A New Endmember Preprocessing Method for the Hyperspectral Unmixing of Imagery Containing Marine Oil Spills
<p>Flowchart of the proposed DSPP algorithm.</p> "> Figure 2
<p>Instruction of data field model [<a href="#B23-ijgi-06-00286" class="html-bibr">23</a>].</p> "> Figure 3
<p>Simulated image. (<b>a</b>) <math display="inline"> <semantics> <mrow> <msub> <mi mathvariant="normal">v</mi> <mi>b</mi> </msub> <mo>=</mo> <mn>0</mn> <mo>,</mo> <mo> </mo> <msub> <mrow> <mtext> </mtext> <mi mathvariant="normal">v</mi> </mrow> <mi>o</mi> </msub> <mo>=</mo> <mn>150</mn> </mrow> </semantics> </math>; (<b>b</b>) <math display="inline"> <semantics> <mrow> <msub> <mi mathvariant="normal">v</mi> <mi>b</mi> </msub> <mo>=</mo> <mn>255</mn> </mrow> </semantics> </math>, <math display="inline"> <semantics> <mrow> <msub> <mrow> <mtext> </mtext> <mi mathvariant="normal">v</mi> </mrow> <mi>o</mi> </msub> <mo>=</mo> <mn>100</mn> </mrow> </semantics> </math>.</p> "> Figure 4
<p>Data field. (<b>a</b>) <math display="inline"> <semantics> <mrow> <msub> <mi mathvariant="normal">v</mi> <mi>b</mi> </msub> <mo>=</mo> <mn>0</mn> <mo>,</mo> <msub> <mrow> <mtext> </mtext> <mi mathvariant="normal">v</mi> </mrow> <mi>o</mi> </msub> <mo>=</mo> <mn>150</mn> </mrow> </semantics> </math>; (<b>b</b>) <math display="inline"> <semantics> <mrow> <msub> <mi mathvariant="normal">v</mi> <mi>b</mi> </msub> <mo>=</mo> <mn>255</mn> </mrow> </semantics> </math>, <math display="inline"> <semantics> <mrow> <msub> <mrow> <mtext> </mtext> <mi mathvariant="normal">v</mi> </mrow> <mi>o</mi> </msub> <mo>=</mo> <mn>100</mn> </mrow> </semantics> </math>.</p> "> Figure 5
<p>Simulated image with anomaly pixels. (<b>a</b>) <math display="inline"> <semantics> <mrow> <msub> <mi mathvariant="normal">v</mi> <mi>b</mi> </msub> <mo>=</mo> <mn>0</mn> <mo>,</mo> <msub> <mrow> <mtext> </mtext> <mi mathvariant="normal">v</mi> </mrow> <mi>o</mi> </msub> <mo>=</mo> <mn>150</mn> </mrow> </semantics> </math>; (<b>b</b>) <math display="inline"> <semantics> <mrow> <msub> <mi mathvariant="normal">v</mi> <mi>b</mi> </msub> <mo>=</mo> <mn>255</mn> <mo>,</mo> <msub> <mrow> <mtext> </mtext> <mi mathvariant="normal">v</mi> </mrow> <mi>o</mi> </msub> <mo>=</mo> <mn>100</mn> </mrow> </semantics> </math>.</p> "> Figure 6
<p>Data field with anomaly pixels. (<b>a</b>) <math display="inline"> <semantics> <mrow> <msub> <mi mathvariant="normal">v</mi> <mi>b</mi> </msub> <mo>=</mo> <mn>0</mn> <mo>,</mo> <mo> </mo> <msub> <mrow> <mtext> </mtext> <mi mathvariant="normal">v</mi> </mrow> <mi>o</mi> </msub> <mo>=</mo> <mn>150</mn> </mrow> </semantics> </math>; (<b>b</b>) <math display="inline"> <semantics> <mrow> <msub> <mi mathvariant="normal">v</mi> <mi>b</mi> </msub> <mo>=</mo> <mn>255</mn> <mo>,</mo> <msub> <mrow> <mtext> </mtext> <mi mathvariant="normal">v</mi> </mrow> <mi>o</mi> </msub> <mo>=</mo> <mn>100</mn> </mrow> </semantics> </math>.</p> "> Figure 7
<p>Endmember spectra.</p> "> Figure 8
<p>Synthetic hyperspectral scenes.</p> "> Figure 9
<p>Data fields corresponding to different impact factors.</p> "> Figure 10
<p>Endmember candidates-data field.</p> "> Figure 11
<p>Endmember candidates-spectral purity.</p> "> Figure 12
<p>Abundance maps. (<b>a</b>) Water; (<b>b</b>) Oil; (<b>c</b>) Cloud.</p> "> Figure 13
<p>Reconstructed images. (<b>a</b>) DSPP+VCA; (<b>b</b>) SPP+VCA; (<b>c</b>) RBSPP+VCA; (<b>d</b>) SSPP+VCA.</p> "> Figure 13 Cont.
