An Effective Method for Computing the Least-Cost Path Using a Multi-Resolution Raster Cost Surface Model
<p>A multi-resolution raster cost surface model (MRCSM) using a 2:1 downsampling coefficient.</p> "> Figure 2
<p>The multi-scale least-cost path (MS-LCP) method: The first stage is to obtain a multi-resolution raster cost surface model of different scales using downsampling. The second stage is the path search on the raster cost surface at different scales.</p> "> Figure 3
<p>Determination of the search area: (<b>a</b>) search area determined by the starting point and target point; (<b>b</b>) search area determined together by the starting point, target point, and other auxiliary edge points.</p> "> Figure 4
<p>Examples of (<b>a</b>,<b>b</b>) cloudy cost surfaces and (<b>c</b>,<b>d</b>) patchy cost surfaces: (<b>a</b>) 4 classes, (<b>b</b>) 10 classes, (<b>c</b>) 7 classes, and (<b>d</b>) 4 classes. Darker shades represent higher values.</p> "> Figure 5
<p>Raster cost surface comprising three datasets: elevation, land cover, and infrastructure.</p> "> Figure 6
<p>The y-axis shows <math display="inline"><semantics><mrow><mi>l</mi><mo>(</mo><mi>M</mi><mi>S</mi><mo>−</mo><mi>L</mi><mi>C</mi><mi>P</mi><mo>)</mo><mo>/</mo><mi>l</mi><mo>(</mo><mi>L</mi><mi>C</mi><mi>P</mi><mo>)</mo></mrow></semantics></math> or <math display="inline"><semantics><mrow><mi>u</mi><mo>(</mo><mi>M</mi><mi>S</mi><mo>−</mo><mi>L</mi><mi>C</mi><mi>P</mi><mo>)</mo><mo>/</mo><mi>u</mi><mo>(</mo><mi>L</mi><mi>C</mi><mi>P</mi><mo>)</mo></mrow></semantics></math>, and the x-axis shows the ID. The plotted chart displays the range, median and mean values. (<b>a</b>,<b>c</b>): results on cloudy cost surfaces and the MS-LCP using average downsampling; (<b>b</b>,<b>d</b>): results on patchy cost surfaces and the MS-LCP using average downsampling.</p> "> Figure 7
<p>The y-axis shows <math display="inline"><semantics><mrow><mi>l</mi><mo>(</mo><mi>M</mi><mi>S</mi><mo>−</mo><mi>L</mi><mi>C</mi><mi>P</mi><mo>)</mo><mo>/</mo><mi>l</mi><mo>(</mo><mi>L</mi><mi>C</mi><mi>P</mi><mo>)</mo></mrow></semantics></math> or <math display="inline"><semantics><mrow><mi>u</mi><mo>(</mo><mi>M</mi><mi>S</mi><mo>−</mo><mi>L</mi><mi>C</mi><mi>P</mi><mo>)</mo><mo>/</mo><mi>u</mi><mo>(</mo><mi>L</mi><mi>C</mi><mi>P</mi><mo>)</mo></mrow></semantics></math>, and the x-axis shows the ID. The plotted chart displays the range, median and mean values. (<b>a</b>,<b>c</b>): results on cloudy cost surfaces and MS-LCP using maximum downsampling; (<b>b</b>,<b>d</b>): result on patchy cost surfaces and MS-LCP using maximum downsampling.</p> "> Figure 8
<p>(<b>a</b>) LCP and MS-LCP using average downsampling on cloudy cost surface. (<b>b</b>) LCP and MS-LCP using maximum downsampling on cloudy cost surface. (<b>c</b>) LCP and MS-LCP using average downsampling on patchy cost surface. (<b>d</b>) LCP and MS-LCP using maximum downsampling on patchy cost surface.</p> "> Figure 9
<p>(<b>a</b>) Mixture of three different paths. (<b>b</b>) LCP on raster cost surface. (<b>c</b>) MS-LCP using average downsampling on raster cost surface. (<b>d</b>) MS-LCP using maximum downsampling on raster cost surface.</p> "> Figure 10
<p>The green path represents the LCP, the red path represents the MS-LCP using an average downsampling, and the blue path represents the MS-LCP using a maximum downsampling. The red rectangular area indicates the initial divergence point of the three paths. Within the cost gird, the white areas signify areas obstructed by water.</p> ">
Abstract
:1. Introduction
2. Least-Cost Paths on Raster Cost Surfaces
3. Method
3.1. Overview of Proposed MS-LCP Method
- step 1.
