Virtual Scene Construction of Wetlands: A Case Study of Poyang Lake, China
<p>Location of Poyang Lake. (<b>a</b>) Location of the Poyang Lake basin in the Yangtze River and China. (<b>b</b>) Map of the Poyang Lake basin. (<b>c</b>) Virtual scene production area.</p> "> Figure 2
<p>Workflow for the Poyang Lake wetland virtual scene.</p> "> Figure 3
<p>UAV data acquisition. (<b>a</b>) UAV RTK300 with the ZENMUSE L1 camera. (<b>b</b>) Point cloud data. (<b>c</b>) DEM data.</p> "> Figure 4
<p>Terrain surface texture. (<b>a</b>) Textures collected: (1) the sparse grass in the shallow river gorge, (2) the beach on the lakeshore, (3) the dead grass on the roadside, (4) the river gorge underwater, (5) the river gorge wall, (6) the berm, (7) the surface on the roadside, and (8) the grass. (<b>b</b>) Texture collection locations.</p> "> Figure 5
<p>Modeling process of wetland plants: a case study of Psammophyte bulbar grass. (<b>a</b>) Geometric segmentation of plants. (<b>b</b>) Geometric model of a plant. (<b>c</b>) Plant rendering model.</p> "> Figure 6
<p>A partial model of the actual terrain of the Poyang Lake wetland. (<b>a</b>) Wireframe and (<b>b</b>) terrain model.</p> "> Figure 7
<p>Water simulation effect. (<b>a</b>) Foam effect. (<b>b</b>) Water surface effect.</p> "> Figure 8
<p>Flow chart of wetland surface texture mixing.</p> "> Figure 9
<p>Wetland plants rule placement effect.</p> "> Figure 10
<p>Simulation of wetland surface texture. (<b>a</b>) Texture blending effect. (<b>b</b>) Texture of the surface on the roadside. (<b>c</b>) Texture of the river gorge under water. (<b>d</b>) Texture of the grass.</p> "> Figure 11
<p>Poyang Lake wetland virtual scene.</p> "> Figure 12
<p>Poyang Lake wetland virtual scene web page access.</p> "> Figure 13
<p>Close-up seasonal variation of the virtual scene of the Poyang Lake Wetland. (<b>a</b>) Spring scene. (<b>b</b>) Summer scene. (<b>c</b>) Autumn scene. (<b>d</b>) Winter scene.</p> "> Figure 14
<p>Aerial view of seasonal changes in the virtual scene of the Poyang Lake Wetland. (<b>a</b>) Spring scene. (<b>b</b>) Summer scene. (<b>c</b>) Autumn scene. (<b>d</b>) Winter scene.</p> "> Figure 15
<p>Virtual experience. (<b>a</b>) HTC VIVE Pro. (<b>b</b>) Virtual experience by HTC VIVE Pro.</p> "> Figure 16
<p>Poyang lake wetland virtual scene in the cave.</p> ">
Abstract
:1. Introduction
- (1)
- This study proposed the technical process of combining multi-source data with a game engine to produce a virtual 3D scene of a wetland environment, which has certain significance in promoting the construction of the virtual wetland of Poyang Lake.
- (2)
- By collecting DEM data, surface texture data, and vegetation photo material in the field, a virtual scene with high similarity to the real environment of the Poyang Lake wetland was created in the game engine. This served as a technical foundation for the Poyang Lake digital wetland project.
- (3)
- Using the advantage of the game engine, the seasonal changes of the Poyang Lake wetland landscape were dynamically simulated through three-dimensional scenes, and the abstract concept of the wetland landscape change rule was intuitively expressed.
- (4)
- The scene construction results used diverse virtual display forms to provide more in-depth information and a 3D sense of the environment to represent wetland scenes.