<p>Reconstructed images. (<b>a</b>) DSPP+VCA; (<b>b</b>) SPP+VCA; (<b>c</b>) RBSPP+VCA; (<b>d</b>) SSPP+VCA.</p> "> Figure 14
<p>RMSE between the five reconstructed images and the original images.</p> "> Figure 15
<p>Synthetic image (SNR = 30 dB).</p> "> Figure 16
<p>Comparison of endmembers (SNR = 30 dB) .</p> "> Figure 17
<p>Comparison of the endmembers extracted using several different algorithms and their origins. (<b>a</b>) DSPP+MVSA; (<b>b</b>) SPP+ MVSA; (<b>c</b>) RBSPP+ MVSA; (<b>d</b>) SSPP+ MVSA.</p> "> Figure 18
<p>The abundance maps using DSPP+MVSA. (<b>a</b>) oil; (<b>b</b>) water; (<b>c</b>) cloud.</p> "> Figure 19
<p>The abundance maps using RBSPP+MVSA. (<b>a</b>) oil (<b>b</b>) water; (<b>c</b>) cloud.</p> "> Figure 20
<p>The reconstructed images obtained using the preprocessing algorithms and MVSA combinations. (<b>a</b>) Original image; (<b>b</b>) DSPP reconstructed image; (<b>c</b>) SPP reconstructed image; (<b>d</b>) RBSPP reconstructed image; (<b>e</b>) SSPP reconstructed image.</p> "> Figure 20 Cont.
<p>The reconstructed images obtained using the preprocessing algorithms and MVSA combinations. (<b>a</b>) Original image; (<b>b</b>) DSPP reconstructed image; (<b>c</b>) SPP reconstructed image; (<b>d</b>) RBSPP reconstructed image; (<b>e</b>) SSPP reconstructed image.</p> ">
Abstract
:1. Introduction
2. Methodology
2.1. Data Field Index Calculation
2.2. Spectral Clustering
2.3. Spectral Purity Index Calculation
2.4. Fusion of Data Field and Spectral Information
3. Experimental Results
3.1. Synthetic Data
3.1.1. DSPP Procedure
3.1.2. DSPP Performance Analysis
3.2. Real Hyperspectral Data
4. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Australian science. Effects of a Crude Oil Spill On Ecology. Available online: http://www.australianscience.com.au/environmental-science/effects-of-a-crude-oil-spill-on-ecology/ (accessed on 7 March 2012).
