Comparison and Evolution of Extreme Rainfall-Induced Landslides in Taiwan
<p>The distribution of elevation, river, and rainfall stations in the Laonong river water (LRW, (<b>a</b>)), Nanou river watershed (NoRW, (<b>b</b>)), and Nanshih river watershed (NsRW, (<b>c</b>)).</p> "> Figure 1 Cont.
<p>The distribution of elevation, river, and rainfall stations in the Laonong river water (LRW, (<b>a</b>)), Nanou river watershed (NoRW, (<b>b</b>)), and Nanshih river watershed (NsRW, (<b>c</b>)).</p> "> Figure 2
<p>The distribution of accumulated rainfall during typhoon events and landslide in the LRW (<b>a</b>), NoRW (<b>b</b>), and NsRW (<b>c</b>).</p> "> Figure 2 Cont.
<p>The distribution of accumulated rainfall during typhoon events and landslide in the LRW (<b>a</b>), NoRW (<b>b</b>), and NsRW (<b>c</b>).</p> "> Figure 3
<p>The accumulated rainfall distribution of Tengzhi rainfall station (black line) during 2009 Typhoon Morakot, Gulu rainfall station (red line) during 2010 Typhoon Megi, and Fushan rainfall station (blue line) during 2015 Typhoon Soudelor.</p> "> Figure 4
<p>The landslide frequency density-area distribution and fitting lines in the LRW under 2009 Typhoon Morakot (gray line in (<b>a</b>)), NoRW under 2010 Typhoon Megi (red line in (<b>a</b>)), NsRW under 2015 Typhoon Soudelor (black line in (<b>a</b>)), and LRW from 2003 to 2014 (<b>b</b>).</p> "> Figure 5
<p>The schematic map of landslide position analysis (<b>a</b>); revised from [<a href="#B30-ijgi-06-00367" class="html-bibr">30</a>] and the landslide position analysis plots in the NoRW in 2009 (left figure in (<b>b</b>)) and 2010 (right figure in (<b>b</b>)), and in the NsRW in 2014 (left figure in (<b>c</b>)) and 2015 (right figure in (<b>c</b>)).</p> "> Figure 6
<p>The landslide position analysis plots in the LRW from 2003 to 2014.</p> "> Figure 7
<p>The mean sinuosity index (black line for LRW, red line for NoRW, and blue line for NsRW) of and length/width ratio (black dash line for LRW, red dash line for NoRW, and blue dash line for NsRW) of landslide cases in the three watersheds.</p> "> Figure 8
<p>The numbers of landslide (<b>a</b>), including total landslide (black line), small scale landslide (black dash line), medium scale landslide (grey line), and large scale landslide (grey dash line) and annual rainfall (<b>b</b>), the times of <span class="html-italic">R<sub>D</sub></span> > 350 mm (the standard of heavy rainfall, (<b>c</b>), and the times of <span class="html-italic">R<sub>I</sub></span> > 70 mm/h (<b>d</b>) according to the records of Meishan (black line), Xinan (black point line), and Dajin (black dash line) from 2003 to 2014 in the LRW.</p> "> Figure 9
<p>The long-term evolution of landslide in a sub-watershed of LRW (<a href="#ijgi-06-00367-f001" class="html-fig">Figure 1</a> and <a href="#ijgi-06-00367-f002" class="html-fig">Figure 2</a>) from 2003 to 2013.</p> "> Figure 9 Cont.
<p>The long-term evolution of landslide in a sub-watershed of LRW (<a href="#ijgi-06-00367-f001" class="html-fig">Figure 1</a> and <a href="#ijgi-06-00367-f002" class="html-fig">Figure 2</a>) from 2003 to 2013.</p> "> Figure 9 Cont.
