A New GNSS Single-Epoch Ambiguity Resolution Method Based on Triple-Frequency Signals
<p>Structure of the new single-epoch Global Navigation Satellite Systems ambiguity resolution (GNSS AR) method for a short-range baseline based on triple-frequency signals.</p> "> Figure 2
<p>Number of visible satellites of BDS/GPS/GLONASS.</p> "> Figure 3
<p>Variation of distribution of the difference (DF) of three kinds of BDS satellites. GEO = Geostationary Earth Orbit; IGSO = Inclined Geosynchronous Satellite Orbit; MEO = Medium Earth Orbit. (<b>a</b>) GEO; (<b>b</b>) IGSO; (<b>c</b>) MEO.</p> "> Figure 3 Cont.
<p>Variation of distribution of the difference (DF) of three kinds of BDS satellites. GEO = Geostationary Earth Orbit; IGSO = Inclined Geosynchronous Satellite Orbit; MEO = Medium Earth Orbit. (<b>a</b>) GEO; (<b>b</b>) IGSO; (<b>c</b>) MEO.</p> "> Figure 4
<p>Variation of the absolute value of mean square error.</p> "> Figure 5
<p>Deviation of coordinate (North). (<b>a</b>) without robust estimation; (<b>b</b>) with robust estimation.</p> "> Figure 6
<p>Deviation of coordinate (East). (<b>a</b>) without robust estimation; (<b>b</b>) with robust estimation.</p> "> Figure 7
<p>Deviation of coordinate (Up). (<b>a</b>) without robust estimation; (<b>b</b>) with robust estimation.</p> ">
Abstract
:1. Introduction
2. Mathematical Model
- i—the i-th frequency, e.g., GPS L1, L2 or L5;
- f—frequency (Hz);
- P—pseudo-range measurements (meter);
- φ—carrier phase measurements (cycle);
- λ—wavelength (meter);
- ρ—geometric distance from satellite to receiver (meter);
- N—carrier phase ambiguity;
- K—the parameter of the first-order ionospheric delay, K = 40.28 TEC; TEC represents the Total Electron Content;
- T—tropospheric delay (meter);
- —measurement noise of pseudo range and carrier phase, respectively.
3. GNSS Single-Epoch Ambiguity Resolution
3.1. Ambiguity Resolution of BDS Triple-Frequency Signals
3.2. GNSS Ambiguity Resolution under the Constraint of BDS Triple-Frequency Observation
3.3. GNSS Single-Epoch Ambiguity Resolution Based on Robust Estimation
4. Experiments and Discussion
4.1. Ambiguity Resolution of BDS Triple-Frequency Signals
4.2. Ambiguity Resolution of GPS/GLONASS Signals
5. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Li, J.; Zhang, Y.; Wang, X.; Qin, Q.; Wei, Z.; Li, J. Application of GPS trajectory data for investigating the interaction between human activity and landscape pattern: A case study of the Lijiang River Basin, China. ISPRS Int. J. Geo-Inf. 2016, 5, 104. [Google Scholar] [CrossRef]
- Estima, J.; Painho, M. User Generated spatial content-integrator: Conceptual model to integrate data from diverse sources of user generated spatial content. ISPRS Int. J. Geo-Inf. 2016, 5, 183. [Google Scholar] [CrossRef]
- Leick, A. GPS Satellite Surveying; John Wiley & Sons: New York, NY, USA, 2004. [Google Scholar]
- Parkinson, B.W. Progress in Astronautics and Aeronautics: Global Positioning System: Theory and Applications; AIAA: San Francisco, CA, USA, 1996. [Google Scholar]
- Hatch, R. Ambiguity resolution while moving-experimental results. In Proceedings of the ION GPS, Albuquerque, NM, USA, 11 September 1991; Volume 91, pp. 10–13.
- Hatch, R. Instantaneous ambiguity resolution. In Kinematic Systems in Geodesy, Surveying, and Remote Sensing; Springer: Berlin, Germany, 1991; pp. 299–308. [Google Scholar]
- Chen, D. Development of a Fast Ambiguity Search Filtering (FASF) Method for GPS Carrier Phase Ambiguity Resolution; University of Calgary: Calgary, AB, Canada, 1997. [Google Scholar]
- Teunissen, P.J.G. Least-squares estimation of the integer GPS ambiguities. In Proceedings of the Invited Lecture, Section IV Theory and Methodology, IAG General Meeting, Beijing, China, 6 August 1993.