- Acquired data from remote sensing are utilized to produce cost maps based on various criteria as input data.
- step 2.
- Set the threshold of the minimum resolution for the grid scale. Downsample the cost of each grid. Record the new scales of each layer grid and the positions of the starting and the target point in each layer. Use a grid-based path search algorithm.
- step 3.
- Traverse the grid layers from low to high. Calculate the path and record the sequence of paths starting from the minimum resolution grid.
- step 4.
- Filter the directional points and map the path points on the medium-high resolution grid one by one. Each time a new graph structure is established based on the path search range, calculate the paths between each group of path points serially or in parallel to obtain the final sequence of paths.
- step 5.
- Each layer can output the corresponding path map. Steps 2–4 complete the calculation of a cost map. In the case of multiple cost maps, iterate through steps 2–4.
3.2. Determination of Search Area
3.3. Selection of Directional Points
- For each point on the path , calculate its direction with the previous point using the vector representation .
- For the points that are in the middle of the path , calculate the direction of the line connecting it with the previous point and the next point , that is, and . Then, add these two vectors to obtain . When the judgment condition is met, that is, the angle between and is no more than 45 degrees and greater than 0 degrees, the point is recorded as a path directional point.
- The starting point and the target point should also be recorded as directional points, since they also represent the direction of the path.
3.4. Mapping of Directional Points on Multi-Scale Raster
3.5. Calculation Method between Multiple Sets of Path Points
4. Experiments
4.1. Data
4.1.1. Experiment 1
4.1.2. Experiment 2
4.1.3. Experiment 3
4.2. Results
4.2.1. Experiment 1
4.2.2. Experiment 2
4.2.3. Experiment 3
5. Discussion
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Scaparra, M.P.; Church, R.L.; Medrano, F.A. Corridor location: The multi-gateway shortest path model. J. Geogr. Syst. 2014, 16, 287–309. [Google Scholar] [CrossRef]
- Bagli, S.; Geneletti, D.; Orsi, F. Routeing of power lines through least-cost path analysis and multicriteria evaluation to minimise environmental impacts. Environ. Impact Assess. Rev. 2011, 31, 234–239. [Google Scholar] [CrossRef]
- Durmaz, A.I.; Ünal, E.Ö.; Aydın, C.C. Automatic pipeline route design with multi-criteria evaluation based on least-cost path analysis and line-based cartographic simplification: A case study of the mus project in Turkey. Isprs Int. J.-Geo-Inf. 2019, 8, 173. [Google Scholar] [CrossRef] [Green Version]
- Chetkiewicz, C.L.B.; Boyce, M.S. Use of resource selection functions to identify conservation corridors. J. Appl. Ecol. 2009, 46, 1036–1047. [Google Scholar] [CrossRef]
- Gustas, R.; Supernant, K. Least cost path analysis of early maritime movement on the Pacific Northwest Coast. J. Archaeol. Sci. 2017, 78, 40–56. [Google Scholar] [CrossRef]
- Stucky, J.L.D. On applying viewshed analysis for determining least-cost paths on digital elevation models. Int. J. Geogr. Inf. Sci. 1998, 12, 891–905. [Google Scholar] [CrossRef]
- Lu, M.; Zhang, J.; Lv, P.; Fan, Z. Least visible path analysis in raster terrain. Int. J. Geogr. Inf. Sci. 2008, 22, 645–656. [Google Scholar] [CrossRef]