<p>The long-term evolution of landslide in a sub-watershed of LRW (<a href="#ijgi-06-00367-f001" class="html-fig">Figure 1</a> and <a href="#ijgi-06-00367-f002" class="html-fig">Figure 2</a>) from 2003 to 2013.</p> "> Figure 10
<p>The probability distribution of landslide recurrence during the next 5 (<b>a</b>), 10 (<b>b</b>), and 20 (<b>c</b>) years in the LRW. (<b>d</b>) Explains the landslide recurrence probability during the next specific time interval based on the landslide occurrence time from 2003 to 2014 in the LRW.</p> "> Figure 10 Cont.
<p>The probability distribution of landslide recurrence during the next 5 (<b>a</b>), 10 (<b>b</b>), and 20 (<b>c</b>) years in the LRW. (<b>d</b>) Explains the landslide recurrence probability during the next specific time interval based on the landslide occurrence time from 2003 to 2014 in the LRW.</p> ">
Abstract
:1. Introduction
2. Study Area
2.1. Laonong River Watershed
2.2. Nanou River Watershed
2.3. Nanshih River Watershed
3. Materials and Methods
3.1. Materials
3.2. Methods
3.2.1. Rainfall Characteristics during Typhoon Events
3.2.2. Landslide Frequency Density-Area Relationship
3.2.3. Topographic Position Analysis
3.2.4. Sediment Yield in the Sinuous or Meandering Reaches
3.2.5. Landslide Recurrence Probability
4. Characteristics Comparison of Extreme Rainfall-Induced Landslide in the Three Watersheds
4.1. Rainfall Characteristics
4.2. Relationship between Landslide Distribution and Landslide-Related Factors
4.3. Landslide Frequency Density-Area Distribution
4.4. Topographic Position Analysis
4.5. Locations of Extreme Rainfall-Induced Landslides
5. Long-Term Evolution of Landslides from 2003 to 2014 in the LRW
5.1. NUMBER of Landslides and Characteristics of Rainfall Type
5.2. The Landslide Frequency Density-Area Distribution
5.3. Topographic Position Analysis
5.4. Long-Term Evolution of Landslides
5.5. Mean Recurrence Interval of Landslides
6. Conclusions
Acknowledgments
Conflicts of Interest
References
- Dahal, R.K.; Hasegawa, S.; Nonomura, A.; Yamanaka, M.; Masuda, T.; Nishino, K. Failure characteristics of rainfall-induced shallow landslides in granitic terrains of Shikoku Island of Japan. Environ. Geol. 2009, 56, 1295–1310. [Google Scholar] [CrossRef]
- Tsuchida, T.; Athapaththu, A.M.R.G.; Hanaoka, T.; Kawaguchi, M. Investigation of landslide calamity due to torrential rainfall in Shobara City, Japan. Soils Found. 2015, 55, 1305–1317. [Google Scholar] [CrossRef]
- Vasu, N.N.; Lee, S.R.; Pradhan, A.M.S.; Kim, Y.T.; Kang, S.H.; Lee, D.H. A new approach to temporal modelling for landslide hazard assessment using an extreme rainfall induced-landslide index. Eng. Geol. 2016, 215, 36–49. [Google Scholar] [CrossRef]
- Kumar, A.; Asthana, A.; Priyankab, R.S.; Jayangondaperumal, R.; Gupta, A.K.; Bhakuni, S.S. Assessment of landslide hazards induced by extreme rainfall event in Jammu and Kashmir Himalaya, northwest India. Gemorphology 2017, 284, 72–87. [Google Scholar] [CrossRef]
- Chou, H.T.; Lee, C.F.; Lo, C.M.; Lin, C.P. Landslide and alluvial fan caused by an extreme rainfall event in Suao, Taiwan. In Proceedings of the 11th International and 2nd North American Symposium on Landslides, Banff, AB, Canada, 3–8 June 2011. [Google Scholar]
- Ono, K.; Kazama, S. Analyses of extreme daily rainfall in Southeast Asia with a gridded daily rainfall data set. In Proceedings of the Symposium Hydro-Climatology: Variability and Change, Melbourne, Australia, 4–6 July 2011; pp. 169–175. [Google Scholar]