- Zhao, J.; Temimi, M.; Ghedira, H.; Hu, C. Exploring the potential of optical remote sensing for oil spill detection in shallow coastal waters-a case study in the Arabian Gulf. Opt. Express 2014, 22, 13755–13772. [Google Scholar] [CrossRef] [PubMed]
- Liu, B.; Li, Y.; Chen, P.; Zhu, X. Extraction of oil spill information using decision tree based minimum noise fraction transform. J. Indian Soc. Remote Sens. 2016, 44, 421–426. [Google Scholar] [CrossRef]
- White, H.K.; Conmy, R.N.; MacDonald, I.R.; Reddy, C.M. Methods of oil detection in response to the Deepwater Horizon oil spill. Oceanography 2016, 29, 76–87. [Google Scholar] [CrossRef]
- Mei, S.; He, M.; Zhang, Y.; Wang, Z.; Feng, D. Improving spatial-spectral endmember extraction in the presence of anomalous ground objects. IEEE Trans. Geosci. Remote Sens. 2011, 49, 4210–4222. [Google Scholar] [CrossRef]
- Boardman, J.W.; Kruscl, F.A.; Grccn, R.O. Mapping target signatures via partial unmixing of AVIRIS data. Summaries. In Proceedings of the Fifth JPL Airborne Earth Science Workshop, Pasadena, CA, USA, 23 January 1995; pp. 23–26. [Google Scholar]
- Winter, M.E. N-FINDR: An algorithm for fast autonomous spectral end-member determination in hyperspectral data. In Proceedings of the SPIE’s International Symposium on Optical Science, Engineering, and Instrumentation, Boston, MA, USA, 20–21 September 1999; pp. 266–275. [Google Scholar]
- Harsanyi, J.C.; Chang, C.I. Hyperspectral image classification and dimensionality reduction: An orthogonal subspace projection approach. IEEE Trans. Geosci. Remote Sens. 1994, 32, 779–785. [Google Scholar] [CrossRef]
- Nascimento, J.M.P.; Dias, J.M.B. Vertex component analysis: A fast algorithm to unmix hyperspectral data. IEEE Trans. Geosci. Remote Sens. 2005, 43, 898–910. [Google Scholar] [CrossRef]
- Li, J.; Bioucas-Dias, J.M. Minimum Volume Simplex Analysis: A Fast Algorithm to Unmix Hyperspectral Data. In Proceedings of the 2008 IEEE International Geoscience and Remote Sensing Symposium, IGARSS 2008, Boston, MA, USA, 7–11 July 2008. [Google Scholar] [CrossRef]
- Bioucas-Dias, J.M. A variable splitting augmented Lagrangian approach to linear spectral unmixing. In Proceedings of the 1st International Workshop on Hyperspectral Image and Signal Processing: Evolution in Remote Sensing (WHISPERS 2009), Grenoble, France, 26–28 August 2009. [Google Scholar] [CrossRef]
- Berman, M.; Kiiveri, H.; Lagerstrom, R.; Ernst, A. Ice: A statistical approach to identifying endmembers in hyperspectral images. IEEE Trans. Geosci. Remote Sens. 2008, 42, 2085–2095. [Google Scholar] [CrossRef]
- Ifarraguerri, A.; Chang, C.I. Multispectral and hyperspectral image analysis with convex cones. IEEE Trans. Geosci. Remote Sens. 1999, 37, 756–770. [Google Scholar] [CrossRef]
- Neville, R.; Staenz, K. Automatic endmember extraction from hyperspectral data for mineral exploration. In Proceedings of the 4th International Airborne Remote Sensing Conference and Exhibition/21st Canadian Symposium on Remote Sensing, Ottawa, ON, Canada, 21–24 June 1999. [Google Scholar]