2. Study Area
3. Workflow for the Poyang Lake Wetland Virtual Scene
3.1. Data Acquisition and Processing
3.1.1. UAV Acquisition and Processing of DEM
3.1.2. Terrain Surface Texture Acquisition and Processing
3.1.3. Wetland Vegetation Photo Collection and Processing
3.2. Wetland Virtual Scene Integration
3.2.1. Wetland Terrain Construction
- (1)
- Convert the DEM data in the tag image file format to 16-bit grayscale portable network graphics or 16-bit grayscale RAW (RAW image format) format recognizable by the UE.
- (2)
- Import the converted terrain data into the UE terrain editing tool, set the terrain segment size to 255 × 255 quadrilateral, and set the overall resolution matching data to 2551 × 1531 to ensure that the terrain model can fully restore the terrain details with high precision (Figure 6a).
- (3)
- Use the UE’s terrain tools, such as sculpting, smoothing, leveling, erosion, noise, etc., to portray specific details of the modified terrain landscape (Figure 6b).
3.2.2. Wetland Water Surface Simulation
3.2.3. Wetland Surface Texture Mapping
3.2.4. Wetland Vegetation Model Rule Placement
4. Results
4.1. Poyang Lake Wetland Virtual Scene
4.2. Application of the Poyang Lake Wetland Virtual Scene
4.3. Interaction of the Poyang Lake Wetland Virtual Scene
5. Discussion
5.1. The Practical Application Value of the Technical Workflow of the Virtual Poyang Lake Wetland Scene Construction
5.2. The Workflow of Virtual Poyang Lake Wetland Scene Construction Can Realize the Unity of the Combination of Virtual and Real and Dynamic and Static
5.3. Diverse Virtual Reality Displays Enhance the User Experience
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Schoeps, T.; Sattler, T.; Haene, C.; Pollefeys, M. 3D Modeling on the Go: Interactive 3D Reconstruction of Large-Scale Scenes on Mobile Devices. In Proceedings of the 2015 International Conference on 3D Vision, Lyon, France, 19–22 October 2015; pp. 291–299. [Google Scholar]
- Schning, J.; Heidemann, G. Interactive 3D Modeling a Survey-based Perspective on Interactive 3D Reconstruction. In Proceedings of the ICPRAM 2015-4th International Conference on Pattern Recognition Applications and Methods, Lisbon, Portugal, 10–12 January 2015. [Google Scholar]
- Wenzheng, L.; Yifeng, Z. Concept, Key Technologies and Challenges of Digital Twin Riverbasin. In Proceedings of the 2022 IEEE 12th International Conference on Electronics Information and Emergency Communication (ICEIEC), Beijing, China, 15–17 July 2022; pp. 117–122. [Google Scholar]
- Makransky, G.; Wismer, P.; Mayer, R.E. A gender matching effect in learning with pedagogical agents in an immersive virtual reality science simulation. J. Comput. Assist. Learn. 2018, 35, 349–358. [Google Scholar] [CrossRef]
- Damiani, L.; Demartini, M.; Guizzi, G.; Revetria, R.; Tonelli, F. Augmented and virtual reality applications in industrial systems: A qualitative review towards the industry 4.0 era. IFAC-PapersOnLine 2018, 51, 624–630. [Google Scholar] [CrossRef]
- Innocenti, A. Virtual reality experiments in economics. J. Behav. Exp. Econ. 2017, 69, 71–77. [Google Scholar] [CrossRef]
- Lele, A. Virtual reality and its military utility. J. Ambient. Intell. Humaniz. Comput. 2013, 4, 17–26. [Google Scholar] [CrossRef]
- Unity Documentation. Available online: https://docs.unity.com (accessed on 28 October 2022).
- Ma, Y.-P. Extending 3D-GIS District Models and BIM-Based Building Models into Computer Gaming Environment for Better Workflow of Cultural Heritage Conservation. Appl. Sci. 2021, 11, 2101. [Google Scholar] [CrossRef]
- Unreal Engine 4 Documentation. Available online: https://docs.unrealengine.com/4.27/en-US/ (accessed on 28 October 2022).
