Evaluating School Location Based on a Territorial Spatial Planning Knowledge Graph
<p>Guangyang Island Yangtze River Ecological Civilization Innovation Experimental Zone.</p> "> Figure 2
<p>Digital resources of the study area: (<b>a</b>) territorial spatial planning map; (<b>b</b>) road network.</p> "> Figure 3
<p>DEM of the study area.</p> "> Figure 4
<p>Primary and secondary schools, residential and industrial land in the study area.</p> "> Figure 5
<p>Touches, Contains and Within topological relations between different two-dimensional geographic objects of a, b, c.</p> "> Figure 6
<p>Touches, Contains and Within topological relations between different two-dimensional geographic objects of a, b and c.</p> "> Figure 7
<p>1–3-order neighbours of geographic object a.</p> "> Figure 8
<p>All schools in the area are serviceable or non-serviceable within a residential area with a walking commute time of 15 min.</p> "> Figure 9
<p>The locations of the top three and bottom three ranked schools.</p> "> Figure 10
<p>The locations of the top three and bottom three ranked schools in AHP.</p> "> Figure 11
<p>The locations of the top three and bottom three ranked schools in ArcGIS.</p> ">
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area and Data Sources
2.1.1. Study Area
2.1.2. Data Sources
2.2. Methods
2.2.1. School Location Evaluation Model
2.2.2. Construction of the Knowledge Graph
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Hersperger, A.M.; Oliveira, E.; Pagliarin, S.; Palka, G.; Verburg, P.; Bolliger, J.; Gradinaru, S. Urban land-use change: The role of strategic spatial planning. Glob. Environ. Change-Hum. Policy Dimens. 2018, 51, 32–42. [Google Scholar] [CrossRef]
- Liu, Y.; Zhou, Y. Territory spatial planning and national governance system in China. Land Use Policy 2021, 102, 105288. [Google Scholar] [CrossRef]
- Witte, P.; Punt, E.; Geertman, S. Smart governance in the making: Integrating ‘smart’ in local spatial planning. In Handbook of Planning Support Science; Edward Elgar Publishing: Cheltenham, UK, 2020; pp. 226–237. [Google Scholar]
- Högström, J.; Brokking, P.; Balfors, B.; Hammer, M. Approaching sustainability in local spatial planning processes: A case study in the Stockholm region, Sweden. Sustainability 2021, 13, 2601. [Google Scholar] [CrossRef]
- Sakti, A.D.; Rahadianto, M.A.E.; Pradhan, B.; Muhammad, H.N.; Andani, I.G.A.; Sarli, P.W.; Abdillah, M.R.; Anggraini, T.S.; Purnomo, A.D.; Ridwana, R.; et al. School Location Analysis by Integrating the Accessibility, Natural and Biological Hazards to Support Equal Access to Education. ISPRS Int. J. Geo-Inf. 2022, 11, 12. [Google Scholar] [CrossRef]
- Barbara, M.; Rey, D.; Akbarnezhad, A. Optimizing Location of New Public Schools in Town Planning Considering Supply and Demand. J. Urban Plan. Dev. 2021, 147, 04021057. [Google Scholar] [CrossRef]
- Prasetyo, D.H.; Mohamad, J.; Fauzi, R. A GIS-based multi-criteria decision analysis approach for public school site selection in Surabaya, Indonesia. Geomatica 2018, 72, 69–84. [Google Scholar] [CrossRef]
- Ghazal, N.; Jaleel, Q.A. Using GIS and Python Language to Choose the Best School Location (Study on the Urban Areas of the Husseiniya District in Karbala Province). Int. Rev. Phys. IREPHY 2017, 11, 112–119. [Google Scholar]
- Al-Sabbagh, T.A. GIS location-allocation models in improving accessibility to primary schools in Mansura city-Egypt. Geojournal 2022, 87, 1009–1026. [Google Scholar] [CrossRef]
- Al Quhtani, S. Spatial distribution of public elementary schools: A case study of Najran, Saudi Arabia. J. Asian Archit. Build. Eng. 2022, 22, 705–725. [Google Scholar] [CrossRef]
- Lotfi, R.; Pilehforooshha, P.; Karimi, M. A multi-objective optimization model for school location-allocation coupling demographic changes. J. Spat. Sci. 2023, 68, 225–244. [Google Scholar] [CrossRef]
- Meena, D.K.; Tripathi, R.; Agrawal, S. An evaluation of primary schools and its accessibility using GIS techniques: A case study of Prayagraj district, India. Geojournal 2023, 88, 1921–1951. [Google Scholar] [CrossRef] [PubMed]
- Rikalovic, A.; Cosic, I.; Lazarevic, D. GIS based multi-criteria analysis for industrial site selection. Procedia Eng. 2014, 69, 1054–1063. [Google Scholar] [CrossRef]
- Shorabeh, S.N.; Firozjaei, H.K.; Firozjaei, M.K.; Jelokhani-Niaraki, M.; Homaee, M.; Nematollahi, O. The site selection of wind energy power plant using GIS-multi-criteria evaluation from economic perspectives. Renew. Sustain. Energy Rev. 2022, 168, 112778. [Google Scholar] [CrossRef]
- Ahmed Ali, K. Multi-criteria decision analysis for primary school site selection in Al-Mahaweel district using GIS technique. J. Kerbala Univ. 2018, 14, 342–350. [Google Scholar]
- Shen, T.; Zhang, F.; Cheng, J. A comprehensive overview of knowledge graph completion. Knowl. Based Syst. 2022, 255, 109597. [Google Scholar] [CrossRef]
- Singhal, A. Introducing the Knowledge Graph: Things, Not Strings. Google Blog 2012. Available online: https://www.blog.google/products/search/introducing-knowledge-graph-things-not/ (accessed on 11 February 2024).