- Wu, C.H.; Chen, S.C.; Chou, H.T. Geomorphologic Characteristics of Catastrophic Landslides during Typhoon Morakot in the Kaoping Watershed, Taiwan. Eng. Geol. 2011, 123, 13–21. [Google Scholar] [CrossRef]
- Wu, C.H.; Chen, S.C.; Feng, Z.Y. Formation, failure, and consequences of the Xiaolin landslide dam, triggered by extreme rainfall from Typhoon Morakot, Taiwan. Landslides 2014, 11, 357–367. [Google Scholar] [CrossRef]
- Shiu, C.J.; Liu, S.C.; Chen, J.P. Diurnally asymmetric trends of temperature, humidity, and precipitation in Taiwan. J. Clim. 2009, 22, 5635–5649. [Google Scholar] [CrossRef]
- Kung, C.Y.; Yen, B.L.; Li, C.R.; Wu, Y.Z.; Yu, Y.C. The Rank of Extreme Rainfall Events over Taiwan; National Science and Technology Center for Disaster Reduction: New Taipei City, Taiwan, 2015. [Google Scholar]
- Collins, B.D.; Znidarcic, D. Stability analyses of rainfall induced landslides. J. Geotech. Geoenviron. Eng. 2004, 130, 362–372. [Google Scholar] [CrossRef]
- Conte, E.; Troncone, A. A method for the analysis of soil slips triggered by rainfall. Géotechnique 2012, 62, 187–192. [Google Scholar] [CrossRef]
- Conte, E.; Donato, A.; Troncone, A. A simplified method for predicting rainfall-induced mobility of active landslides. Landslides 2017, 14, 35–45. [Google Scholar] [CrossRef]
- Lyn, L.; Wang, Z.Y.; Cui, P.; Xu, M.Z. The role of bank erosion on the initiation and motion of gully debris flows. Geomorphology 2017, 285, 137–151. [Google Scholar] [CrossRef]
- Chen, S.C.; Wu, C.H.; Chao, Y.C.; Shih, P.Y. Long-term impact of extra sediment on notches and incised meanders in the Hoshe River, Taiwan. J. Mt. Sci. 2013, 10, 716–723. [Google Scholar] [CrossRef]
- Klimeš, J.; Yepes, J.; Becerril, L.; Kusák, M.; Galindo, I.; Blahut, J. Development and recent activity of the San Andrés landslide on El Hierro, Canary Islands, Spain. Geomorphology 2016, 261, 119–131. [Google Scholar] [CrossRef]
- Stemberk, J.; Hartvich, F.; Blahůt, J.; Rybář, J.; Krejčí, O. Tectonic strain changes affecting the development of deep seated gravitational slope deformations in the Bohemian Massif and Outer Western Carpathians. Geomorphology 2017, 289, 3–17. [Google Scholar] [CrossRef]
- Van Den Eeckhaut, M.; Kerle, N.; Poesen, J.; Hervás, J. Object-oriented identification of forested landslides with derivatives of single pulse LiDAR data. Geomorphology 2012, 173–174, 30–42. [Google Scholar] [CrossRef]
- Crozier, M.J. A proposed cell model for multiple-occurrence regional landslide events: Implications for landslidesusceptibility mapping. Geomorphology 2017, 295, 480–488. [Google Scholar] [CrossRef]
- Jumar, D.; Thakur, M.; Dubey, C.S.; Shukla, D.P. Landslide susceptibility mapping & prediction using Support Vector Machine for Mandakini River Basin, Garhwal Himalaya, India. Geomorphology 2017, 295, 115–125. [Google Scholar] [CrossRef]
- Zêzere, J.L.; Pereira, S.; Melo, R.; Oliveira, S.C.; Garcia, R.A.C. Mapping landslide susceptibility using data-driven methods. Sci. Total Environ. 2017, 589, 250–267. [Google Scholar] [CrossRef] [PubMed]
- Bak, P.; Tang, C.; Wiesenfeld, K. Self-organized criticality. Phys. Rev. A 1988, 38, 364–374. [Google Scholar] [CrossRef]
- Dai, F.C.; Lee, C.F. Frequency-volume relation and prediction of rainfall-induced landslides. Eng. Geol. 2001, 59, 253–266. [Google Scholar] [CrossRef]
- Turcotte, D.L.; Malamud, B.D. Landslides, forest fires, and earthquakes: Examples of self-organized critical behavior. Phys. A Stat. Mech. Appl. 2004, 340, 580–589. [Google Scholar] [CrossRef]
