High-Precision Dynamic Traffic Noise Mapping Based on Road Surveillance Video
<p>Overview of the dynamic traffic noise mapping model based on road surveillance video data.</p> "> Figure 2
<p>Road noise source and noise segment (modified from [<xref ref-type="bibr" rid="B7-ijgi-11-00441">7</xref>]).</p> "> Figure 3
<p>Overview of the traffic noise propagation process (modified from [<xref ref-type="bibr" rid="B37-ijgi-11-00441">37</xref>]).</p> "> Figure 4
<p>Processing of extracting dynamic traffic elements based on road video data.</p> "> Figure 5
<p>Example of image segmentation based on road video data. (<bold>a</bold>) Road video example and (<bold>b</bold>) the image semantic separation result.</p> "> Figure 6
<p>Two-dimensional grid for receiving points, road segments and buildings.</p> "> Figure 7
<p>Road network, buildings, video viewport and monitoring point in the experimental area.</p> "> Figure 8
<p>Traffic analysis for road R1 based on road surveillance video data. (<bold>a</bold>) Vehicle detection in one frame of video, (<bold>b</bold>) vehicle trajectories and the highlighted points of one vehicle and (<bold>c</bold>) overlay of vehicle trajectories and a remote sensing image.</p> "> Figure 9
<p>Dynamic traffic mapping in the experimental area. (<bold>a</bold>–<bold>d</bold>) are the noise maps of R1 and R2 at 15 min intervals. (<bold>e</bold>–<bold>h</bold>) are the noise maps of R3 at 15 min intervals.</p> ">
Abstract
:1. Introduction
2. Related Work
2.1. Monitoring Point-Based Methods
2.2. Prediction Model-Based Methods
3. Method
3.1. Method Overview
3.2. Noise Prediction Model
3.2.1. Level of Noise at the Source
3.2.2. Noise Propagation
3.3. Video-Based Traffic Noise Mapping
3.3.1. Object Recognition
3.3.2. Video Calibration
3.3.3. Noise Mapping
4. Experiment
4.1. Data Collection
4.2. Results and Evaluation
5. Discussion
6. Conclusions and Outlook
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- European Commission. Noise in Europe 2014. 2014. Available online: https://www.eea.europa.eu/publications/noise-in-europe-2014 (accessed on 1 November 2021).
- Babisch, W. Updated exposure-response relationship between road traffic noise and coronary heart diseases: A meta-analysis. Noise Health 2014, 16, 1–9. [Google Scholar] [CrossRef]
- Basner, M.; McGuire, S. WHO Environmental Noise Guidelines for the European Region: A Systematic Review on Environmental Noise and Effects on Sleep. Int. J. Environ. Res. Public Health 2018, 15, 519. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Generaal, E.; Timmermans, E.J.; Dekkers, J.E.C.; Smit, J.H.; Penninx, B.W.J.H. Not urbanization level but socioeconomic, physical and social neighbourhood characteristics are associated with presence and severity of depressive and anxiety disorders. Psychol. Med. 2019, 49, 149–161. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- WHO. Burden of Disease from Environmental Noise Quantification of Healthy Life Years Lost in Europe; WHO Regional Office for Europe and JCR European Commission: Copenhagen, Danish, 2011. [Google Scholar]
- Hammer, M.S.; Swinburn, T.K.; Neitzel, R.L. Environmental Noise Pollution in the United States: Developing an Effective Public Health Response. Environ. Health Perspect. 2014, 122, 115–119. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kephalopoulos, S.; Paviotti, M.; Anfosso-Lédée, F. Common Noise Assessment Methods in EUROPE (CNOSSOS-EU); Publications Office of The European Union: Luxembourg, 2012; p. 180. [Google Scholar]
- Zhang, J.; Schomer, P.D.; Yeung, M.; Zhou, A.; Ming, H.; Chai, J.; Sun, L. A study of the effectiveness of the key environmental protection policies for road traffic noise control. J. Acoust. Soc. Am. 2012, 131, 3505. [Google Scholar] [CrossRef]
- De Kluijver, H.; Stoter, J. Noise mapping and GIS: Optimising quality and efficiency of noise effect studies. Comput. Environ. Urban Syst. 2003, 27, 85–102. [Google Scholar] [CrossRef] [Green Version]
- Asensio, C.; Pavon, I.; Ramos, C.; Lopez, J.M.; Pamies, Y.; Moreno, D.; de Arcas, G. Estimation of the noise emissions generated by a single vehicle while driving. Transp. Res. Part D Transp. Environ. 2021, 95, 102865. [Google Scholar] [CrossRef]