- Smith, M.; Walford, N.S.; Jimenez-Bescos, C. Using 3D modelling and game engine technologies for interactive exploration of cultural heritage: An evaluation of four game engines in relation to roman archaeological heritage. Digit. Appl. Archaeol. Cult. Herit. 2019, 14, e00113. [Google Scholar] [CrossRef]
- Chandramouli, C.; Ziong, Z.; Wang, M.; Moreland, J.; Zhou, C.; Teegavarappu, R.; Fox, J.; Behera, P.; Hixon, E. Virtual 3D modeling for little calumet river flood inundation studies. In Proceedings of the World Environmental and Water Resources Congress 2016, West Plam Beach, FL, USA, 22–26 May 2016; pp. 99–103. [Google Scholar]
- Loukakis, G. Design Variations of Mount Olympus’ Relief in a Virtual Reality Environment. Eurasia Proc. Sci. Technol. Eng. Math. 2019, 5, 14–24. [Google Scholar]
- Janovský, M.; Tobiáš, P.; Cehák, V. 3D Visualisation of the Historic Pre-Dam Vltava River Valley—Procedural and CAD Modelling, Online Publishing and Virtual Reality. ISPRS Int. J. Geo-Inf. 2022, 11, 376. [Google Scholar] [CrossRef]
- Hruby, F.; Ressl, R.; de la Borbolla Del Valle, G. Geovisualization with immersive virtual environments in theory and practice. Int. J. Digit. Earth 2019, 12, 123–136. [Google Scholar] [CrossRef]
- Ferrari, F.; Medici, M. The Virtual Experience for Cultural Heritage: Methods and Tools Comparison for Geguti Palace in Kutaisi, Georgia. Proceedings 2017, 1, 932. [Google Scholar] [CrossRef]
- Jung, T.; Dieck, M.; Moorhouse, N.; Dieck, D.T. Tourists’ experience of Virtual Reality applications. In Proceedings of the 2017 IEEE International Conference on Consumer Electronics, Las Vegas, NV, USA, 8–10 January 2017; pp. 208–210. [Google Scholar]
- Feng, L.; Hu, C.; Chen, X.; Cai, X.; Tian, L.; Gan, W. Assessment of inundation changes of Poyang Lake using MODIS observations between 2000 and 2010. Remote Sens. Environ. 2012, 121, 80–92. [Google Scholar] [CrossRef]
- Hu, Q.; Feng, S.; Guo, H.; Chen, G.; Jiang, T. Interactions of the Yangtze river flow and hydrologic processes of the Poyang Lake, China. J. Hydrol. 2007, 347, 90–100. [Google Scholar] [CrossRef]
- Houlahan, J.E.; Findlay, C.S. The effects of adjacent land use on wetland amphibian species richness and community composition. Can. J. Fish. Aquat. Sci. 2003, 60, 1078–1094. [Google Scholar] [CrossRef]
- Zhiqiang, T.; Qi, Z.; Mengfan, L.; Yunliang, L.; Xiuli, X.; Jiahu, J. A study of the relationship between wetland vegetation communities and water regimes using a combined remote sensing and hydraulic modeling approach. Hydrol. Res. 2016, 47, 278–292. [Google Scholar] [CrossRef]
- Teyseyre, A.R.; Campo, M.R. An Overview of 3D Software Visualization. IEEE Trans. Vis. Comput. Graph. 2008, 15, 87–105. [Google Scholar] [CrossRef]
- Semmo, A.; Trapp, M.; Jobst, M.; Döllner, J. Cartography-Oriented Design of 3D Geospatial Information Visualization–Overview and Techniques. Cartogr. J. 2015, 52, 95–106. [Google Scholar] [CrossRef]
- Li, Y.; Zhang, Q.; Cai, Y.; Tan, Z.; Wu, H.; Liu, X.; Yao, J. Hydrodynamic investigation of surface hydrological connectivity and its effects on the water quality of seasonal lakes: Insights from a complex floodplain setting (Poyang Lake, China). Sci. Total Environ. 2019, 660, 245–259. [Google Scholar] [CrossRef] [PubMed]
- Hu, Z.; Peng, J.; Hou, Y.; Shan, J. Evaluation of Recently Released Open Global Digital Elevation Models of Hubei, China. Remote. Sens. 2017, 9, 262. [Google Scholar] [CrossRef]
