Open Geospatial System for LUCAS In Situ Data Harmonization and Distribution
<p>Distance between GPS measured and theoretical points (OBS_DIST attribute). A total of 35,509 points with a distance of more than 1000 m are not shown in this figure.</p> "> Figure 2
<p>Space–time aggregation of observed LUCAS GPS locations (circle symbol) using the geometrical median (diamond symbol). The theoretical location snapped to a LUCAS 2 × 2 km<math display="inline"><semantics> <msup> <mrow/> <mn>2</mn> </msup> </semantics></math> grid is represented by a rectangle symbol. The distances between the GPS and median locations are shown by arrowed dashed lines.</p> "> Figure 3
<p>Static high-level architecture of the ST_LUCAS system. The Jupyter Notebook (dotted line) is not intended to be a software component. The Jupyter Notebook is used in this work to present the functionality of the Python package (C1) and to provide manual verification.</p> "> Figure 4
<p>ST_LUCAS system software components with defined interfaces.</p> "> Figure 5
<p>ST_LUCAS dynamic architecture (system deployment).</p> "> Figure 6
<p>ST_LUCAS dynamic architecture of the system user interaction.</p> "> Figure 7
<p>ST_LUCAS QGIS plugin (highlighted by a red box) retrieving harmonized LUCAS data for the Czech Republic territory (background basemap: OpenStreetMap—public WMS view service).</p> "> Figure 8
<p>Showing LUCAS photos from the GISCO service by the ST_LUCAS QGIS plugin.</p> "> Figure 9
<p>Example of changing land cover over time for POINT_ID = 46642928 as recorded in the LUCAS dataset (background orthophotos: Czech State Administration of Land Surveying and Cadastre—public WMS view service).</p> ">
Abstract
:1. Introduction
- O1
- data storage in a persistence layer;
- O2
- full and configurable automation of the harmonization process for past and future LUCAS survey updates and space–time aggregation for change analysis;
- O3
- development of software to access the data via a standardized (OGC) web service;
- O4
- development of a client Python API and QGIS plugin to retrieve the subsets of LUCAS data based on spatial, temporal, and thematic filters;
- O5
- development of translation methods to provide LUCAS land cover data in other nomenclatures and allow user-defined analytics such as legend aggregation.
2. Materials and Methods
LUCAS Data Harmonization
3. System Design
3.1. System High-Level Architecture
3.2. System Interfaces
3.3. System Dynamic Architecture
3.4. System Validation
4. System Implementation
4.1. Backend
4.2. Frontend
4.2.1. Python Package
Listing 1. Build a request. |
from st_lucas import LucasRequest from owslib.fes import PropertyIsEqualTo, Or request = LucasRequest () request.bbox = (1510105, −2292253, 8582000, 5306000) request.years = [2015, 2018] request.propertyname = ‘LC1’ request.operator = PropertyIsEqualTo request.literal = [‘C21’, ‘C22’] request.logical = Or request.group = ‘LC_LU’ |
Listing 2. Download LUCAS subset based on the request. |
from st_lucas import~LucasIO lucasio = LucasIO () lucasio.download (request) print (‘Number of LUCAS points:’, lucasio.count ()) |
4.2.2. QGIS Plugin
4.3. ST_LUCAS System Deployment
5. Discussion