- Stoter, J.; Peters, R.; Commandeur, T.; Dukai, B.; Kumar, K.; Ledoux, H. Automated reconstruction of 3D input data for noise simulation. Comput. Environ. Urban Syst. 2020, 80, 101424. [Google Scholar] [CrossRef]
- Bastian-Monarca, N.A.; Suarez, E.; Arenas, J.P. Assessment of methods for simplified traffic noise mapping of small cities: Casework of the city of Valdivia, Chile. Sci. Total Environ. 2016, 550, 439–448. [Google Scholar] [CrossRef] [PubMed]
- Wei, W.; Van Renterghem, T.; De Coensel, B.; Botteldooren, D. Dynamic noise mapping: A map-based interpolation between noise measurements with high temporal resolution. Appl. Acoust. 2016, 101, 127–140. [Google Scholar] [CrossRef] [Green Version]
- Zambon, G.; Benocci, R.; Bisceglie, A.; Roman, H.E.; Bellucci, P. The LIFE DYNAMAP project: Towards a procedure for dynamic noise mapping in urban areas. Appl. Acoust. 2017, 124, 52–60. [Google Scholar] [CrossRef]
- Cai, M.; Yao, Y.; Wang, H. Urban Traffic Noise Maps under 3D Complex Building Environments on a Supercomputer. J. Adv. Transp. 2018, 2018, 7031418. [Google Scholar] [CrossRef] [Green Version]
- Bocher, E.; Guillaume, G.; Picaut, J.; Petit, G.; Fortin, N. NoiseModelling: An Open Source GIS Based Tool to Produce Environmental Noise Maps. ISPRS Int. J. Geo-Inf. 2019, 8, 130. [Google Scholar] [CrossRef] [Green Version]
- Can, A.; Picaut, J.; Ardouin, J.; Crepeaux, P.; Bocher, E.; Ecotiere, D.; Lagrange, M. CENSE Project: General overview. In Proceedings of the Euronoise 2021: European Congress on Noise Control Engineering, Madère, Portugal, 25 October 2021. [Google Scholar]
- Santhosh, K.K.; Dogra, D.P.; Roy, P.P. Anomaly Detection in Road Traffic Using Visual Surveillance: A Survey. ACM Comput. Surv. 2020, 53, 119. [Google Scholar] [CrossRef]
- Wang, W.; Yang, N.; Zhang, Y.; Wang, F.; Cao, T.; Eklund, P. A review of road extraction from remote sensing images. J. Traffic Transp. Eng. 2016, 3, 271–282. [Google Scholar] [CrossRef] [Green Version]
- Yan, Y.; Ryu, Y. Exploring Google Street View with deep learning for crop type mapping. ISPRS J. Photogramm. Remote Sens. 2021, 171, 278–296. [Google Scholar] [CrossRef]
- Lu, C.; Lin, D.; Jia, J.; Tang, C.K. Two-Class Weather Classification. IEEE Trans. Pattern Anal. Mach. Intell. 2017, 39, 2510–2524. [Google Scholar] [CrossRef] [PubMed]
- Ibrahim, M.R.; Haworth, J.; Cheng, T. WeatherNet: Recognising Weather and Visual Conditions from Street-Level Images Using Deep Residual Learning. ISPRS Int. J. Geo-Inf. 2019, 8, 549. [Google Scholar] [CrossRef] [Green Version]
- Guarnaccia, C. EAgLE: Equivalent Acoustic Level Estimator Proposal. Sensors 2020, 20, 701. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Murphy, E.; King, E.A. (Eds.) Chapter 4—Strategic Noise Mapping. In Environmental Noise Pollution, 2nd ed.; Elsevier: Boston, MA, USA, 2022; pp. 85–125. [Google Scholar]
- Lan, Z.; Cai, M. Dynamic traffic noise maps based on noise monitoring and traffic speed data. Transp. Res. Part D Transp. Environ. 2021, 94, 102796. [Google Scholar] [CrossRef]
- Banerjee, D.; Chakraborty, S.K.; Bhattacharyya, S.; Gangopadhyay, A. Appraisal and mapping the spatial-temporal distribution of urban road traffic noise. Int. J. Environ. Sci. Technol. 2009, 6, 325–335. [Google Scholar] [CrossRef] [Green Version]
- Mehdi, M.R.; Kim, M.; Seong, J.C.; Arsalan, M.H. Spatio-temporal patterns of road traffic noise pollution in Karachi, Pakistan. Environ. Int. 2011, 37, 97–104. [Google Scholar] [CrossRef] [PubMed]
- Can, A.; Dekoninck, L.; Botteldooren, D. Measurement network for urban noise assessment: Comparison of mobile measurements and spatial interpolation approaches. Appl. Acoust. 2014, 83, 32–39. [Google Scholar] [CrossRef] [Green Version]
- Murphy, E.; King, E.A. Smartphone-based noise mapping: Integrating sound level meter app data into the strategic noise mapping process. Sci. Total Environ. 2016, 562, 852–859. [Google Scholar] [CrossRef] [PubMed]
- Lesieur, A.; Mallet, V.; Aumond, P.; Can, A. Data assimilation for urban noise mapping with a meta-model. Appl. Acoust. 2021, 178, 107938. [Google Scholar] [CrossRef]
- Garg, N.; Maji, S. A critical review of principal traffic noise models: Strategies and implications. Environ. Impact Assess. Rev. 2014, 46, 68–81. [Google Scholar] [CrossRef]
- Barry, T.M.; Reagan, J.A. FHWA Highway Traffic Noise Prediction Model; Federal Highway Administration: Washington, DC, USA, 1978.