- Plaza, A.; Martinez, P.; Perez, R.; Plaza, J. Spatial/spectral endmember extraction by multidimensional morphological operations. IEEE Trans. Geosci. Remote Sens. 2002, 40, 2025–2041. [Google Scholar] [CrossRef]
- Rogge, D.M.; Rivard, B.; Zhang, J.; Sanchez, A.; Harris, J.; Feng, J. Integration of spatial-spectral information for the improved extraction of endmembers. Remote Sens. Environ. 2007, 110, 287–303. [Google Scholar] [CrossRef]
- Mei, S.; He, M.; Wang, Z.; Feng, D. Spatial purity based endmember extraction for spectral mixture analysis. IEEE Trans. Geosci. Remote Sens. 2010, 48, 3434–3445. [Google Scholar] [CrossRef]
- Zortea, M.; Plaza, A. Spatial preprocessing for endmember extraction. IEEE Trans. Geosci. Remote Sens. 2009, 47, 2679–2693. [Google Scholar] [CrossRef]
- Martin, G.; Plaza, A. Region-based spatial preprocessing for endmember extraction and spectral unmixing. IEEE Geosci. Remote Sens. Lett. 2011, 8, 745–749. [Google Scholar] [CrossRef]
- Martin, G.; Plaza, A. Spatial-spectral preprocessing prior to endmember identification and unmixing of remotely sensed hyperspectral data. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2012, 5, 380–395. [Google Scholar] [CrossRef]
- Kowkabi, F.; Ghassemian, H.; Keshavarz, A. A fast spatial-spectral preprocessing module for hyperspectral endmember extraction. IEEE Geosci. Remote Sens. Lett. 2016, 13, 782–786. [Google Scholar] [CrossRef]
- Lopez, S.; Moure, J.F.; Plaza, A.; Callico, G.M.; Lopez, J.F.; Sarmiento, R. A new preprocessing technique for fast hyperspectral endmember extraction. IEEE Geosci. Remote Sens. Lett. 2013, 10, 1070–1074. [Google Scholar] [CrossRef]
- Li, D.; Du, Y. Artificial Intelligence with Uncertainty; National Defence Industry Press: Beijing, China, 2005; pp. 198–199. ISBN 9787118039214. [Google Scholar]
- Wu, T.; Qin, K. Image data field for homogeneous region based segmentation. Comput. Electr. Eng. 2012, 38, 459–470. [Google Scholar] [CrossRef]
- Wu, T.; Qin, K. Data field-based transition region extraction and thresholding. Opt. Lasers Eng. 2012, 50, 131–139. [Google Scholar] [CrossRef]
- Franchi, G.; Angulo, J. Morphological principal component analysis for hyperspectral image analysis. ISPRS Int. J. Geo-Inf. 2016, 5, 83, in press. [Google Scholar] [CrossRef]
- Bioucas-Dias, J.M.; Nascimento, J.M.P. Hyperspectral subspace identification. IEEE Trans. Geosci. Remote Sens. 2008, 46, 2435–2445. [Google Scholar] [CrossRef]
- Heinz, D.; Chang, C.I. Fully constrained least squares linear mixture analysis for material quantification in hyperspectral imagery. IEEE Trans. Geosci. Remote Sens. 2001, 39, 529–545. [Google Scholar] [CrossRef]
- Hyperspectral Imagery Synthesis Toolbox for MATLAB. Available online: http://www.ehu.es/ccwintco/index.php/Hyperspectral_Imagery_Synthesis_tools_for_MATLAB (accessed on 5 April 2011).
SSM | Algorithm | SNR = 30 dB | SNR = 70 dB | SNR = 110 dB | ||||||
---|---|---|---|---|---|---|---|---|---|---|
