geosci. Remote Sens. 2014, 52, 4729–4743. [Google Scholar] [CrossRef]
- Zhu, R.; Dong, M.; Xue, J. Spectral nonlocal restoration of hyperspectral images with low-rank property. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2015, 8, 3062–3067. [Google Scholar] [CrossRef]
- He, W.; Zhang, H.; Zhang, L.; Shen, H. Hyperspectral image denoising via noise-adjusted iterative low-rank matrix approximation. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2015, 8, 3050–3061. [Google Scholar] [CrossRef]
- Wang, M.; Yu, J.; Xue, J.; Sun, W. Denoising of hyperspectral images using group low-rank representation. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2016, 9, 4420–4427. [Google Scholar] [CrossRef]
- Sun, L.; Jeon, B.; Zheng, Y.; Wu, Z. Hyperspectral image restoration using low-rank representation on spectral difference image. IEEE Geosci. Remote Sens. Lett. 2017, 14, 1150–1155. [Google Scholar] [CrossRef]
- He, W.; Zhang, H.; Zhang, L.; Shen, H. Total-variation-regularized low-rank matrix factorization for hyperspectral image restoration. IEEE Trans. Geosci. Remote Sens. 2016, 54, 178–188. [Google Scholar] [CrossRef]
- Sun, L.; Jeon, B.; Soomro, B.N.; Zheng, Y.; Wu, Z.; Xiao, L. Fast superpixel based subspace low rank learning method for hyperspectral denoising. IEEE Access 2018, 6, 12031–12043. [Google Scholar] [CrossRef]
- Cao, W.; Wang, K.; Han, G.; Yao, J.; Cichocki, A. A Robust PCA Approach With Noise Structure Learning and Spatial–Spectral Low-Rank Modeling for Hyperspectral Image Restoration. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2018, 1, 1–17. [Google Scholar] [CrossRef]
- Chang, X.; Zhong, Y.; Wang, Y.; Lin, S. Unified Low-Rank Matrix Estimate via Penalized Matrix Least Squares Approximation. IEEE Trans. Neural Netw. Learn. Syst. 2018, 1, 1–12. [Google Scholar] [CrossRef] [PubMed]
- Yuan, Q.; Zhang, L.; Shen, H. Hyperspectral image denoising employing a spectral–spatial adaptive total variation model. IEEE Trans. Geosci. Remote Sens. 2012, 50, 3660–3677. [Google Scholar] [CrossRef]
- Zhang, H. Hyperspectral image denoising with cubic total variation model. ISPRS Ann. Photogramm. Remote Sens. Spat. Inf. Sci. 2012, 7, 95–98. [Google Scholar] [CrossRef]
- Chang, Y.; Yan, L.; Fang, H.; Luo, C. Anisotropic spectral-spatial total variation model for multispectral remote sensing image destriping. IEEE Trans. Image Process. 2015, 24, 1852–1866. [Google Scholar] [CrossRef] [PubMed]
- Goldluecke, B.; Cremers, D. An approach to vectorial total variation based on geometric measure theory. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), San Francisco, CA, USA, 13–18 June 2010; pp. 327–333. [Google Scholar]
- Aggarwal, H.K.; Majumdar, A. Hyperspectral image denoising using spatio-spectral total variation. IEEE Geosci. Remote Sens. Lett. 2016, 13, 442–446. [Google Scholar] [CrossRef]