- Guzzetti, F.; Ardizzone, F.; Cardinali, M.; Galli, M.; Reichenbach, P.; Rossi, M. Distribution of landslides in the Upper Tiber River basin, Central Italy. Geomorphology 2008, 96, 105–122. [Google Scholar] [CrossRef]
- Malamud, B.D.; Turcotte, D.; Guzzetti, F.; Reichenbach, P. Landslide inventories and their statistical properties. Earth Surf. Process. Landf. 2004, 29, 687–711. [Google Scholar] [CrossRef]
- Hovius, N.; Stark, C.P.; Allen, P.A. Sediment flux from a mountain belt derived by landslide mapping. Geology 1997, 25, 231–234. [Google Scholar] [CrossRef]
- Florsheim, J.L.; Nichols, A. Landslide area probability density function statistics to assess historical landslide magnitude and frequency in coastal California. Catena 2013, 109, 129–138. [Google Scholar] [CrossRef]
- Fujii, Y. Frequency distribution of the magnitude of the landslide caused by heavy rainfall. Seismol. Jpn. J. 1969, 22, 244–247. [Google Scholar] [CrossRef]
- Chen, S.C.; Chou, H.T.; Chen, S.C.; Wu, C.H.; Lin, B.S. Characteristics of Rainfall-induced Landslides in Miocene Formations: A Case Study of the Shenmu Watershed, Central Taiwan. Eng. Geol. 2014, 169, 133–146. [Google Scholar] [CrossRef]
- Chen, C.W.; Oguchi, T.; Hayakawa, Y.S.; Saito, H.; Chen, H. Relationship between landslide size and rainfall conditions in Taiwan. Landslides 2016, 14, 1235–1240. [Google Scholar] [CrossRef]
- Meunier, P.; Hovius, N.; Haines, J.A. Topographic site effects and the location of earthquake induced landslides. Earth Planet. Sci. Lett. 2008, 275, 221–232. [Google Scholar] [CrossRef]
- Hejmanowska, B.; Borowiec, N.; Badurska, M. Airborne LIDAR data processing for Digital Surface Model and Digital Terrain Model generation. Arch. Photogramm. Cartogr. Remote Sens. 2008, 18, 151–162. [Google Scholar]
- Cerovski-Darriau, C.; Roering, J.J.; Marden, M.; Palmer, A.; Bilderback, E.L. Quantifying temporal variations in landslide-driven sediment production by reconstructing paleolandscapes using tephrochronology and lidar: Waipaoa River, New Zealand. Geochem. Geophys. Geosyst. 2014, 15, 4117–4136. [Google Scholar] [CrossRef]
- Anderson, S.; Pitlick, J. Using repeat lidar to estimate sediment transport in a steep stream. J. Geophys. Res. Earth Surf. 2014, 119, 621–643. [Google Scholar] [CrossRef]
- Břežný, M.; Pánek, T. Deep-seated landslides affecting monoclinal flysch morphostructure: Evaluation of LiDAR-derived topography of the highest range of the Czech Carpathians. Geomorphology 2017, 285, 44–57. [Google Scholar] [CrossRef]
- Migoń, P.; Jancewicz, K.; Różycka, M.; Duszyński, F.; Kasprzak, M. Large-scale slope remodelling by landslides—Geomorphic diversity and geological controls, Kamienne Mts., Central Europe. Geomorphology 2017, 289, 134–151. [Google Scholar] [CrossRef]
- Chan, H.C.; Chang, C.C.; Chen, S.C.; Wei, Y.S.; Wang, Z.B.; Lee, T.S. Investigation and analysis of the characteristics of shallow landslides in mountainous areas of Taiwan. J. Chin. Soil Water Conserv. 2015, 46, 19–28. [Google Scholar]
- Gariano, S.L.; Guzzetti, F. Landlsides in a changing climate. Earth-Sci. Rev. 2016, 162, 227–252. [Google Scholar] [CrossRef]
- Guzzetti, F.; Malamud, B.D.; Turcotte, D.L.; Reichenbach, P. Power-law correlations of landslide areas in central Italy. Earth Planet. Sci. Lett. 2002, 195, 169–183. [Google Scholar] [CrossRef]
- Crovelli, R.A. Probability Models for Estimation of Number and Costs of Landslides; USGA Open-File Report 00-249; U.S. Geological Survey: Reston, VA, USA, 2000.
