Different Ways Ambient and Immobile Population Distributions Influence Urban Crime Patterns
<p>Burglaries in Commercial Buildings in Szczecin, 2015–2017 (<span class="html-italic">n</span> = 2228).</p> "> Figure 2
<p>Drug crime in Szczecin, 2015–2017 (<span class="html-italic">n</span> = 2060).</p> "> Figure 3
<p>Fights and batteries in Szczecin, 2015–2017 (<span class="html-italic">n</span> = 1709).</p> "> Figure 4
<p>Property damages in Szczecin, 2015–2017 (<span class="html-italic">n</span> = 1844).</p> "> Figure 5
<p>Thefts in Szczecin, 2015–2017 (<span class="html-italic">n</span> = 10,100).</p> "> Figure 6
<p>Tweets in Szczecin, 2015–2017 (<span class="html-italic">n</span> = 26,719).</p> ">
Abstract
:1. Introduction
2. Research Purpose and Questions
- (1)
- How can one estimate the size of the ambient population in individual neighborhoods of a large city?
- (2)
- What is the relationship between the size of the ambient population (Group 1) and different types of crime, with socioeconomic characteristics controlled?
- (3)
- What is the relationship between the size of the immobile population (Group 2) and different types of crime, with socioeconomic characteristics controlled?
3. Data and Methodology
4. Results and Discussion
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Brantingham, P.L.; Brantingham, P.J. Crime pattern theory. In Environmental Criminology and Crime Analysis; Wortley, R., Mazerolle, L., Eds.; Willan: Devon, UK, 2008; pp. 78–93. [Google Scholar] [CrossRef]
- Cohen, L.E.; Felson, M. Social Change and Crime Rate Trends: A Routine Activity Approach. Am. Sociol. Rev. 1979, 44, 588–608. [Google Scholar] [CrossRef]
- Al Baghal, T.; Sloan, L.; Jessop, C.; Williams, M.L.; Burnap, P. Linking Twitter and survey data: The impact of survey mode and demographics on consent rates across three UK studies. Soc. Sci. Comput. Rev. 2020, 38, 517–532. [Google Scholar] [CrossRef] [Green Version]
- Kinney, J.B.; Brantingham, P.L.; Wuschke, K.; Kirk, M.G.; Brantingham, P.J. Crime attractors, generators and detractors: Land use and urban crime opportunities. Built Environ. 2008, 34, 62–74. [Google Scholar] [CrossRef]
- Weisburd, D. The law of crime concentration and the criminology of place. Criminology 2015, 53, 133–157. [Google Scholar] [CrossRef]
- Wilcox, P.; Eck, J.E. Criminology of the unpopular: Implications for policy aimed at payday lending facilities. Criminol. Public Policy 2011, 10, 473–482. [Google Scholar] [CrossRef]
- Sypion-Dutkowska, N.; Leitner, M.; Dutkowski, M.J.C. Impact of metropolization on the crime structure (case study of provincial capitals in Poland). Cities 2021, 119, 103359. [Google Scholar] [CrossRef]
- Sherman, L.W.; Gartin, P.R.; Buerger, M.E. Hot spots of predatory crime: Routine activities and the criminology of place. Criminology 1989, 27, 27–56. [Google Scholar] [CrossRef]
- Weisburd, D.; Eck, J.E.; Braga, A.A.; Telep, C.W.; Cave, B.; Bowers, K.; Bruinsma, G.; Gill, C.; Groff, E.; Hibdon, J.; et al. Place Matters; Cambridge University Press: Cambridge, UK, 2016. [Google Scholar] [CrossRef]
- Andresen, M.A.; Malleson, N. Crime seasonality and its variations across space. Appl. Geogr. 2013, 43, 25–35. [Google Scholar] [CrossRef]
- Hipp, J.R.; Bates, C.; Lichman, M.; Smyth, P. Using Social Media to Measure Temporal Ambient Population: Does it Help Explain Local Crime Rates? Justice Q. 2019, 36, 718–748. [Google Scholar] [CrossRef] [Green Version]
- Lan, M.; Liu, L.; Hernandez, A.; Liu, W.; Zhou, H.; Wang, Z. The Spillover Effect of Geotagged Tweets as a Measure of Ambient Population for Theft Crime. Sustainability 2019, 11, 6748. [Google Scholar] [CrossRef] [Green Version]