- Wu, Z.; Wang, Q.; Wu, Z.; Shen, Y. Total variation-regularized weighted nuclear norm minimization for hyperspectral image mixed denoising. J. Electron. Imaging 2016, 25, 013037. [Google Scholar] [CrossRef]
- Wang, Q.; Wu, Z.; Jin, J.; Wang, T.; Shen, Y. Low rank constraint and spatial spectral total variation for hyperspectral image mixed denoising. Signal Process. 2018, 142, 11–26. [Google Scholar] [CrossRef]
- Zhang, L.; Zhang, Y.; Wei, W.; Li, F. 3D total variation hyperspectral compressive sensing using unmixing. In Proceedings of the IEEE International Geoscience and Remote Sensing Symposium (IGARSS), Quebec City, QC, Canada, 13–18 July 2014; pp. 2961–2964. [Google Scholar]
- He, S.; Zhou, H.; Wang, Y.; Cao, W.; Han, Z. Super-resolution reconstruction of hyperspectral images via low rank tensor modeling and total variation regularization. In Proceedings of the IEEE International Geoscience and Remote Sensing Symposium (IGARSS), Beijing, China, 10–15 July 2016; pp. 6962–6965. [Google Scholar]
- Sun, L.; Zheng, Y.; Jeon, B. Hyperspectral restoration employing low rank and 3d total variation regularization. In Proceedings of the International Conference on Progress in Informatics and Computing (PIC), Shanghai, China, 23–25 December 2016; pp. 326–329. [Google Scholar] [CrossRef]
- Chang, Y.; Yan, L.; Zhong, S. Hyper-laplacian regularized unidirectional low-rank tensor recovery for multispectral image denoising. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, HI, USA, 21–26 July 2017; pp. 4260–4268. [Google Scholar]
- Sun, L.; Wu, Z.; Liu, J.; Wei, Z. Supervised hyperspectral image classification using sparse logistic regression and spatial-tv regularization. In Proceedings of the IEEE International Geoscience and Remote Sensing Symposium-IGARSS, Melbourne, Australia, 21–26 July 2013; pp. 1019–1022. [Google Scholar] [CrossRef]
- Sun, L.; Wu, Z.; Liu, J.; Xiao, L.; Wei, Z. Supervised spectral–spatial hyperspectral image classification with weighted Markov random fields. IEEE Trans. Geosci. Remote Sens. 2015, 53, 1490–1503. [Google Scholar] [CrossRef]
- Eckstein, J.; Yao, W. Understanding the convergence of the alternating direction method of multipliers: Theoretical and computational perspectives. Pac. J. Optim. 2015, 11, 619–644. [Google Scholar]
- Cai, J.; Candès, E.J.; Shen, Z. A singular value thresholding algorithm for matrix completion. SIAM J. Optim. 2010, 20, 1956–1982. [Google Scholar] [CrossRef]
- Liu, G.; Lin, Z.; Yan, S.; Sun, J.; Yu, Y.; Ma, Y. Robust recovery of subspace structures by low-rank representation. IEEE Trans. Pattern Anal. Mach. Intell. 2013, 35, 171–184. [Google Scholar] [CrossRef] [PubMed]
- Bioucas-Dias, J.M.; Nascimento, J.M. Hyperspectral subspace identification. IEEE Trans. Geosci. Remote Sens. 2008, 46, 2435–2445. [Google Scholar] [CrossRef]
- Liu, X.; Bourennane, S.; Fossati, C. Denoising of hyperspectral images using the PARAFAC model and statistical performance analysis. IEEE Trans. Geosci. Remote Sens. 2012, 50, 3717–3724. [Google Scholar] [CrossRef]