- Givargis, S.; Mahmoodi, M. Converting the UK calculation of road traffic noise (CORTN) to a model capable of calculating LAeq, 1h for the Tehran’s roads. Appl. Acoust. 2008, 69, 1108–1113. [Google Scholar] [CrossRef]
- RLS. Richtlinien für den Lärmschutzan Strassen; Der Bundesminister für Verkehr: Bonn, Germany, 1990. [Google Scholar]
- Seong, J.C.; Park, T.H.; Ko, J.H.; Chang, S.I.; Kim, M.; Holt, J.B.; Mehdi, M.R. Modeling of road traffic noise and estimated human exposure in Fulton County, Georgia, USA. Environ. Int. 2011, 37, 1336–1341. [Google Scholar] [CrossRef]
- Cai, M.; Zou, J.; Xie, J.; Ma, X. Road traffic noise mapping in Guangzhou using GIS and GPS. Appl. Acoust. 2015, 87, 94–102. [Google Scholar] [CrossRef]
- Bucur, V. (Ed.) Traffic Noise Abatement. In Urban Forest Acoustics; Springer: Berlin/Heidelberg, Germany, 2006; pp. 111–128. [Google Scholar]
- St-Aubin, P.; Saunier, N.; Miranda-Moreno, L. Large-scale automated proactive road safety analysis using video data. Transp. Res. Part C Emerg. Technol. 2015, 58, 363–379. [Google Scholar] [CrossRef]
- Espinosa, J.E.; Velastín, S.A.; Branch, J.W. Detection of Motorcycles in Urban Traffic Using Video Analysis: A Review. IEEE Trans. Intell. Transp. Syst. 2021, 22, 6115–6130. [Google Scholar] [CrossRef]
- Bochkovskiy, A.; Wang, C.-Y.; Liao, H.-Y.M. YOLOv4: Optimal Speed and Accuracy of Object Detection. arXiv 2020. [Google Scholar] [CrossRef]
- Soleimanitaleb, Z.; Keyvanrad, M.A.; Jafari, A. Object Tracking Methods: A Review. In Proceedings of the 2019 9th International Conference on Computer and Knowledge Engineering (ICCKE), Mashhad, Iran, 24–25 October 2019; pp. 282–288. [Google Scholar]
- Wojke, N.; Bewley, A.; Paulus, D. Simple online and realtime tracking with a deep association metric. In Proceedings of the 2017 IEEE International Conference on Image Processing (ICIP), Beijing, China, 17–20 September 2017; pp. 3645–3649. [Google Scholar]
- Zaitoun, N.M.; Aqel, M.J. Survey on Image Segmentation Techniques. Procedia Comput. Sci. 2015, 65, 797–806. [Google Scholar] [CrossRef] [Green Version]
- Minaee, S.; Boykov, Y.Y.; Porikli, F.; Plaza, A.J.; Kehtarnavaz, N.; Terzopoulos, D. Image Segmentation Using Deep Learning: A Survey. IEEE Trans. Pattern Anal. Mach. Intell. 2022, 44, 3523–3542. [Google Scholar] [CrossRef] [PubMed]
- Zhao, H.; Shi, J.; Qi, X.; Wang, X.; Jia, J. Pyramid Scene Parsing Network. In Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Honolulu, HI, USA, 21–26 July 2017; pp. 6230–6239. [Google Scholar]
- Liu, L.; Silva, E.A.; Wu, C.; Wang, H. A machine learning-based method for the large-scale evaluation of the qualities of the urban environment. Comput. Environ. Urban Syst. 2017, 65, 113–125. [Google Scholar] [CrossRef]
- Yang, C.; Li, Y.; Peng, B.; Cheng, Y.; Tong, L. Road Material Information Extraction Based on Multi-Feature Fusion of Remote Sensing Image. In Proceedings of the IGARSS 2019—2019 IEEE International Geoscience and Remote Sensing Symposium, Yokohama, Japan, 28 July–2 August 2019; pp. 3943–3946. [Google Scholar]
- Mountrakis, G.; Im, J.; Ogole, C. Support vector machines in remote sensing: A review. ISPRS J. Photogramm. Remote Sens. 2011, 66, 247–259. [Google Scholar] [CrossRef]
- Long, L.; Dongri, S. Review of Camera Calibration Algorithms. In Proceedings of the Advances in Computer Communication and Computational Sciences, Singapore, 22 May 2019; pp. 723–732. [Google Scholar]
- Zhang, Z. A flexible new technique for camera calibration. IEEE Trans. Pattern Anal. Mach. Intell. 2000, 22, 1330–1334. [Google Scholar] [CrossRef] [Green Version]
- Lepetit, V.; Moreno-Noguer, F.; Fua, P. EPnP: An Accurate O(n) Solution to the PnP Problem. Int. J. Comput. Vis. 2008, 81, 155. [Google Scholar] [CrossRef] [Green Version]
- ISO 9613-2:1996; Attenuation of sound during propagation outdoors. Part 2: General method of calculation. ISO: Geneva, Switzerland, 1996.