- Ristea, A.; Andresen, M.A.; Leitner, M. Using tweets to understand changes in the spatial crime distribution for hockey events in Vancouver. Can. Geogr. 2018, 62, 338–351. [Google Scholar] [CrossRef] [Green Version]
- Williams, M.L.; Burnap, P.; Sloan, L. Crime Sensing with Big Data: The Affordances and Limitations of using Open Source Communications to Estimate Crime Patterns. Br. J. Criminol. 2016, 57, 320–340. [Google Scholar] [CrossRef] [Green Version]
- He, L.; Páez, A.; Jiao, J.; An, P.; Lu, C.; Mao, W.; Long, D. Ambient population and larceny-theft: A spatial analysis using mobile phone data. ISPRS Int. J. Geo-Inf. 2020, 9, 342. [Google Scholar] [CrossRef]
- McPherson, T.N.; Brown, M.J. Estimating Daytime and Nighttime Population Distributions in US Cities for Emergency Response Activities; Los Alamos National Laboratory (LANL): Los Alamos, NM, USA, 2003. [Google Scholar]
- Andresen, M.A. Crime measures and the spatial analysis of criminal activity. Br. J. Criminol. 2005, 46, 258–285. [Google Scholar] [CrossRef]
- Andresen, M.A.; Jenion, G.W. Ambient populations and the calculation of crime rates and risk. Secur. J. 2010, 23, 114–133. [Google Scholar] [CrossRef]
- Patel, N.N.; Stevens, F.R.; Huang, Z.; Gaughan, A.E.; Elyazar, I.; Tatem, A.J. Improving Large Area Population Mapping Using Geotweet Densities. Trans. GIS 2017, 21, 317–331. [Google Scholar] [CrossRef] [PubMed]
- Blank, G. The digital divide among Twitter users and its implications for social research. Soc. Sci. Comput. Rev. 2017, 35, 679–697. [Google Scholar] [CrossRef]
- Gong, X.; Wang, Y. Exploring dynamics of sports fan behavior using social media big data-A case study of the 2019 National Basketball Association Finals. Appl. Geogr. 2021, 129, 102438. [Google Scholar] [CrossRef]
- Yan, Y.; Chen, J.; Wang, Z. Mining public sentiments and perspectives from geotagged social media data for appraising the post-earthquake recovery of tourism destinations. Appl. Geogr. 2020, 123, 102306. [Google Scholar] [CrossRef]
- Sloan, L.; Morgan, J.; Burnap, P.; Williams, M. Who tweets? Deriving the demographic characteristics of age, occupation and social class from twitter user meta-data. PLoS ONE 2015, 10, e0115545. [Google Scholar] [CrossRef] [Green Version]
- Andrienko, G.; Andrienko, N.; Bosch, H.; Ertl, T.; Fuchs, G.; Jankowski, P.; Thom, D. Thematic Patterns in Georeferenced Tweets through Space-Time Visual Analytics. Comput. Sci. Eng. 2013, 15, 72–82. [Google Scholar] [CrossRef]
- Gerber, M.S. Predicting crime using Twitter and kernel density estimation. Decis. Support Syst. 2014, 61, 115–125. [Google Scholar] [CrossRef]
- Santhiya, K.; Bhuvaneswari, V.; Murugesh, V. Automated Crime Tweets Classification and Geo-location Prediction using Big Data Framework. Turk. J. Comput. Math. Educ. (TURCOMAT) 2021, 12, 2133–2152. [Google Scholar]
- Vomfell, L.; Härdle, W.K.; Lessmann, S. Improving crime count forecasts using Twitter and taxi data. Decis. Support Syst. 2018, 113, 73–85. [Google Scholar] [CrossRef]
- Andresen, M.A. The ambient population and crime analysis. Prof. Geogr. 2011, 63, 193–212. [Google Scholar] [CrossRef]
- Malleson, N.; Andresen, M.A. Spatio-temporal crime hotspots and the ambient population. Crime Sci. 2015, 4, 10. [Google Scholar] [CrossRef] [Green Version]
- Wang, Z.; Li, Y. Could social medias reflect acquisitive crime patterns in London? J. Saf. Sci. Resil. 2022, 3, 115–127. [Google Scholar] [CrossRef]