- Teunissen, P.J.G. A new method for fast carrier phase ambiguity estimation. In Proceedings of the IEEE Position Location and Navigation Symposium, Las Vages, NV, USA, 11 April 1994; pp. 562–573.
- Zumberge, J.F.; Heflin, M.B.; Jefferson, D.C.; Watkins, M.M.; Webb, F.H. Precise point positioning for the efficient and robust analysis of GPS data from large networks. J. Geophys. Res.: Solid Earth 1997, 102, 5005–5017. [Google Scholar] [CrossRef]
- Zou, X.; Ge, M.; Tang, W.; Shi, C.; Liu, J. URTK: Undifferenced network RTK positioning. GPS Solut. 2013, 17, 283–293. [Google Scholar] [CrossRef]
- Li, W.; Teunissen, P.; Zhang, B.; Verhagen, S. Precise point positioning using GPS and Compass observations. In Proceedings of the China Satellite Navigation Conference (CSNC), Wuhan, China, 15 May 2013; pp. 367–378.
- Ge, M.; Gendt, G.; Rothacher, M.; Shi, C.; Liu, J. Resolution of GPS carrier-phase ambiguities in precise point positioning (PPP) with daily observations. J. Geod. 2008, 82, 389–399. [Google Scholar] [CrossRef]
- Li, X.; Zhang, X.; Ge, M. Regional reference network augmented precise point positioning for instantaneous ambiguity resolution. J. Geod. 2011, 85, 151–158. [Google Scholar] [CrossRef]
- Feng, Y.M.; Rizos, C.; Higgins, M. Multiple carrier ambiguity resolution and performance benefits for RTK and PPP positioning services in regional areas. In Proceedings of the ION GNSS 20th International Technical Meeting of the Satellite Division, Fort Worth, TX, USA, 25 September 2007; pp. 25–28.
- Vollath, U.; Birnbach, S.; Landau, H.; Fraile-Ordonez, J.M.; Martin-Neira, M. Analysis of three-carrier ambiguity resolution (TCAR) technique for precise relative positioning in GNSS-2. In Proceedings of the Global Navigation Satellite Systems, European Symposium, Nashville, TN, USA, 15 September 1998.
- Li, X.; Ge, M.; Dai, X.; Ren, X.; Fritsche, M.; Wickert, J.; Schuh, H. Accuracy and reliability of multi-GNSS real-time precise positioning: GPS, GLONASS, BeiDou, and Galileo. J. Geod. 2015, 89, 607–635. [Google Scholar] [CrossRef]
- Li, X.; Zus, F.; Lu, C.; Dick, G.; Ning, T.; Ge, M.; Wickert, J.; Schuh, H. Retrieving of atmospheric parameters from multi-GNSS in real time: Validation with water vapor radiometer and numerical weather model. J. Geophys. Res.: Atmos. 2015, 120, 7189–7204. [Google Scholar] [CrossRef]
- Hatch, R.; Jung, J.; Enge, P.; Pervan, B. Civilian GPS: The benefits of three frequencies. GPS Solut. 2000, 3, 1–9. [Google Scholar] [CrossRef]
- Feng, Y.; Li, B. A benefit of multiple carrier GNSS signals: Regional scale network-based RTK with doubled inter-station distances. J. Spat. Sci. 2008, 53, 135–147. [Google Scholar] [CrossRef]
- Li, B.; Feng, Y.; Shen, Y. Three carrier ambiguity resolution: Distance-independent performance demonstrated using semi-generated triple frequency GPS signals. GPS Solut. 2010, 14, 177–184. [Google Scholar] [CrossRef]
- Ji, S.; Chen, W.; Ding, X.; Chen, Y.; Zhao, C.; Hu, C. Potential benefits of GPS/GLONASS/GALILEO integration in an urban canyon—Hong Kong. J. Navig. 2010, 63, 681–693. [Google Scholar] [CrossRef]
- Geng, J.; Bock, Y. Triple-frequency GPS precise point positioning with rapid ambiguity resolution. J. Geod. 2013, 87, 449–460. [Google Scholar] [CrossRef]
- Tang, W.; Deng, C.; Shi, C.; Liu, J. Triple-frequency carrier ambiguity resolution for Beidou navigation satellite system. GPS Solut. 2014, 18, 335–344. [Google Scholar] [CrossRef]
- Julien, O.; Alves, P.; Cannon, M.E.; Zhang, W. A tightly coupled GPS/GALILEO combination for improved ambiguity resolution. In Proceedings of the European Navigation Conference (ENC-GNSS’03), Calgary, AB, Canada, 9 September 2003; pp. 1–14.