- Salciarini, D.; Godt, J.W.; Baum, R.L.; Conversini, P. Modeling landslide recurrence in Seattle, Washington, USA. Eng. Geol. 2008, 102, 227–237. [Google Scholar] [CrossRef]
- Greenhough, J.; Main, I.G. A Poisson model for earthquake frequency uncertainties in seismic hazard analysis. Geophys. Res. Lett. 2008, 35, L19313. [Google Scholar] [CrossRef]
- Lari, S.; Frattini, P.; Crosta, G.B. A probabilistic approach for landslide hazard analysis. Eng. Geol. 2014, 182, 3–14. [Google Scholar] [CrossRef]
- Coe, J.A.; Michael, J.A.; Crovelli, R.A.; Savage, W.Z.; Laprade, W.T.; Nashem, W.D. Probabilistic assessment of precipitation-triggered landslides using historical records of landslide Occurrence, Seattle, Washington. Environ. Eng. Geosci. 2004, 10, 103–122. [Google Scholar] [CrossRef]
- Capital Engineering Corp. A Study of Sediment Management Policies on Climate Change for River Basins in Southern Taiwan—GaoPing River Case Study (2/2); Water Resources Agency, Ministry of Economic Affairs: Taipei, Taiwan, 2011; ISBN 9789860302301. [Google Scholar]
- Orris, G.J.; Williams, J.W. Landslide length-width ratios as an aid in landslide identification and verification. Bull. Assoc. Eng. Geol. 1984, 21, 371–375. [Google Scholar] [CrossRef]
- Taylor, F.E.; Malamud, B.D. The statistical distributions of landslide length to width ratios. In Proceedings of the EGU General Assembly 2012, Vienna, Austria, 22–27 April 2012; Volume 14, p. 826. [Google Scholar]
Rainfall Station | Typhoon Event | Maximum Accumulated Rainfall (mm) at Different Hour (h) | |||||
---|---|---|---|---|---|---|---|
1 | 3 | 6 | 9 | 12 | 24 | ||
Tengzhi | 2009 Typhoon Morakot | 99.0 | 222.0 | 454.0 | 622.0 | 766.0 | 1259.0 |
Gulu | 2010 Typhoon Megi | 109.5 | 268.5 | 401.5 | 531.0 | 594.5 | 691.5 |
Fushan | 2015 Typhoon Soudelor | 82.0 | 224.0 | 412.0 | 528.0 | 616.0 | 706.0 |
Watersheds | Events | Landslide Numbers | Landslide Density* | ||
---|---|---|---|---|---|
Total | LSL* | Watershed* | River* | ||
LRW | 2009 Typhoon Morakot | 7241 | 215 | 0.0730 | 0.241 |
NoRW | 2010 Typhoon Megi | 294 | 1 | 0.0036 | 0.223 |
NsRW | 2015 Typhoon Soudelor | 342 | 1 | 0.0020 | 0.334 |
Locations | NoRW in 2009 | NoRW in 2010 | NsRW in 2014 | ||||||
N* | Per* | TA* | N | Per | TA | N | Per | TA | |
DS* | 41 | 59 | 481,925 | 176 | 60 | 498,944 | 2 | 33 | 2744 |
US* | 14 | 20 | 117,475 | 72 | 25 | 132,040 | 3 | 50 | 1784 |