- Liu, L.; Lan, M.; Eck, J.E.; Yang, B.; Zhou, H. Assessing the Intraday Variation of the Spillover Effect of Tweets-Derived Ambient Population on Crime. Soc. Sci. Comput. Rev. 2020, 40, 512–533. [Google Scholar] [CrossRef]
- Lal, S.; Tiwari, L.; Ranjan, R.; Verma, A.; Sardana, N.; Mourya, R. Analysis and classification of crime tweets. Procedia Comput. Sci. 2020, 167, 1911–1919. [Google Scholar] [CrossRef]
- Roitman, H.; Mamou, J.; Mehta, S.; Satt, A.; Subramaniam, L. Harnessing the crowds for smart city sensing. In Proceedings of the 1st International Workshop on Multimodal Crowd Sensing, Maui, HI, USA, 2 November 2012; pp. 17–18. [Google Scholar]
- Lampoltshammer, T.J.; Kounadi, O.; Sitko, I.; Hawelka, B. Sensing the public’s reaction to crime news using the ‘Links Correspondence Method’. Appl. Geogr. 2014, 52, 57–66. [Google Scholar] [CrossRef]
- Bendler, J.; Ratku, A.; Neumann, D. Crime mapping through geo-spatial social media activity. In Proceedings of the Thirty Fifth International Conference on Information Systems, Auckland, New Zealand, 14–17 December 2014. [Google Scholar]
- Bendler, J.; Brandt, T.; Wagner, S.; Neumann, D. Investigating crime-to-twitter relationships in urban environments-facilitating a virtual neighborhood watch. In Proceedings of the European Conference on Information Systems (ECIS) 2014, Tel Aviv, Israel, 9–11 June 2014. [Google Scholar]
- Liew, S.W.; Sani, N.F.M.; Abdullah, M.T.; Yaakob, R.; Sharum, M.Y. An effective security alert mechanism for real-time phishing tweet detection on Twitter. Comput. Secur. 2019, 83, 201–207. [Google Scholar] [CrossRef]
- Ristea, A.; Al Boni, M.; Resch, B.; Gerber, M.S.; Leitner, M. Spatial crime distribution and prediction for sporting events using social media. Int. J. Geogr. Inf. Sci. 2020, 34, 1708–1739. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Müller, K.; Schwarz, C. From Hashtag to Hate Crime: Twitter and Anti-Minority Sentiment. 2020. Available online: https://ssrn.com/abstract=3149103 (accessed on 1 May 2022).
- Nguyen, T.T.; Huang, D.; Michaels, E.K.; Glymour, M.M.; Allen, A.M.; Nguyen, Q.C. Evaluating associations between area-level Twitter-expressed negative racial sentiment, hate crimes, and residents’ racial prejudice in the United States. SSM-Popul. Health 2021, 13, 100750. [Google Scholar] [CrossRef] [PubMed]
- Sharma, N.; Dhamne, A.; More, N.; Rathi, V.; Supekar, A. Detection of crime and non-crime tweets using Twitter. Int. J. Adv. Res. Comput. Commun. Eng. 2018, 7, 229–232. [Google Scholar]
- Ristea, A.; Langford, C.; Leitner, M. Relationships between crime and Twitter activity around stadiums. In Proceedings of the 2017 25th International Conference on Geoinformatics, Buffalo, NY, USA, 2–4 August 2017; pp. 1–5. [Google Scholar]
- Lan, M.; Liu, L.; Burmeister, J.; Zhu, W.; Zhou, H.; Gu, X. Are Crime and Collective Emotion Interrelated? A “Broken Emotion” Conjecture from Community Twitter Posts. Soc. Sci. Comput. Rev. 2022, 1–26. [Google Scholar] [CrossRef]
- Duggan, M.; Brenner, J. The Demographics of Social Media Users, 2012; Pew Research Center’s Internet & American Life Project: Washington, DC, USA, 2013; Volume 14. [Google Scholar]
- Malik, M.M.; Lamba, H.; Nakos, C.; Pfeffer, J. Population bias in geotagged tweets. In Proceedings of the Ninth International AAAI Conference on Web and Social Media, Oxford, UK, 26–29 May 2015. [Google Scholar]
- IPSOS Media CT Tech Tracker—Quarterly Release: Q3 2014. 2014. Available online: https://www.yumpu.com/en/document/read/34392898/ipsosmediact-techtracker-q3-2014 (accessed on 1 May 2022).