- Xu, J.; Lathrop, R.G., Jr. Improving simulation accuracy of spread phenomena in a raster-based geographic information system. Int. J. Geogr. Inf. Syst. 1995, 9, 153–168. [Google Scholar] [CrossRef]
- Seegmiller, L.; Shirabe, T.; Tomlin, C.D. A method for finding least-cost corridors with reduced distortion in raster space. Int. J. Geogr. Inf. Sci. 2021, 35, 1570–1591. [Google Scholar] [CrossRef]
- Murekatete, R.M.; Shirabe, T. An experimental analysis of least-cost path models on ordinal-scaled raster surfaces. Int. J. Geogr. Inf. Sci. 2021, 35, 1545–1569. [Google Scholar] [CrossRef]
- Dijkstra, E. A Note on Two Problems in Connexion with Graphs. Numer. Math. 1959, 1, 269–271. [Google Scholar] [CrossRef] [Green Version]
- Kala, R.; Shukla, A.; Tiwari, R. Fusion of probabilistic A* algorithm and fuzzy inference system for robotic path planning. Artif. Intell. Rev. 2010, 33, 307–327. [Google Scholar] [CrossRef]
- Stentz, A. Optimal and efficient path planning for partially-known environments. In Proceedings of the 1994 IEEE International Conference on Robotics and Automation, San Diego, CA, USA, 8–13 May 1994; pp. 3310–3317. [Google Scholar]
- Daniel, K.; Nash, A.; Koenig, S.; Felner, A. Theta*: Any-angle path planning on grids. J. Artif. Intell. Res. 2010, 39, 533–579. [Google Scholar] [CrossRef] [Green Version]
- Elbanhawi, M.; Simic, M. Sampling-based robot motion planning: A review. IEEE Access 2014, 2, 56–77. [Google Scholar] [CrossRef]
- Kingston, Z.; Moll, M.; Kavraki, L.E. Sampling-based methods for motion planning with constraints. Annu. Rev. Control. Robot. Auton. Syst. 2018, 1, 159–185. [Google Scholar] [CrossRef] [Green Version]
- LaValle, S. Rapidly-Exploring Random Trees: A new Tool for Path Planning. Research Report 9811. 1998. Available online: https://cir.nii.ac.jp/crid/1573950399665672960 (accessed on 7 July 2023).
- LaValle, S.M. Planning Algorithms; Cambridge University Press: Cambridge, UK, 2006. [Google Scholar]
- Kavraki, L.E.; Svestka, P.; Latombe, J.C.; Overmars, M.H. Probabilistic roadmaps for path planning in high-dimensional configuration spaces. IEEE Trans. Robot. Autom. 1996, 12, 566–580. [Google Scholar] [CrossRef] [Green Version]
- Effat, H.A.; Hassan, O.A. Designing and evaluation of three alternatives highway routes using the Analytical Hierarchy Process and the least-cost path analysis, application in Sinai Peninsula, Egypt. Egypt. J. Remote Sens. Space Sci. 2013, 16, 141–151. [Google Scholar] [CrossRef] [Green Version]
- Leidwanger, J. Modeling distance with time in ancient Mediterranean seafaring: A GIS application for the interpretation of maritime connectivity. J. Archaeol. Sci. 2013, 40, 3302–3308. [Google Scholar] [CrossRef]
- Fu, L.; Sun, D.; Rilett, L.R. Heuristic shortest path algorithms for transportation applications: State of the art. Comput. Oper. Res. 2006, 33, 3324–3343. [Google Scholar] [CrossRef]
- Antikainen, H. Using the hierarchical pathfinding A* algorithm in GIS to find paths through rasters with nonuniform traversal cost. Isprs Int. J.-Geo-Inf. 2013, 2, 996–1014. [Google Scholar] [CrossRef] [Green Version]
- Nepomniaschaya, A.S.; Dvoskina, M.A. A simple implementation of Dijkstra’s shortest path algorithm on associative parallel processors. Fundam. Inform. 2000, 43, 227–243. [Google Scholar] [CrossRef]