5.1. LUCAS Data for Land Cover Change Analysis
Listing 3. Build a request for land cover change analysis. |
from st_lucas import LucasRequest from owslib.fes import~PropertyIsGreaterThan request = LucasRequest () request.countries = [‘CZ’] request.st_aggregated = True request.group = ‘LC_LU’ request.propertyname = ‘SURVEY_COUNT’ request.operator = PropertyIsGreaterThan request.literal = 1 |
5.2. LUCAS Data for Land Product Validation
Listing 4. Perform land cover class aggregation. |
from st_lucas import~LucasClassAggregate lc1_to_agri = { “1”: [“B11”, “B12”, “B13”, “B14”, “B15”, “B16”, “B17”, “B18”, “B19”, “B21”, “B22”, “B23”, “B31”, “B32”, “B33”, “B34”, “B35”, “B36”, “B37”, “B41”, “B42”, “B43”, “B44”, “B45“ “B51”, “B52”, “B53”, “B54”, “B55”, “B71”, “B72”, “B73”, “B74”, “B75”, “B76”, “B77”, “B81”, “B82”, “B83”, “B84”], “2”: [“E10”, “E20”, “E30”] } lucasaggr = LucasClassAggregate(lucasio.data, mappings=lc1_to_agri) lucasaggr.apply () |
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
API | Application Programming Interface |
CBSE | Component-Based Software Engineering |
CLI | Command Line Interface |
CSV | Comma Separated Values (file format) |
EPSG | EPSG Geodetic Parameter Dataset |
EU | European Union |
EUNIS | European Nature Information System |
GIS | Geographic Information System |
GUI | Graphical User Interface |
HTTP | Hypertext Transfer Protocol |
INSPIRE | Infrastructure for Spatial Information in Europe |
JSON | JavaScript Object Notation |
LC | Land Cover |
LUCAS | Land Use and Coverage Area frame Survey |
NUTS | Nomenclature of Territorial Units for Statistics |
OGC | Open Geospatial Consortium |
PLCC | Pure Land Cover Components |
SDI | Spatial data Infrastructure |
SQL | Structured Query Language |
UML | Unified Modeling Language |
WCS | Web Coverage Service |
WFS | Web Feature Service |
WMS | Web Map Service |
WMTS | Web Map Tile Service |
WPS | Web Processing Service |
Appendix A
Component ID | Software | License |
---|---|---|
P2 | PostgreSQL | PostgreSQL licence |
P2 | PostGIS | GNU GPL |
A1 | Docker CE | N/A (free of charge) |
A1 | Docker Compose | Apache License 2.0 |
A1 | psycopg2 * | GNU LGPL v3 |
A1 | gdal * | MIT |
A1 | pytest * | MIT |
A1 | owslib * | BSD 3 |
A1 | geoserver-rest * | MIT |
A1 | requests * | Apache 2.0 |
A2 | GeoServer | GNU GPL |
C1 | json/os/csv/logging/tempfile/pathlib/shutil * | PSF 2.2/BSD 0 |
C1 | gdal * | MIT |
C1 | owslib * | BSD 3 |
C1 | requests * | Apache 2.0 |
C3 | QGIS | GNU GPL |
Attribute | Group | Description | Units | Origin |
---|---|---|---|---|
POINT_ID | DEFAULT | Unique point identifier | Primary | |
NUTS0 | DEFAULT | NUTS Lvl 0 | Primary | |
NUTS1 | DEFAULT | NUTS Lvl 1 | Primary | |
NUTS2 | DEFAULT | NUTS Lvl 2 | Primary | |
NUTS3 | DEFAULT | NUTS Lvl 3 | Primary | |
SURVEY_DATE | DEFAULT | Date of observation | yyyy-mm-dd | Harmonized |
CAR_LATITUDE | DEFAULT | GPS Car parking latitude | ° | Primary |
CAR_LONGITUDE | DEFAULT | GPS Car parking longitude | ° | Primary |
CAR_EW | DEFAULT | GPS Car parking East/West | 1: East, 2: West, —1: Not Relevant | Primary |
GPS_PROJ | DEFAULT | GPS Projection | 1: WGS84, 2: GPS Problem, —1: Not Relevant | Harmonized |