- Fensel, D.; Şimşek, U.; Angele, K.; Huaman, E.; Kärle, E.; Panasiuk, O.; Toma, I.; Umbrich, J.; Wahler, A. Introduction: What is a knowledge graph? In Knowledge Graphs: Methodology, Tools and Selected Use Cases; Springer: Cham, Switzerland, 2020; pp. 1–10. [Google Scholar]
- Richens, R.H. Preprogramming for mechanical translation. Mech. Transl. Comput. Linguist. 1956, 3, 20–25. [Google Scholar]
- Hogan, A.; Blomqvist, E.; Cochez, M.; d’Amato, C.; Melo, G.D.; Gutierrez, C.; Kirrane, S.; Gayo, J.E.L.; Navigli, R.; Neumaier, S. Knowledge Graphs. Acm Comput. Surv. 2021, 54, 1–37. [Google Scholar] [CrossRef]
- Ji, S.; Pan, S.; Cambria, E.; Marttinen, P.; Yu, P.S. A Survey on Knowledge Graphs: Representation, Acquisition, and Applications. IEEE Trans. Neural Netw. Learn. Syst. 2022, 33, 494–514. [Google Scholar] [CrossRef] [PubMed]
- Cheng, B.J.; Zhang, J.; Liu, H.; Cai, M.L.; Wang, Y. Research on Medical Knowledge Graph for Stroke. J. Healthc. Eng. 2021, 10, 5531327. [Google Scholar] [CrossRef]
- Li, L.; Wang, P.; Yan, J.; Wang, Y.; Li, S.; Jiang, J.; Sun, Z.; Tang, B.; Chang, T.-H.; Wang, S. Real-world data medical knowledge graph: Construction and applications. Artif. Intell. Med. 2020, 103, 101817. [Google Scholar] [CrossRef]
- Shen, J.; Shi, K.; Ma, M. Exploring the construction and application of spatial scene knowledge graphs considering topological relations. Trans. GIS 2022, 26, 1531–1547. [Google Scholar] [CrossRef]
- Sun, K.; Hu, Y.; Song, J.; Zhu, Y. Aligning geographic entities from historical maps for building knowledge graphs. Int. J. Geogr. Inf. Sci. 2020, 35, 2078–2107. [Google Scholar] [CrossRef]
- Clementini, E.; Di Felice, P. Approximate topological relations. Int. J. Approx. Reason. 1997, 16, 173–204. [Google Scholar] [CrossRef]
- Zhang, Y.; Zhang, A.; Gao, M.; Liang, Y. A Spatial Relation Model of Three-Dimensional Electronic Navigation Charts Based on Point-Set Topology Theory. ISPRS Int. J. Geo-Inf. 2023, 12, 259. [Google Scholar] [CrossRef]
- Strobl, C. Dimensionally Extended Nine-Intersection Model (DE-9IM). In Encyclopedia of GIS; Shekhar, S., Xiong, H., Eds.; Springer: Berlin/Heidelberg, Germany, 2008; pp. 240–245. [Google Scholar]
- Izmirlioglu, Y.; Erdem, E. Qualitative reasoning about 2D cardinal directions using answer set programming. J. Artif. Intell. Res. 2023, 77, 1371–1453. [Google Scholar] [CrossRef]
- Shekhar, S.; Liu, X.; Chawla, S. An object model of direction and its implications. GeoInformatica 1999, 3, 357–379. [Google Scholar] [CrossRef]
- Buczkowska, S.; Coulombel, N.; de Lapparent, M. A comparison of euclidean distance, travel times, and network distances in location choice mixture models. Netw. Spat. Econ. 2019, 19, 1215–1248. [Google Scholar] [CrossRef]
- Miller, H.J. Tobler’s First Law and spatial analysis. Ann. Assoc. Am. Geogr. 2004, 94, 284–289. [Google Scholar] [CrossRef]