- Adoni, W.Y.H.; Nahhal, T.; Aghezzaf, B.; Elbyed, A. The MapReduce-based approach to improve the shortest path computation in large-scale road networks: The case of A* algorithm. J. Big Data 2018, 5, 1–24. [Google Scholar] [CrossRef] [Green Version]
- Likhachev, M.; Ferguson, D. Planning long dynamically feasible maneuvers for autonomous vehicles. Int. J. Robot. Res. 2009, 28, 933–945. [Google Scholar] [CrossRef] [Green Version]
- Botea, A.; Müller, M.; Schaeffer, J. Near optimal hierarchical path-finding. J. Game Dev. 2004, 1, 1–30. [Google Scholar]
- Li, Y.; Su, L.M.; Li, W.L. Hierarchical path-finding based on decision tree. In Proceedings of the Rough Sets and Knowledge Technology: 7th International Conference, RSKT 2012, Chengdu, China, 17–20 August 2012; Springer: Berlin/Heidelberg, Germany, 2012; pp. 248–256. [Google Scholar]
- Jansen, M.; Buro, M. HPA* enhancements. In Proceedings of the AAAI Conference on Artificial Intelligence and Interactive Digital Entertainment, Stanford, CA, USA, 6–8 June 2007; Volume 3, pp. 84–87. [Google Scholar]
- Harabor, D.; Botea, A. Hierarchical path planning for multi-size agents in heterogeneous environments. In Proceedings of the 2008 IEEE Symposium on Computational Intelligence and Games, Perth, WA, Australia, 15–18 December 2008; pp. 258–265. [Google Scholar]
- Sánchez-Ibánez, J.R.; Pérez-del Pulgar, C.J.; Azkarate, M.; Gerdes, L.; García-Cerezo, A. Dynamic path planning for reconfigurable rovers using a multi-layered grid. Eng. Appl. Artif. Intell. 2019, 86, 32–42. [Google Scholar] [CrossRef] [Green Version]
- Du, W.; Islam, F.; Likhachev, M. Multi-resolution A. In Proceedings of the International Symposium on Combinatorial Search, Vienna, Austria, 26–28 May 2020; Volume 11, pp. 29–37. [Google Scholar]
- Tang, Q.; Dou, W. A fast shortest path method based on multi-resolution raster model. In Proceedings of the 2020 19th International Symposium on Distributed Computing and Applications for Business Engineering and Science (DCABES), Xuzhou, China, 16–19 October 2020; pp. 259–262. [Google Scholar]
- Etherington, T.R. Least-cost modelling and landscape ecology: Concepts, applications, and opportunities. Curr. Landsc. Ecol. Rep. 2016, 1, 40–53. [Google Scholar] [CrossRef] [Green Version]
- Fournier, A.; Fussell, D.; Carpenter, L. Computer rendering of stochastic models. Commun. Acm 1982, 25, 371–384. [Google Scholar] [CrossRef]
- Etherington, T.R.; Holland, E.P.; O’Sullivan, D. NLM py: A python software package for the creation of neutral landscape models within a general numerical framework. Methods Ecol. Evol. 2015, 6, 164–168. [Google Scholar] [CrossRef]
- Gärds, J.; Oscarsson, M. Exploring the Use of GIS-Based Least-Cost Corridors for Designing Alternative Highway Alignments. 2019. Available online: https://www.diva-portal.org/smash/record.jsf?pid=diva2%3A1333968&dswid=3858 (accessed on 7 July 2023).
Cost Surfaces | ID | l(LCP) | l(MS-LCP) | u(LCP) | u(MS-LCP) |
---|---|---|---|---|---|
Cloudy | 0 | 10,565.57 | 10,585.46 | 32.06 | 33.51 |
1 | 17,893.35 | 17,925.78 | 61.10 | 59.69 | |
2 | 10,890.05 | 11,343.96 | 13.31 | 13.07 | |
3 | 17,703.28 | 17,703.28 | 29.70 | 29.70 | |
… | … | … | … | … | |
996 | 2918.50 | 3126.06 | 20.09 | 24.68 | |
997 | 8220.12 | 8222.81 | 45.13 | 45.34 | |
998 | 17,296.15 | 17,351.81 | 48.38 | 48.96 | |
999 | 15,812.72 | 15,812.72 | 29.70 | 29.70 | |
Patchy | 0 | 6376.10 | 6558.65 | 8.50 | 6.12 |
1 | 8236.46 | 8284.00 | 17.26 | 17.26 | |