- Xu, Y.; Ji, S.; Chen, W.; Weng, D. A new ionosphere-free ambiguity resolution method for long-range baseline with GNSS triple-frequency signals. Adv. Space Res. 2015, 56, 1600–1612. [Google Scholar] [CrossRef]
- Xu, G. GPS Theory, Algorithms and Applications; Springer: Heidelberg, Germany, 2003; pp. 119–123. [Google Scholar]
- Wanninger, L.; Wallstab-Freitag, S. Combined processing of GPS, GLONASS, and SBAS code phase and carrier phase measurements. In Proceedings of the ION GNSS, Fort Worth, TX, USA, 25 September 2007; pp. 866–875.
- Zinoviev, A.E. Using GLONASS in combined GNSS receivers: Current status. In Proceedings of the ION GNSS, Long Beach, CA, USA, 13 September 2005; pp. 1046–1057.
- Yang, Y.; Gao, W. Integrated navigation based on robust estimation outputs of multi-sensor measurements and adaptive weights of dynamic model information. Geo-Spat. Inf. Sci. 2005, 8, 201–204. [Google Scholar]
- Yang, Y.; He, H.; Xu, G. Adaptively robust filtering for kinematic geodetic positioning. J. Geod. 2001, 75, 109–116. [Google Scholar] [CrossRef]
- Xu, Y.; Ji, S. Data quality assessment and the positioning performance analysis of BeiDou in Hong Kong. Surv. Rev. 2015, 47, 446–457. [Google Scholar] [CrossRef]
- Ji, S.; Wang, X.; Xu, Y.; Wang, Z.; Chen, W.; Liu, H. First preliminary fast static ambiguity resolution results of medium-baseline with triple-frequency beidou wavebands. J. Navig. 2014, 67, 1109–1119. [Google Scholar] [CrossRef]
Without Robust Estimation | With Robust Estimation | |||||
---|---|---|---|---|---|---|
0–0.03 cm | 0.03–0.05 cm | >0.05 cm | 0–0.03 cm | 0.03–0.05 cm | >0.05 cm | |
North | 99.0 | 0.2 | 0.8 | 99.9 | 0.1 | 0 |
East | 99.0 | 0.5 | 0.5 | 99.9 | 0.1 | 0 |
Up | 98.2 | 0.6 | 1.2 | 99.4 | 0.6 | 0 |
Time to Fix (epoch) | S1 | S3 |
---|---|---|
1 | 100.00% | 97.53% |
2 | 99.41% | |
3 | 99.65% | |
4 | 99.69% | |
5 | 100.00% |
© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license ( http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, S.; Deng, J.; Lu, X.; Song, Z.; Xu, Y. A New GNSS Single-Epoch Ambiguity Resolution Method Based on Triple-Frequency Signals. ISPRS Int. J. Geo-Inf. 2017, 6, 46. https://doi.org/10.3390/ijgi6020046
Wang S, Deng J, Lu X, Song Z, Xu Y. A New GNSS Single-Epoch Ambiguity Resolution Method Based on Triple-Frequency Signals. ISPRS International Journal of Geo-Information. 2017; 6(2):46. https://doi.org/10.3390/ijgi6020046
Chicago/Turabian StyleWang, Shengli, Jian Deng, Xiushan Lu, Ziyuan Song, and Ying Xu. 2017. "A New GNSS Single-Epoch Ambiguity Resolution Method Based on Triple-Frequency Signals" ISPRS International Journal of Geo-Information 6, no. 2: 46. https://doi.org/10.3390/ijgi6020046
APA StyleWang, S., Deng, J., Lu, X., Song, Z., & Xu, Y. (2017). A New GNSS Single-Epoch Ambiguity Resolution Method Based on Triple-Frequency Signals. ISPRS International Journal of Geo-Information, 6(2), 46. https://doi.org/10.3390/ijgi6020046