- Zou, L.; Lam, N.S.; Cai, H.; Qiang, Y. Mining Twitter data for improved understanding of disaster resilience. Ann. Am. Assoc. Geogr. 2018, 108, 1422–1441. [Google Scholar] [CrossRef]
- Gleason, B. Thinking in hashtags: Exploring teenagers’ new literacies practices on Twitter. Learn. Media Technol. 2018, 43, 165–180. [Google Scholar] [CrossRef] [Green Version]
- Cao, X.; MacNaughton, P.; Deng, Z.; Yin, J.; Zhang, X.; Allen, J. Using twitter to better understand the spatiotemporal patterns of public sentiment: A case study in Massachusetts, USA. Int. J. Environ. Res. Public Health 2018, 15, 250. [Google Scholar] [CrossRef] [Green Version]
- Hamstead, Z.A.; Fisher, D.; Ilieva, R.T.; Wood, S.A.; McPhearson, T.; Kremer, P. Geolocated social media as a rapid indicator of park visitation and equitable park access. Comput. Environ. Urban Syst. 2018, 72, 38–50. [Google Scholar] [CrossRef]
- Bernasco, W.; Block, R. Robberies in Chicago: A block-level analysis of the influence of crime generators, crime attractors, and offender anchor points. J. Res. Crime Delinq. 2011, 48, 33–57. [Google Scholar] [CrossRef] [Green Version]
- Haberman, C.P.; Ratcliffe, J.H. Testing for temporally differentiated relationships among potentially criminogenic places and census block street robbery counts. Criminology 2015, 53, 457–483. [Google Scholar] [CrossRef]
- Haberman, C.P.; Sorg, E.T.; Ratcliffe, J.H. The Seasons They Are a Changin’ Testing for Seasonal Effects of Potentially Criminogenic Places on Street Robbery. J. Res. Crime Delinq. 2018, 55, 425–459. [Google Scholar] [CrossRef]
- Liu, L.; Zhou, H.; Lan, M. Agglomerative Effects of Crime Attractors and Generators on Street Robbery? An Assessment by Luojia 1-01 Satellite Nightlight. Ann. Am. Assoc. Geogr. 2022, 112, 350–367. [Google Scholar] [CrossRef]
- Liu, L.; Lan, M.; Eck, J.E.; Kang, E.L. Assessing the effects of bus stop relocation on street robbery. Comput. Environ. Urban Syst. 2020, 80, 101455. [Google Scholar] [CrossRef]
- Banaszek, A. SZCZECIN. The City of Many faces. Kraków Airport Blog. 2016. Available online: https://krakowairport.pl/blog/en/szczecin-miasto-o-wielu-obliczach/ (accessed on 1 May 2022).
- Bakerfish, J. TweetScraper. Available online: https://github.com/jonbakerfish/TweetScraper (accessed on 1 May 2022).
- Zyte. Scrapy. Available online: https://scrapy.org/ (accessed on 1 May 2022).
- Krisjane, Z.; Apsite-Berina, E.; Berzins, M.; Grine, I. Regional topicalities in Latvia: Mobility and immobility in the countryside. In Proceedings of the Economic Science for Rural Development, Jelgava, Latvia, 27–28 April 2017. [Google Scholar]
- Parker, R.N.; Auerhahn, K. Alcohol, drugs, and violence. Annu. Rev. Sociol. 1998, 24, 291–311. [Google Scholar] [CrossRef]
- Lan, M.; Liu, L.; Eck, J.E. A spatial analytical approach to assess the impact of a casino on crime: An example of JACK Casino in downtown Cincinnati. Cities 2021, 111, 103003. [Google Scholar] [CrossRef]
- Harries, K. Property crimes and violence in United States: An analysis of the influence of population density. Int. J. Crim. Justice Sci. 2006, 1. [Google Scholar]
- Wolniak, R. Social Welfare Organisation in Poland. In Scientific Papers of Silesian University of Technology Organization and Management Series; No. 143; Silesian University of Technology: Gliwice, Poland, 2020. [Google Scholar]
- Majka, A.; Zając, D. Factors Influencing the Development of Non-Agricultural Business Activities in Rural Eastern Poland. Acta Sci. Polonorum. Oeconomia 2019, 18, 43–52. [Google Scholar] [CrossRef]