GPS_PREC | DEFAULT | GPS Precision | m | Primary |
GPS_LAT | DEFAULT | GPS Observation latitude | ° | Harmonized |
GPS_EW | GPS Observation East/West | 1: East, 2: West, —1: Not Relevant | Harmonized | |
GPS_LONG | DEFAULT | GPS Observation longitude | ° | Harmonized |
GPS_ALTITUDE | DEFAULT | GPS altitude | m | Primary |
GEOG_GPS | DEFAULT | PostGIS geography (EPSG 4326) generated from GPS_LAT, GPS_LONG | New | |
GEOM_GPS | DEFAULT | PostGIS geometry (EPSG 3035) generated from GPS_LAT, GPS_LONG | New | |
GEOM_REPR_AREA | DEFAULT | PostGIS geometry (EPSG 3035) of representative area | New | |
TH_LAT | DEFAULT | Theoretical Latitude | ° | Primary |
TH_EW | Theoretical East/West | 1: East, 2: West, —1: Not Relevant | Harmonized | |
TH_LONG | DEFAULT | Theoretical Longitude | ° | Primary |
GEOG_TH | DEFAULT | PostGIS geography (EPSG 4326) generated from TH_LAT, TH_LONG | New | |
GEOM_THR | DEFAULT | PostGIS geography (EPSG 3035) generated from TH_LAT, TH_LONG snapped to LUCAS grid | New | |
GEOM | DEFAULT | PostGIS geometry (EPSG 3035) generated from measured GPS location (GEOM_GPS) if no GPS problem detected otherwise theoretical location (GEOM_THR) | New | |
DIST_THR_GRID | DEFAULT | Distance computed from GEOG_THR and LUCAS grid | m | New |
OBS_DIST | DEFAULT | GPS Distance to theoretical point | m | Harmonized |
OBS_DIRECT | DEFAULT | Direction of observation in case of linear feature | 1: on the point, 2: Look to the North, 3: Look to the East, —1: Not Relevant | Primary |
OBS_TYPE | DEFAULT | Observation type | 1: In Situ < 100 m, 2: In Situ > 100 m, 3: In Situ PI, 4: In Situ PI not possible, 5: Out of national territory, 6: Out of EU28, 7: In Office PI, —1: Not Relevant | Harmonized |
OBS_RADIUS | DEFAULT | Radius of observation circle | 1: 1.5 m, 2: 20 m, —1: Not Relevant | Primary |
LC1 | LAND COVER (LC_LU, LC_LU_SO) | Land Cover 1 | Primary | |
LC1_H | LAND COVER (LC_LU, LC_LU_SO) | Harmonized Land Cover 1 to 2018 nomenclature | —1: Not Relevant | New |
LC1_H_L3_MISSING | LAND COVER (LC_LU, LC_LU_SO) | Harmonized Land Cover 1 on lvl 1 or lvl 2 if lvl 3 is missing | New | |
LC1_H_L3_MISSING _LEVEL | LAND COVER (LC_LU, LC_LU_SO) | Level of available land cover 1 value if lvl 3 is missing | 1: Level 1, 2: Level 2 | New |
LC1_SPEC | LAND COVER (LC_LU, LC_LU_SO) | Land Cover 1 Species | —1: Not Relevant | Harmonized |
LC1_PERC | LAND COVER (LC_LU, LC_LU_SO) | Percentage of coverage of Land Cover 1 | %, —1: Not Relevant | Harmonized |
LC1_PERC_CLS | LAND COVER (LC_LU, LC_LU_SO) | Percentage of coverage of Land Cover 1 by codes | 1: 10%, 2: 25%, 3: 50%, 4: 75%, 5: 100%, —1: Not Relevant | New |
LC2 | LAND COVER (LC_LU, LC_LU_SO) | Land Cover 2 | Primary | |
LC2_H | LAND COVER (LC_LU, LC_LU_SO) | Harmonized Land Cover 2 to 2018 nomenclature | —1: Not Relevant | New |
LC2_H_L3_MISSING | LAND COVER (LC_LU, LC_LU_SO) | Harmonized Land Cover 2 on lvl 1 or lvl 2 if lvl 3 is missing | New | |
LC2_H_L3_MISSING_LEVEL | LAND COVER (LC_LU, LC_LU_SO) | Level of available land cover 2 value if lvl 3 is missing | 1: Level 1, 2: Level 2 | New |
LC2_SPEC | LAND COVER (LC_LU, LC_LU_SO) | Land Cover 2 Species | —1: Not Relevant | Harmonized |