- Peng, Y.; Meng, D.; Xu, Z.; Gao, C.; Yang, Y.; Zhang, B. Decomposable nonlocal tensor dictionary learning for multispectral image denoising. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Columbus, OH, USA, 23–28 June 2014; pp. 2949–2956. [Google Scholar]
- Wang, Z.; Bovik, A.C.; Sheikh, H.R.; Simoncelli, E.P. Image quality assessment: From error visibility to structural similarity. IEEE Trans. Image Process. 2004, 13, 600–612. [Google Scholar] [CrossRef] [PubMed]
- Sun, L.; Jeon, B.; Zheng, Y.; Wu, Z. A novel weighted cross total variation method for hyperspectral image mixed denoising. IEEE Access 2017, 5, 27172–27188. [Google Scholar] [CrossRef]
- Qian, Y.; Ye, M. Hyperspectral imagery restoration using nonlocal spectral-spatial structured sparse representation with noise estimation. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2013, 6, 499–515. [Google Scholar] [CrossRef]
- Zhu, X.; Milanfar, P. Automatic parameter selection for denoising algorithms using a no-reference measure of image content. IEEE Trans. Image Process. 2010, 19, 3116–3132. [Google Scholar] [CrossRef] [PubMed]
Noise | BM4D | PCABM4D | PARAFAC | 3DTV | TDL | LRMR | LRTV | 3DATVLR |
---|---|---|---|---|---|---|---|---|
Case 1 | - | - | rank(L) = 5 | |||||
card(s) = 0.0 | ||||||||
Case 2 | - | - | rank(L) = 5 | |||||
card(s) = 0.04 | ||||||||
Case 3 | - | - | rank(L) = 5 | |||||
card(s) = 0.07 | ||||||||
Case 4 | - | - | rank(L) = 5 | |||||
card(s) = 0.07 | ||||||||
Case 5 | - | - | rank(L) = 5 | |||||
card(s) = 0.06 | ||||||||
Case 6 | - | - | rank(L) = 5 | |||||
card(s) = 0.05 | ||||||||
Noise | Metrics | Noisy | BM4D | PCABM4D | PARAFAC | 3DTV | TDL | LRMR | LRTV | 3DATVLR |
---|---|---|---|---|---|---|---|---|---|---|
Case 1 | MPSNR (dB) | 20.12 | 37.91 | 41.22 | 31.92 | 33.32 | 37.24 | 37.91 | 38.24 | 40.32 |
MSSIM | 0.3710 | 0.9695 | 0.9876 | 0.8946 | 0.9395 | 0.9758 | 0.9695 | 0.9884 | 0.9909 | |
MFSIM | 0.4724 | 0.9617 | 0.9860 | 0.8655 | 0.9344 | 0.9635 | 0.9617 | 0.9863 | 0.9885 | |
ERGAS | 230.15 | 30.72 | 21.00 | 61.97 | 69.23 | 33.17 | 30.72 | 29.93 | 23.91 | |
MSA | 0.1949 | 0.0234 | 0.0158 | 0.0391 | 0.0497 | 0.0201 | 0.0234 | 0.0174 | 0.0161 | |
Case 2 | MPSNR (dB) | 12.78 | 28.50 | 28.36 | 25.70 | 32.14 | 26.88 | 35.12 | 38.13 | 39.24 |
MSSIM | 0.1682 | 0.8534 | 0.9287 | 0.6819 | 0.9183 | 0.9030 | 0.9168 | 0.9844 | 0.9894 | |
MFSIM | 0.3397 | 0.8535 | 0.9372 | 0.7047 | 0.9140 | 0.8876 | 0.9156 | 0.9774 | 0.9868 | |
ERGAS | 538.15 | 91.90 | 93.51 | 125.09 | 78.58 | 110.59 | 42.00 | 30.57 | 26.79 | |
MSA | 0.4268 | 0.0673 | 0.0682 | 0.0937 | 0.0568 | 0.0805 | 0.0282 | 0.0198 | 0.0179 | |
Case 3 | MPSNR (dB) | 12.63 | 26.93 | 26.83 | 24.48 | 32.03 | 26.18 | 34.62 | 37.30 | 38.50 |
MSSIM | 0.1656 | 0.8100 | 0.8437 | 0.6698 | 0.9259 | 0.8390 | 0.9112 | 0.9781 | 0.9892 | |