- Saleem, N.; Huq, M.E.; Twumasi, N.Y.D.; Javed, A.; Sajjad, A. Parameters Derived from and/or Used with Digital Elevation Models (DEMs) for Landslide Susceptibility Mapping and Landslide Risk Assessment: A Review. ISPRS Int. J. Geo Inf. 2019, 8, 545. [Google Scholar] [CrossRef]
- Yan, L. Based on the Triangular Grid Digital Elevation Model of the Terrain Modeling. World Acad. Sci. Eng. Technol. 2008, 4, 401–403. [Google Scholar]
- Uysal, M.; Toprak, A.S.; Polat, N. DEM generation with UAV Photogrammetry and accuracy analysis in Sahitler hill. Measurement 2015, 73, 539–543. [Google Scholar] [CrossRef]
- Díaz-Vilariño, L.; González-Jorge, H.; Martínez-Sánchez, J.; Bueno, M.; Arias, P. Determining the limits of unmanned aerial photogrammetry for the evaluation of road runoff. Measurement 2016, 85, 132–141. [Google Scholar] [CrossRef]
- Ryan, J.C.; Hubbard, A.L.; Box, J.E.; Todd, J.; Christoffersen, P.; Carr, J.R.; Holt, T.O.; Snooke, N. UAV photogrammetry and structure from motion to assess calving dynamics at Store Glacier, a large outlet draining the Greenland ice sheet. Cryosphere 2015, 9, 1–11. [Google Scholar] [CrossRef]
- Zeybek, M.; Şanlıoğlu, İ. Point cloud filtering on UAV based point cloud. Measurement 2019, 133, 99–111. [Google Scholar] [CrossRef]
- Wang, S.; Mao, Z.; Zeng, C.; Gong, H.; Li, S.; Chen, B. A new method of virtual reality based on Unity3D. In Proceedings of the 2010 18th International Conference on Geoinformatics, Beijing, China, 18–20 June 2010; pp. 1–5. [Google Scholar]
- Pybus, C.; Graham, K.; Doherty, J.; Arellano, N.; Fai, S. New realities for Canada’s parliament: A workflow for preparing heritage BIM for game engines and virtual reality. Int. Arch. Photogramm. Remote. Sens. Spat. Inf. Sci. 2019, 42, 945–952. [Google Scholar] [CrossRef]
- Wu, Z.-Y. Vegetation of China; Science Press: Beijing, China, 1980. [Google Scholar]
- Hong, S.M.; Simpson, B.; Baranoski, G.V.G. Interactive venation-based leaf shape modeling. Comput. Animat. Virtual Worlds 2005, 16, 415–427. [Google Scholar] [CrossRef]
- Quan, L.; Tan, P.; Zeng, G.; Yuan, L.; Wang, J.; Kang, S.B. Image-based plant modeling. In ACM Siggraph 2006 Papers; ACM Digital Library: New York, NY, USA, 2006; pp. 599–604. [Google Scholar]
- Daniel, E.B.; Camp, J.V.; LeBoeuf, E.J.; Penrod, J.R.; Abkowitz, M.D.; Dobbins, J.P. Watershed Modeling Using GIS Technology: A Critical Review. J. Spat. Hydrol. 2010, 10, 13–28. [Google Scholar]
- Hardy, A.; Mc Roberts, D.A.K. Blend maps: Enhanced terrain texturing. In Proceedings of the 2006 Annual Research Conference of the South African Institute of Computer Scientists and Information Technologists on IT Research in Developing Countries, Somerset West, South Africa, 9–11 October 2006; pp. 61–70. [Google Scholar]
- Deng, T.; Zhang, K.; Shen, Z.-J.M. A systematic review of a digital twin city: A new pattern of urban governance toward smart cities. J. Manag. Sci. Eng. 2021, 6, 125–134. [Google Scholar] [CrossRef]
- Xia, H.; Liu, Z.; Maria, E.; Liu, X.; Lin, C. Study on city digital twin technologies for sustainable smart city design: A review and bibliometric analysis of geographic information system and building information modeling integration. Sustain. Cities Soc. 2022, 84, 104009. [Google Scholar] [CrossRef]
- Li, X.; Zhang, Q.; Xu, C.-Y.; Ye, X. The changing patterns of floods in Poyang Lake, China: Characteristics and explanations. Nat. Hazards 2015, 76, 651–666. [Google Scholar] [CrossRef]
- Hemminger, B.; Bolas, G.; Schiff, D. Capturing content for virtual museums: From pieces to exhibits. J. Digit. Inf. 2005, 6. Available online: https://jodi-ojs-tdl.tdl.org/jodi/article/view/jodi-162 (accessed on 28 October 2022).