- Freeman, L.C. Centrality in social networks conceptual clarification. Soc. Netw. 1978, 1, 215–239. [Google Scholar] [CrossRef]
- Marchiori, M.; Latora, V. Harmony in the small-world. Phys. A Stat. Mech. Its Appl. 2000, 285, 539–546. [Google Scholar] [CrossRef]
- Vagner, A. Route planning on GTFS using Neo4j. Ann. Math. Informaticae 2021, 54, 163–179. [Google Scholar] [CrossRef]
- Chen, Q.; Xia, J.; Feng, J.; Tong, M. Research on Knowledge Graph Construction for Python Programming Language. In Resilience and Future of Smart Learning; Yang, J., Liu, D., Kinshuk, A., Tlili, M., Chang, E., Popescu, D., Burgos, Z.A., Eds.; ICSLE; Lecture Notes in Educational Technology; Springer: Singapore, 2022. [Google Scholar]
- Talen, E. School, community, and spatial equity: An empirical investigation of access to elementary schools in West Virginia. Ann. Assoc. Am. Geogr. 2001, 91, 465–486. [Google Scholar] [CrossRef]
- Baser, V. Effectiveness of school site decisions on land use policy in the planning process. ISPRS Int. J. Geo-Inf. 2020, 9, 662. [Google Scholar] [CrossRef]
- Ahmad, M.B.A.; Bahiah, B.; Rasib, A.W.; Saifullizan, M.B. GIS and Multi-criteria Analysis for School Site Selection (Study Case: Malacca Historical City). Int. J. Integr. Eng. 2021, 13, 234–241. [Google Scholar]
Data | Format | Data Sources |
---|---|---|
Guangyang Island territorial spatial planning | Vector | https://www.cqna.gov.cn (accessed on 20 January 2024) |
DEM | Raster (12.5 m) | ALOS (https://search.asf.alaska.edu, accessed on 21 January 2024) |
Weights | Value |
---|---|
0.5 | |
0.5 | |
0.3 | |
0.2 | |
0.25 | |
0.125 | |
0.125 |
Entity | Attributes |
---|---|
Plot | ID, Shape_area, Shape_length, Mean_slope |
Plot Type | ID, Code, Type |
OBJTECTID | Score |
---|---|
59 | 0.861 |
74 | 0.806 |
58 | 0.765 |
OBJTECTID | Score |
---|---|
56 | 0.211 |
51 | 0.254 |
70 | 0.307 |
Origin | AHP | ArcGIS | |||
---|---|---|---|---|---|
ID | Score | ID | Score | ID | Score |
59 | 0.861 | 59 | 0.832 | 71 | 0.841 |
74 | 0.806 | 71 | 0.788 | 73 | 0.817 |
58 | 0.765 | 74 | 0.761 | 59 | 0.789 |
Origin | AHP | ArcGIS | |||
---|---|---|---|---|---|
ID | Score | ID | Score | ID | Score |
56 | 0.211 | 53 | 0.165 | 51 | 0.205 |
51 | 0.254 | 70 | 0.237 | 70 | 0.248 |
70 | 0.307 | 55 | 0.292 | 64 | 0.336 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xu, X.; Hao, J.; Shen, J. Evaluating School Location Based on a Territorial Spatial Planning Knowledge Graph. ISPRS Int. J. Geo-Inf. 2024, 13, 173. https://doi.org/10.3390/ijgi13060173
Xu X, Hao J, Shen J. Evaluating School Location Based on a Territorial Spatial Planning Knowledge Graph. ISPRS International Journal of Geo-Information. 2024; 13(6):173. https://doi.org/10.3390/ijgi13060173
Chicago/Turabian StyleXu, Xiankang, Jian Hao, and Jingwei Shen. 2024. "Evaluating School Location Based on a Territorial Spatial Planning Knowledge Graph" ISPRS International Journal of Geo-Information 13, no. 6: 173. https://doi.org/10.3390/ijgi13060173