MFSIM | 0.3372 | 0.8269 | 0.8653 | 0.7015 | 0.9236 | 0.8483 | 0.9099 | 0.9744 | 0.9866 | |
ERGAS | 547.23 | 128.70 | 116.59 | 161.51 | 80.27 | 122.68 | 44.59 | 54.83 | 29.29 | |
MSA | 0.4364 | 0.0997 | 0.0884 | 0.1289 | 0.0574 | 0.0893 | 0.0318 | 0.0430 | 0.0197 | |
Case 4 | MPSNR (dB) | 14.26 | 27.62 | 27.27 | 25.62 | 33.16 | 24.46 | 34.06 | 36.09 | 39.02 |
MSSIM | 0.2236 | 0.7976 | 0.8169 | 0.7171 | 0.9373 | 0.6328 | 0.9249 | 0.9724 | 0.9924 | |
MFSIM | 0.3920 | 0.8207 | 0.8253 | 0.7304 | 0.9354 | 0.6870 | 0.9211 | 0.9737 | 0.9915 | |
ERGAS | 486.26 | 174.99 | 154.37 | 189.63 | 72.96 | 189.56 | 67.05 | 74.54 | 29.46 | |
MSA | 0.3969 | 0.1422 | 0.1237 | 0.1597 | 0.0515 | 0.1518 | 0.0478 | 0.0578 | 0.0202 | |
Case 5 | MPSNR (dB) | 13.94 | 26.92 | 26.86 | 24.87 | 33.19 | 25.24 | 34.76 | 36.40 | 39.19 |
MSSIM | 0.2123 | 0.7635 | 0.7946 | 0.6801 | 0.9339 | 0.6845 | 0.9323 | 0.9829 | 0.9921 | |
MFSIM | 0.3802 | 0.8007 | 0.8098 | 0.7113 | 0.9334 | 0.7392 | 0.9285 | 0.9843 | 0.9911 | |
ERGAS | 493.39 | 172.68 | 146.17 | 189.80 | 71.39 | 169.86 | 54.56 | 55.00 | 28.21 | |
MSA | 0.4028 | 0.1410 | 0.1160 | 0.1594 | 0.0509 | 0.1316 | 0.0392 | 0.0398 | 0.0192 | |
Case 6 | MPSNR (dB) | 14.28 | 26.78 | 27.59 | 25.14 | 33.32 | 25.18 | 32.10 | 33.86 | 36.73 |
MSSIM | 0.2197 | 0.7328 | 0.8338 | 0.6559 | 0.9333 | 0.6592 | 0.8526 | 0.8999 | 0.9817 | |
MFSIM | 0.3912 | 0.7908 | 0.8793 | 0.7109 | 0.9327 | 0.7320 | 0.8902 | 0.9427 | 0.9841 | |
ERGAS | 481.82 | 161.46 | 169.65 | 191.34 | 72.67 | 189.90 | 154.02 | 156.26 | 53.69 | |
MSA | 0.3903 | 0.1069 | 0.0988 | 0.1281 | 0.0511 | 0.1245 | 0.0682 | 0.0751 | 0.0370 | |
runtime (s) | - | 194.1 | 195.0 | 353.0 | 76.0 | 11.3 | 28.0 | 79.7 | 40.8 |
Methods | Original | 3DTV | LRMR | LRTV | 3DATVLR |
---|---|---|---|---|---|
aQ | 60.78 | 61.44 | 62.38 | 62.84 | 65.13 |
Times (s) | - | 3590 | 2811 | 549 | 648 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sun, L.; Zhan, T.; Wu, Z.; Jeon, B. A Novel 3D Anisotropic Total Variation Regularized Low Rank Method for Hyperspectral Image Mixed Denoising. ISPRS Int. J. Geo-Inf. 2018, 7, 412. https://doi.org/10.3390/ijgi7100412
Sun L, Zhan T, Wu Z, Jeon B. A Novel 3D Anisotropic Total Variation Regularized Low Rank Method for Hyperspectral Image Mixed Denoising. ISPRS International Journal of Geo-Information. 2018; 7(10):412. https://doi.org/10.3390/ijgi7100412
Chicago/Turabian StyleSun, Le, Tianming Zhan, Zebin Wu, and Byeungwoo Jeon. 2018. "A Novel 3D Anisotropic Total Variation Regularized Low Rank Method for Hyperspectral Image Mixed Denoising" ISPRS International Journal of Geo-Information 7, no. 10: 412. https://doi.org/10.3390/ijgi7100412
APA StyleSun, L., Zhan, T., Wu, Z., & Jeon, B. (2018). A Novel 3D Anisotropic Total Variation Regularized Low Rank Method for Hyperspectral Image Mixed Denoising. ISPRS International Journal of Geo-Information, 7(10), 412. https://doi.org/10.3390/ijgi7100412