MS* | 15 | 21 | 338,925 | 46 | 16 | 543,287 | 1 | 17 | 29,292 |
NsRW in 2015 | LRW in 2003 | LRW in 2004 | |||||||
DS* | 262 | 77 | 339,194 | 655 | 61 | 3,450,660 | 1710 | 67 | 9,436,217 |
US* | 60 | 18 | 38,655 | 243 | 23 | 1,976,064 | 463 | 18 | 2,222,163 |
MS* | 20 | 6 | 73,557 | 169 | 16 | 2,993,968 | 383 | 15 | 9,848,955 |
LRW in 2005 | LRW in 2006 | LRW in 2007 | |||||||
DS* | 1837 | 68 | 11,606,038 | 1737 | 67 | 10,845,901 | 1044 | 63 | 6,794,636 |
US* | 429 | 16 | 3,138,360 | 456 | 18 | 3,705,787 | 334 | 20 | 1,310,816 |
MS* | 432 | 16 | 11,820,557 | 411 | 16 | 12,163,322 | 276 | 17 | 7,752,975 |
LRW in 2008 | LRW in 2009 | LRW in 2010 | |||||||
DS* | 701 | 66 | 5,536,640 | 2851 | 63 | 31,906,507 | 4786 | 62 | 29,548,656 |
US* | 163 | 15 | 1,122,250 | 867 | 19 | 6,121,908 | 1741 | 23 | 5,411,773 |
MS* | 196 | 19 | 5,996,833 | 822 | 18 | 62,622,404 | 1143 | 15 | 49,371,784 |
LRW in 2011 | LRW in 2012 | LRW in 2013 | |||||||
DS* | 3007 | 61 | 24,183,843 | 2985 | 62 | 22,509,769 | 4338 | 63 | 22,058,529.7 |
US* | 981 | 20 | 6,037,161 | 942 | 20 | 5,046,249 | 1640 | 24 | 5,653,749.2 |
MS* | 961 | 19 | 38,732,913 | 903 | 19 | 32,738,814 | 941 | 14 | 33,581,493.8 |
LRW in 2014 | |||||||||
DS* | 2893 | 62 | 22,278,709 | ||||||
US* | 885 | 19 | 6,128,770 | ||||||
MS* | 899 | 19 | 34,599,337 |
Watersheds | SO Value of the Reache | Total Percentage | ||||||
---|---|---|---|---|---|---|---|---|
1 | 2 | 3 | 4 | 5 | 6 | 7 | ||
LRW | 34.7 | 31.7 | 13.4 | 6.4 | 3.2 | 1.5 | 0.0 | 90.9 |
NoRW | 51.7 | 22.0 | 9.1 | 5.1 | 5.7 | 0.0 | - | 93.6 |
NsRW | 40.4 | 19.0 | 16.4 | 9.4 | 7.3 | 2.6 | - | 95.0 |
© 2017 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
WU, C. Comparison and Evolution of Extreme Rainfall-Induced Landslides in Taiwan. ISPRS Int. J. Geo-Inf. 2017, 6, 367. https://doi.org/10.3390/ijgi6110367
WU C. Comparison and Evolution of Extreme Rainfall-Induced Landslides in Taiwan. ISPRS International Journal of Geo-Information. 2017; 6(11):367. https://doi.org/10.3390/ijgi6110367
Chicago/Turabian StyleWU, Chunhung. 2017. "Comparison and Evolution of Extreme Rainfall-Induced Landslides in Taiwan" ISPRS International Journal of Geo-Information 6, no. 11: 367. https://doi.org/10.3390/ijgi6110367
APA StyleWU, C. (2017). Comparison and Evolution of Extreme Rainfall-Induced Landslides in Taiwan. ISPRS International Journal of Geo-Information, 6(11), 367. https://doi.org/10.3390/ijgi6110367