2 | 11,515.55 | 11,539.67 | 53.16 | 50.75 | |
3 | 10,448.90 | 10,505.47 | 9.71 | 9.71 | |
… | … | … | … | … | |
996 | 14,437.07 | 14,470.38 | 37.36 | 36.53 | |
997 | 9248.01 | 9423.55 | 2.83 | 0.00 | |
998 | 9165.71 | 9249.36 | 8.95 | 9.36 | |
999 | 15,903.55 | 15,903.55 | 55.33 | 55.33 |
Cost Surfaces | ID | l(LCP) | l(MS-LCP) | u(LCP) | u(MS-LCP) |
---|---|---|---|---|---|
Cloudy | 0 | 10,565.57 | 10,738.45 | 32.06 | 40.96 |
1 | 17,893.35 | 17,930.61 | 61.10 | 59.69 | |
2 | 10,890.05 | 11,450.37 | 13.31 | 14.69 | |
3 | 17,703.28 | 17,703.28 | 29.70 | 29.70 | |
… | … | … | … | … | |
996 | 2918.50 | 3311.17 | 20.09 | 25.68 | |
997 | 8220.12 | 8261.94 | 45.13 | 47.13 | |
998 | 17,296.16 | 17,352.01 | 48.38 | 49.17 | |
999 | 15,812.72 | 15,812.72 | 29.70 | 29.70 | |
Patchy | 0 | 6376.10 | 6589.71 | 8.50 | 6.12 |
1 | 8236.46 | 8329.78 | 17.26 | 17.26 | |
2 | 11,515.55 | 11,550.11 | 53.16 | 53.16 | |
3 | 10,448.90 | 10,558.63 | 9.71 | 9.71 | |
… | … | … | … | … | |
996 | 14,437.07 | 14,470.38 | 37.36 | 36.53 | |
997 | 9248.01 | 9381.04 | 2.83 | 0.00 | |
998 | 9165.71 | 9225.55 | 8.95 | 10.19 | |
999 | 15,903.55 | 15,903.55 | 55.33 | 55.33 |
Cost Surfaces | Values | LCP < MS-LCP | LCP = MS-LCP | LCP > MS-LCP |
---|---|---|---|---|
Cloudy | Maximum | 28 | 950 | 22 |
75th percentile | 47 | 911 | 42 | |
50th percentile | 38 | 915 | 47 | |
25th percentile | 21 | 951 | 28 | |
Minimum | 4 | 987 | 9 | |
Patchy | Maximum | 17 | 965 | 18 |
75th percentile | 29 | 947 | 24 | |
50th percentile | 17 | 961 | 22 | |
25th percentile | 15 | 970 | 15 | |
Minimum | 2 | 996 | 2 |
Cost Surfaces | Values | LCP < MS-LCP | LCP = MS-LCP | LCP > MS-LCP |
---|---|---|---|---|
Cloudy | Maximum | 47 | 935 | 18 |
75th percentile | 71 | 884 | 45 | |
50th percentile | 48 | 898 | 54 | |
25th percentile | 35 | 934 | 31 | |
Minimum | 4 | 987 | 9 | |
Patchy | Maximum | 18 | 951 | 31 |
75th percentile | 47 | 912 | 41 | |
50th percentile | 35 | 935 | 30 | |
25th percentile | 25 | 958 | 17 | |
Minimum | 6 | 993 | 1 |
Methods | Rows and Columns of Cost Surfaces | ||
---|---|---|---|
250 × 250 | 500 × 500 | 750 × 750 | |
LCP | 0.25 s | 4.06 s | 20.92 s |
MS-LCP | 0.07 s | 0.09 s | 0.26 s |
Range | Median | Mean | |
---|---|---|---|
l(MS-LCP)/l(LCP) | (1, 1.60) | 1.04 | 1.05 |
u(MS-LCP)/u(LCP) | (0, 6.24) | 0 | 0.42 |
Range | Median | Mean | |
---|---|---|---|
l(MS-LCP)/l(LCP) | (1, 1.53) | 1.08 | 1.09 |
u(MS-LCP)/u(LCP) | (0, 11) | 0 | 0.41 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tang, Q.; Dou, W. An Effective Method for Computing the Least-Cost Path Using a Multi-Resolution Raster Cost Surface Model. ISPRS Int. J. Geo-Inf. 2023, 12, 287. https://doi.org/10.3390/ijgi12070287
Tang Q, Dou W. An Effective Method for Computing the Least-Cost Path Using a Multi-Resolution Raster Cost Surface Model. ISPRS International Journal of Geo-Information. 2023; 12(7):287. https://doi.org/10.3390/ijgi12070287
Chicago/Turabian StyleTang, Qiuling, and Wanfeng Dou. 2023. "An Effective Method for Computing the Least-Cost Path Using a Multi-Resolution Raster Cost Surface Model" ISPRS International Journal of Geo-Information 12, no. 7: 287. https://doi.org/10.3390/ijgi12070287
APA StyleTang, Q., & Dou, W. (2023). An Effective Method for Computing the Least-Cost Path Using a Multi-Resolution Raster Cost Surface Model. ISPRS International Journal of Geo-Information, 12(7), 287. https://doi.org/10.3390/ijgi12070287