Water | Oil | Clouds | Water | Oil | Clouds | Water | Oil | Clouds | ||
DSPP | DSPP+VCA | 0.51 | 2.70 | 0.01 | 0.01 | 0.63 | 0.01 | 0.00 | 0.62 | 0.01 |
DSPP+OSP | 0.02 | 73.02 | 0.11 | 0.00 | 3.58 | 0.02 | 0.00 | 3.67 | 0.02 | |
DSPP+MVSA | 52.70 | 19.91 | 0.47 | 0.01 | 1.33 | 0.06 | 0.00 | 2.22 | 0.00 | |
DSPP+SISAL | 0.61 | 23.32 | 0.45 | 1.55 | 1.89 | 0.03 | 0.20 | 2.98 | 0.00 | |
SPP | SPP+VCA | 39.60 | 23.27 | 0.26 | 31.49 | 25.80 | 0.17 | 27.63 | 0.66 | 0.20 |
SPP+OSP | 25.37 | 0.63 | 0.15 | 28.70 | 0.74 | 0.22 | 27.33 | 0.65 | 0.23 | |
SPP+MVSA | 15.83 | 64.15 | 0.09 | 20.45 | 0.67 | 0.00 | 17.65 | 0.79 | 0.03 | |
SPP+SISAL | 19.00 | 93.31 | 1.04 | 27.33 | 0.92 | 0.00 | 29.64 | 0.53 | 0.01 | |
RBSPP | RBSPP+VCA | 252.97 | 30.35 | 5.02 | 259.25 | 10.44 | 3.77 | 259.42 | 8.25 | 3.88 |
RBSPP+OSP | 266.58 | 37.11 | 5.45 | 260.18 | 69.90 | 4.06 | 259.36 | 34.53 | 4.13 | |
RBSPP+MVSA | 707.84 | 7.70 | 4.42 | 374.27 | 0.28 | 0.40 | 185.37 | 10.59 | 1.61 | |
RBSPP+SISAL | 114.02 | 44.99 | 4.56 | 196.16 | 9.14 | 0.51 | 187.66 | 10.04 | 1.48 | |
SSPP | SSPP+VCA | 265.53 | 27.45 | 6.07 | 263.59 | 31.62 | 4.27 | 260.13 | 20.99 | 4.15 |
SSPP+OSP | 274.70 | 27.91 | 3.82 | 264.28 | 26.87 | 3.50 | 267.71 | 6.15 | 3.65 | |
SSPP+MVSA | 238.13 | 25.96 | 1.62 | 114.76 | 34.69 | 2.89 | 81.98 | 33.26 | 2.23 | |
SSPP+SISAL | 231.33 | 27.03 | 1.78 | 133.27 | 35.14 | 3.81 | 104.80 | 33.97 | 3.30 |
RMSE | Algorithm | SNR = 30 dB | SNR = 70 dB | SNR = 110 dB |
---|---|---|---|---|
DSPP | DSPP+VCA | 4.6 | 1.999 | 1.284 |
DSPP+OSP | 5.14 | 2.43 | 1.61 | |
DSPP+MVSA | 4.6 | 1.995 | 1.283 | |
DSPP+SISAL | 4.6 | 1.997 | 1.29 | |
SPP | SPP+VCA | 4.95 | 3.094 | 2.39 |
SPP+OSP | 5.17 | 3.085 | 2.54 | |
SPP+MVSA | 5.07 | 1.975 | 1.426 | |
SPP+SISAL | 4.58 | 1.976 | 1.29 | |
RBSPP | RBSPP+VCA | 10.9 | 9.86 | 9.962 |
RBSPP+OSP | 11.02 | 9.87 | 9.961 | |
RBSPP+MVSA | 8.94 | 4.03 | 6.46 | |
RBSPP+SISAL | 9.18 | 4.45 | 6.26 | |
SSPP | SSPP+VCA | 12.49 | 9.98 | 10.51 |
SSPP+OSP | 10.04 | 9.88 | 10.05 | |
SSPP+MVSA | 7.27 | 7.49 | 6.72 | |
SSPP+SISAL | 7.49 | 8.48 | 7.99 |
Algorithm | Preprocessing Time (s) | Endmember Extraction Time (s) | Total Time (s) | |
---|---|---|---|---|
ORIGINAL | VCA | \ | 60.26 | 50.26 |
OSP | \ | 136.87 | 136.87 | |
MVSA | \ | 350.42 | 350.42 | |
SISAL | \ | 172.52 | 172.52 | |
DSPP | DSPP+VCA | 63.28 | 9.24 | 72.52 |
DSPP+OSP | 63.28 | 10.86 | 74.14 | |
DSPP+MVSA | 63.28 | 241.4 | 304.68 | |
DSPP+SISAL | 63.28 | 8.31 | 71.59 | |
SPP | SPP+VCA | 56.54 | 48.88 | 105.42 |
SPP+OSP | 56.54 | 128.95 | 185.49 | |
SPP+MVSA | 56.54 | 342.35 | 398.89 | |
SPP+SISAL | 56.54 | 163.25 | 219.79 | |
RBSPP | RBSPP+VCA | 83.71 | 8.69 | 92.4 |
RBSPP+OSP | 83.71 | 9.98 | 93.69 | |
RBSPP+MVSA | 83.71 | 256.8 | 340.51 | |
RBSPP+SISAL | 83.71 | 9.05 | 92.76 | |
SSPP | SSPP+VCA | 69.52 | 5.85 | 75.37 |
SSPP+OSP | 69.52 | 6.72 | 76.24 | |
SSPP+MVSA | 69.52 | 244.09 | 313.61 | |
SSPP+SISAL | 69.52 | 8.58 | 78.1 |
SSM | Algorithm | Water | Oil | Clouds |
---|---|---|---|---|
DSPP | DSPP+VCA | 0.0042 | 1.3083 | 0.5910 |