- DeFanti, T.A.; Dawe, G.; Sandin, D.J.; Schulze, J.P.; Otto, P.; Girado, J.; Kuester, F.; Smarr, L.; Rao, R. The StarCAVE, a third-generation CAVE and virtual reality OptIPortal. Future Gener. Comput. Syst. 2009, 25, 169–178. [Google Scholar] [CrossRef]
- Papadopoulou, E.-E.; Papakonstantinou, A.; Kapogianni, N.-A.; Zouros, N.; Soulakellis, N. VR Multiscale Geovisualization Based on UAS Multitemporal Data: The Case of Geological Monuments. Remote Sens. 2022, 14, 4259. [Google Scholar] [CrossRef]
- Günay, S. Virtual reality for lost architectural heritage visualization utilizing limited data. Int. Arch. Photogramm. Remote. Sens. Spat. Inf. Sci. 2022, XLVI-2/W1, 253–257. [Google Scholar] [CrossRef]
- Kersten, T.; Drenkhan, D.; Deggim, S. Virtual Reality Application of the Fortress Al Zubarah in Qatar Including Performance Analysis of Real-Time Visualisation. KN J. Cartogr. Geogr. Inf. 2021, 71, 241–251. [Google Scholar] [CrossRef]
- Cecotti, H. Cultural Heritage in Fully Immersive Virtual Reality. Virtual Worlds 2022, 1, 82–102. [Google Scholar] [CrossRef]
- Patterson, R.; Winterbottom, M.D.; Pierce, B.J. Perceptual Issues in the Use of Head-Mounted Visual Displays. Hum. Factors 2006, 48, 555–573. [Google Scholar] [CrossRef] [PubMed]
- Kwok, K.K.; Ng, A.K.; Lau, H.Y. Effect of navigation speed and VR devices on cybersickness. In Proceedings of the 2018 IEEE International Symposium on Mixed and Augmented Reality Adjunct (ISMAR-Adjunct), Munich, Germany, 16–20 October 2018; pp. 91–92. [Google Scholar]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lu, S.; Fang, C.; Xiao, X. Virtual Scene Construction of Wetlands: A Case Study of Poyang Lake, China. ISPRS Int. J. Geo-Inf. 2023, 12, 49. https://doi.org/10.3390/ijgi12020049
Lu S, Fang C, Xiao X. Virtual Scene Construction of Wetlands: A Case Study of Poyang Lake, China. ISPRS International Journal of Geo-Information. 2023; 12(2):49. https://doi.org/10.3390/ijgi12020049
Chicago/Turabian StyleLu, Sheng, Chaoyang Fang, and Xin Xiao. 2023. "Virtual Scene Construction of Wetlands: A Case Study of Poyang Lake, China" ISPRS International Journal of Geo-Information 12, no. 2: 49. https://doi.org/10.3390/ijgi12020049
APA StyleLu, S., Fang, C., & Xiao, X. (2023). Virtual Scene Construction of Wetlands: A Case Study of Poyang Lake, China. ISPRS International Journal of Geo-Information, 12(2), 49. https://doi.org/10.3390/ijgi12020049