- Grshybowskyj, J.L.; Smiianov, V.A.; Myronyuk, I.M.; Lyubinets, O.V. Ten Indicators Which Characterize Medical-Demographic Processes in Adjacent Regions of Ukraine and Poland. Wiad. Lek. 2019, 72, 868–876. [Google Scholar] [CrossRef]
- Nagin, D.S.; Land, K.C. Age, criminal careers, and population heterogeneity: Specification and estimation of a nonparametric, mixed Poisson model. Criminology 1993, 31, 327–362. [Google Scholar] [CrossRef]
- Osgood, D.W. Poisson-based regression analysis of aggregate crime rates. J. Quant. Criminol. 2000, 16, 21–43. [Google Scholar] [CrossRef]
- Chen, J.; Liu, L.; Xiao, L.; Xu, C.; Long, D. Integrative analysis of spatial heterogeneity and overdispersion of crime with a geographically weighted negative binomial model. ISPRS Int. J. Geo-Inf. 2020, 9, 60. [Google Scholar] [CrossRef] [Green Version]
- Butler, G. Commercial burglary: What offenders say. In Crime at Work; Springer: Berlin/Heidelberg, Germany, 2005; pp. 29–41. [Google Scholar]
- Zhou, H.; Liu, L.; Lan, M.; Zhu, W.; Song, G.; Jing, F.; Zhong, Y.; Su, Z.; Gu, X. Using Google Street View imagery to capture micro built environment characteristics in drug places, compared with street robbery. Comput. Environ. Urban Syst. 2021, 88, 101631. [Google Scholar] [CrossRef]
- Weeks, M.R.; Grier, M.; Romero-Daza, N.; Puglisi-Vasquez, M.J.; Singer, M. Streets, drugs, and the economy of sex in the age of AIDS. Women Health 1998, 27, 205–229. [Google Scholar] [CrossRef]
- Taylor, D.; Eddey, D.; Cameron, P. Demography of assault in a provincial Victorian population. Aust. N. Z. J. Public Health 1997, 21, 53–58. [Google Scholar] [CrossRef] [PubMed]
- Poyner, B. Design against Crime: Beyond Defensible Space; Butterworths London: London, UK, 1983. [Google Scholar]
- Bernasco, W.; Kooistra, T. Effects of residential history on commercial robbers’ crime location choices. Eur. J. Criminol. 2010, 7, 251–265. [Google Scholar] [CrossRef] [Green Version]
- Sohn, D.-W. Do all commercial land uses deteriorate neighborhood safety?: Examining the relationship between commercial land-use mix and residential burglary. Habitat Int. 2016, 55, 148–158. [Google Scholar] [CrossRef]
- Schmalleger, F. Criminology, 5th ed.; Pearson: Upper Saddle River, NJ, USA, 2018. [Google Scholar]
- Tseloni, A.; Thompson, R.; Grove, L.; Tilley, N.; Farrell, G. The effectiveness of burglary security devices. Secur. J. 2017, 30, 646–664. [Google Scholar] [CrossRef] [Green Version]
- Zhou, H.; Liu, L.; Lan, M.; Yang, B.; Wang, Z. Assessing the Impact of Nightlight Gradients on Street Robbery and Burglary in Cincinnati of Ohio State, USA. Remote Sens. 2019, 11, 1958. [Google Scholar] [CrossRef] [Green Version]
- Valdez, A.; Kaplan, C.D.; Curtis, R.L., Jr. Aggressive crime, alcohol and drug use, and concentrated poverty in 24 US urban areas. Am. J. Drug Alcohol Abus. 2007, 33, 595–603. [Google Scholar] [CrossRef]
- Unnever, J.D. Direct and organizational discrimination in the sentencing of drug offenders. Soc. Probl. 1982, 30, 212–225. [Google Scholar] [CrossRef]
- Gruenewald, P.J.; Freisthler, B.; Remer, L.; LaScala, E.A.; Treno, A. Ecological models of alcohol outlets and violent assaults: Crime potentials and geospatial analysis. Addiction 2006, 101, 666–677. [Google Scholar] [CrossRef] [PubMed]
- Gorman, D.M.; Speer, P.W.; Gruenewald, P.J.; Labouvie, E.W. Spatial dynamics of alcohol availability, neighborhood structure and violent crime. J. Stud. Alcohol 2001, 62, 628–636. [Google Scholar] [CrossRef] [PubMed]