DSPP+OSP | 0.1352 | 3.8199 | 0.5078 | |
DSPP+MVSA | 0.3702 | 1.4977 | 2.0667 | |
DSPP+SISAL | 0.5281 | 0.9696 | 2.5910 | |
SPP | SPP+VCA | 0.0299 | 1.3041 | 1.054 |
SPP+OSP | 0.0288 | 3.2215 | 1.2586 | |
SPP+MVSA | 0.0952 | 0.7771 | 2.9965 | |
SPP+SISAL | 0.0608 | 0.7013 | 1.9358 | |
RBSPP | RBSPP+VCA | 0.3898 | 3.5866 | 6.6255 |
RBSPP+OSP | 1.6857 | 4.2385 | 6.26 | |
RBSPP+MVSA | 0.6622 | 2.5833 | 4.1918 | |
RBSPP+SISAL | 1.2356 | 3.7815 | 2.4958 | |
SSPP | SSPP+VCA | 0.0187 | 1.1604 | 3.0309 |
SSPP+OSP | 0.0243 | 0.6502 | 2.5849 | |
SSPP+MVSA | 0.0976 | 2.6116 | 4.9067 | |
SSPP+SISAL | 0.102 | 2.2873 | 6.3993 |
Algorithm | RMSE | |
---|---|---|
DSPP | DSPP+VCA | 4.820846 |
DSPP+OSP | 8.338002 | |
DSPP+MVSA | 3.127129 | |
DSPP+SISAL | 3.147139 | |
SPP | SPP+VCA | 4.097042 |
SPP+OSP | 5.150471 | |
SPP+MVSA | 3.136146 | |
SPP+SISAL | 3.153928 | |
RBSPP | RBSPP+VCA | 6.02655 |
RBSPP+OSP | 8.232756 | |
RBSPP+MVSA | 3.915835 | |
RBSPP+SISAL | 4.212568 | |
SSPP | SSPP+VCA | 5.620443 |
SSPP+OSP | 8.221507 | |
SSPP+MVSA | 3.187329 | |
SSPP+SISAL | 3.312629 |
Algorithm | Preprocessing Time (s) | Endmember Extraction Time (s) | Total Time (s) | |
---|---|---|---|---|
ORIGINAL | VCA | \ | 472.52 | 472.52 |
OSP | \ | 650.42 | 650.42 | |
MVSA | \ | 20,254.52 | 20,254.52 | |
SISAL | \ | 828.86 | 828.86 | |
DSPP | DSPP+VCA | 138.85 | 160.87 | 299.72 |
DSPP+OSP | 138.85 | 174.41 | 313.26 | |
DSPP+MVSA | 138.85 | 1587.35 | 1726.2 | |
DSPP+SISAL | 138.85 | 168.25 | 307.1 | |
SPP | SPP+VCA | 119.23 | 489.25 | 608.48 |
SPP+OSP | 119.23 | 508.28 | 627.51 | |
SPP+MVSA | 119.23 | 20073.1 | 20,192.33 | |
SPP+SISAL | 119.23 | 756.35 | 875.58 | |
RBSPP | RBSPP+VCA | 173.21 | 175.65 | 348.86 |
RBSPP+OSP | 173.21 | 165.91 | 339.12 | |
RBSPP+MVSA | 173.21 | 1640.92 | 1814.13 | |
RBSPP+SISAL | 173.21 | 153.47 | 326.68 | |
SSPP | SSPP+VCA | 152.68 | 163.89 | 316.57 |
SSPP+OSP | 152.68 | 168.01 | 320.69 | |
SSPP+MVSA | 152.68 | 1610.68 | 1763.36 | |
SSPP+SISAL | 152.68 | 175.24 | 327.92 |
© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cui, C.; Li, Y.; Liu, B.; Li, G. A New Endmember Preprocessing Method for the Hyperspectral Unmixing of Imagery Containing Marine Oil Spills. ISPRS Int. J. Geo-Inf. 2017, 6, 286. https://doi.org/10.3390/ijgi6090286
Cui C, Li Y, Liu B, Li G. A New Endmember Preprocessing Method for the Hyperspectral Unmixing of Imagery Containing Marine Oil Spills. ISPRS International Journal of Geo-Information. 2017; 6(9):286. https://doi.org/10.3390/ijgi6090286
Chicago/Turabian StyleCui, Can, Ying Li, Bingxin Liu, and Guannan Li. 2017. "A New Endmember Preprocessing Method for the Hyperspectral Unmixing of Imagery Containing Marine Oil Spills" ISPRS International Journal of Geo-Information 6, no. 9: 286. https://doi.org/10.3390/ijgi6090286
APA StyleCui, C., Li, Y., Liu, B., & Li, G. (2017). A New Endmember Preprocessing Method for the Hyperspectral Unmixing of Imagery Containing Marine Oil Spills. ISPRS International Journal of Geo-Information, 6(9), 286. https://doi.org/10.3390/ijgi6090286