- Strigari, F.; Chudalla, M.; Bartolomaeus, W. Calculation of weather-corrected traffic noise immission levels on the basis of emission data and meteorological quantities. In Proceedings of the 7th Transport Research Arena TRA 2018, Vienna, Austria, 16–19 April 2018. [Google Scholar] [CrossRef]
- Huddart, L. The Use of Vegetation for Traffic Noise Screening; UK Transport and Road Research Laboratory: Crowthorne, UK, 1990.
- Roberts, C. Low frequency noise from transportation sources. In Proceedings of the 20th International Congress on Acoustics, Sydney, Australia, 23–27 August 2010; pp. 23–27. [Google Scholar]
- Gordon, A.; Li, H.; Jonschkowski, R.; Angelova, A. Depth From Videos in the Wild: Unsupervised Monocular Depth Learning From Unknown Cameras. In Proceedings of the 2019 IEEE/CVF International Conference on Computer Vision (ICCV), Seoul, Korea, 27 October–2 November 2019; pp. 8976–8985. [Google Scholar]
- Zhang, X.; Story, B.; Rajan, D. Night Time Vehicle Detection and Tracking by Fusing Vehicle Parts From Multiple Cameras. IEEE Trans. Intell. Transp. Syst. 2021, 23, 8136–8156. [Google Scholar] [CrossRef]
Road Material Type | Noise Correction dB (A) | ||
---|---|---|---|
30 km/h | 40 km/h | >50 km/h | |
Smooth asphalt concrete | 0 | 0 | 0 |
Rough asphalt concrete | 1.0 | 1.5 | 2.0 |
Plaster with a flat surface | 2.0 | 2.5 | 3.0 |
Other plaster | 3.0 | 4.5 | 6.0 |
Vegetation Type | Absorption Coefficient αveg dBA/m |
---|---|
Trees | 0.30 |
Shrubs | 0.10 |
Lawns | 0.05 |
R1 | R2 | R3 | |
---|---|---|---|
Average flow (/h) | 1879 | 1575 | 1962 |
Ratio of heavy vehicles (%) | 15.9 | 14.7 | 18.6 |
Average speed of heavy vehicles (km/h) | 46.2 | 32.3 | 50.8 |
Average speed of cars (km/h) | 51.4 | 35.5 | 55.7 |
Predicted SPL (dBA) | 69.2 | 67.4 | 73.3 |
Measured SPL (dBA) | 68.6 | 69.0 | 75.7 |
SPL error (dBA) | 0.6 | −1.6 | −2.4 |
Average absolute error (dBA) | 1.53 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sun, Y.; Wu, M.; Liu, X.; Zhou, L. High-Precision Dynamic Traffic Noise Mapping Based on Road Surveillance Video. ISPRS Int. J. Geo-Inf. 2022, 11, 441. https://doi.org/10.3390/ijgi11080441
Sun Y, Wu M, Liu X, Zhou L. High-Precision Dynamic Traffic Noise Mapping Based on Road Surveillance Video. ISPRS International Journal of Geo-Information. 2022; 11(8):441. https://doi.org/10.3390/ijgi11080441
Chicago/Turabian StyleSun, Yanjie, Mingguang Wu, Xiaoyan Liu, and Liangchen Zhou. 2022. "High-Precision Dynamic Traffic Noise Mapping Based on Road Surveillance Video" ISPRS International Journal of Geo-Information 11, no. 8: 441. https://doi.org/10.3390/ijgi11080441
APA StyleSun, Y., Wu, M., Liu, X., & Zhou, L. (2022). High-Precision Dynamic Traffic Noise Mapping Based on Road Surveillance Video. ISPRS International Journal of Geo-Information, 11(8), 441. https://doi.org/10.3390/ijgi11080441