- Zhu, L.; Gorman, D.M.; Horel, S. Alcohol outlet density and violence: A geospatial analysis. Alcohol Alcohol. 2004, 39, 369–375. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Widener, M.J.; Li, W. Using geolocated Twitter data to monitor the prevalence of healthy and unhealthy food references across the US. Appl. Geogr. 2014, 54, 189–197. [Google Scholar] [CrossRef]
- Smith, A.; Brenner, J. Twitter Use 2012; Pew Research Center’s Internet & American Life Project: Washington, DC, USA, 2012; Volume 4, pp. 1–12. [Google Scholar]
Variables (2015–2017) | Minimum | Maximum | Mean | Std. Deviation | |
---|---|---|---|---|---|
Dependent | Burglary in commercial buildings | 4 | 161 | 60.22 | 40.09 |
Drug crime | 1 | 345 | 55.68 | 74.03 | |
Fight and battery | 3 | 313 | 46.19 | 57.74 | |
Property damage | 4 | 201 | 49.84 | 46.33 | |
Theft | 9 | 1369 | 272.97 | 268.86 | |
Independent | Ambient population (Tweets) | 6 | 2322 | 723.14 | 688.43 |
Immobile population (≤15 or >65) | 292 | 8094 | 3269.57 | 2328.62 | |
Control | Population density | 33 | 27,389 | 4570.83 | 5831.37 |
Population assisted by the Municipal Family Assistance Center | 11 | 950 | 281.24 | 250.35 | |
Unemployed population | 51 | 1083 | 312.78 | 237.58 | |
Demographic load index | 31.10 | 66 | 45.10 | 8.82 | |
Count of liquor stores | 3 | 279 | 54.70 | 52.77 |
Standardized Coefficient (* 10−2) | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|
Burglary in Commercial Buildings | Drug Crime | Fight and Battery | Property Damage | Theft | ||||||
Model 1 | Model 2 | Model 3 | Model 4 | Model 5 | Model 6 | Model 7 | Model 8 | Model 9 | Model 10 | |
Ambient population (Tweets) | 0.53 * | 0.44 ** | 0.34 ** | 0.36 * | 0.09 ** | |||||
Immobile population with (≤15 or >65) | 2.07 *** | 1.07 | 1.13 | 1.56 | 0.37 | |||||
Population density | −0.29 | −0.5** | 0.21 | 0.1 | 0.02 | −0.08 | 0.29 * | 0.19 | 0.01 | −0.02 |
Population assisted by the Municipal Family Assistance Center | −0.07 | 1.3* | 0.74 | 1.59 * | 0.56 | 1.4 | 0.08 | 1.16 | −0.02 | 0.24 |
Unemployed population | 1.75 *** | −1.49 | 0.01 | −1.73 | 0.1 | −1.68 | 0.98 ** | −1.43 | 0.2 *** | −0.37 |
Demographic load index | 0.34 | −0.16 | 0.23 | −0.01 | 0.18 | −0.06 | 0.26 | −0.02 | 0.02 | −0.05 |
Count of liquor stores | −0.42 | 0.52 | 0.47 | 0.96 * | 0.91 * | 1.36 ** | 0.51 | 0.98 | 0.13 | 0.26 * |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sypion-Dutkowska, N.; Lan, M.; Dutkowski, M.; Williams, V. Different Ways Ambient and Immobile Population Distributions Influence Urban Crime Patterns. ISPRS Int. J. Geo-Inf. 2022, 11, 581. https://doi.org/10.3390/ijgi11120581
Sypion-Dutkowska N, Lan M, Dutkowski M, Williams V. Different Ways Ambient and Immobile Population Distributions Influence Urban Crime Patterns. ISPRS International Journal of Geo-Information. 2022; 11(12):581. https://doi.org/10.3390/ijgi11120581
Chicago/Turabian StyleSypion-Dutkowska, Natalia, Minxuan Lan, Marek Dutkowski, and Victoria Williams. 2022. "Different Ways Ambient and Immobile Population Distributions Influence Urban Crime Patterns" ISPRS International Journal of Geo-Information 11, no. 12: 581. https://doi.org/10.3390/ijgi11120581
APA StyleSypion-Dutkowska, N., Lan, M., Dutkowski, M., & Williams, V. (2022). Different Ways Ambient and Immobile Population Distributions Influence Urban Crime Patterns. ISPRS International Journal of Geo-Information, 11(12), 581. https://doi.org/10.3390/ijgi11120581