LC2_PERC | LAND COVER (LC_LU, LC_LU_SO) | Percentage of coverage of Land Cover 2 | %, —1: Not Relevant | Harmonized |
LC2_PERC_CLS | LAND COVER (LC_LU, LC_LU_SO) | Percentage of coverage of Land Cover 2 by codes | 1: 10%, 2: 25%, 3: 50%, 4: 75%, 5: 100%, —1: Not Relevant | New |
LU1 | LAND USE (LC_LU, LC_LU_SO) | Land Use 1 | Primary | |
LU1_H | LAND USE (LC_LU, LC_LU_SO) | Harmonized Land Use 1 to 2018 nomenclature | —1: Not Relevant | New |
LU1_TYPE | LAND USE (LC_LU, LC_LU_SO) | Land Use 1 species | —1: Not Relevant | Primary |
LU1_PERC | LAND USE (LC_LU, LC_LU_SO) | Percentage of coverage of Land Use 1 | %, —1: Not Relevant | Harmonized |
LU1_PERC_CLS | LAND USE (LC_LU, LC_LU_SO) | Percentage of coverage of Land Use 1 by codes | 1: 5%, 2: 10%, 3: 25%, 4: 50%, 5: 75%, 6: 90%, 7: 100%, —1: Not Relevant | New |
LU2 | LAND USE (LC_LU, LC_LU_SO) | Land Use 2 | Primary | |
LU2_H | LAND USE (LC_LU, LC_LU_SO) | Harmonized Land Use 2 to 2018 nomenclature | —1: Not Relevant | New |
LU2_TYPE | LAND USE (LC_LU, LC_LU_SO) | Land Use 2 species | —1: Not Relevant | Primary |
LU2_PERC | LAND USE (LC_LU, LC_LU_SO) | Percentage of coverage of Land Use 2 | %, —1: Not Relevant | Harmonized |
LU2_PERC_CLS | LAND USE (LC_LU, LC_LU_SO) | Percentage of coverage of Land Use 2 by codes | 1: 5%, 2: 10%, 3: 25%, 4: 50%, 5: 75%, 6: 90%, 7: 100%, —1: Not Relevant | New |
PARCEL_AREA_HA | LAND USE (LC_LU, LC_LU_SO) | Parcel Area - area of the parcel which the point belongs to | 1: <0.1 ha, 2: 0.1–0.5 ha, 3: 0.5–1 ha, 4: 1–10 ha, 5: >10 ha, —1: Not Relevant | Harmonized |
TREE_HEIGHT_SURVEY | TREE PROPERTIES (FO) | Height of trees at survey time | 1: <5 m, 2: >5 m, —1: Not Relevant | Primary |
TREE_HEIGHT_MATURITY | TREE PROPERTIES (FO) | Height of trees at maturity | 1: <5 m, 2: >5 m, —1: Not Relevant | Primary |
FEATURE_WIDTH | LAND COVER (LC_LU, LC_LU_SO) | Feature width | 1: <20 m, 2: >20 m, —1: Not Relevant | Primary |
LM_PLOUGH_SLOPE | LAND MANAGEMENT (LC_LU, LC_LU_SO) | Slope of ploughed field | 1: Flat, 2: Gently sloping, 3: Steeply sloping, 4: Undulating, —1: Not Relevant | Primary |
LM_PLOUGH_DIRECT | LAND MANAGEMENT (LC_LU, LC_LU_SO) | Plough direction | 1: Across the slope, 2: Down the slope, 3: Not Applicable, —1: Not Relevant | Primary |
LM_STONE_WALLS | LAND MANAGEMENT (LC_LU, LC_LU_SO) | Presence of stone walls | 1: No, 2: Stone wall not mantained, 3: Stone wall well mantained, —1: Not Relevant | Primary |
LM_GRASS_ MARGINS | LAND MANAGEMENT (LC_LU, LC_LU_SO) | Presence of grass margins | 1: No, 2: Grass margin < 1 m, 3: Grass margin > 1 m, —1: Not Relevant | Primary |
CPRN_CANDO | COPERNICUS LAND COVER (CO) | Copernicus taken | 1: Yes, 2: No, —1: Not Relevant | Primary |
CPRN_LC | COPERNICUS LAND COVER (CO) | Copernicus Land Cover | Primary | |
CPRN_LC1N | COPERNICUS LAND COVER (CO) | Extension of LC North | Primary | |
CPRNC_LC1E | COPERNICUS LAND COVER (CO) | Extension of LC East | Primary | |
CPRNC_LC1S | COPERNICUS LAND COVER (CO) | Extension of LC South | Primary | |
CPRNC_LC1W | COPERNICUS LAND COVER (CO) | Extension of LC West | Primary | |
CPRN_LC1N_BRDTH | COPERNICUS LAND COVER (CO) | Percentage of breadth North | %, —1: Not Relevant | Primary |
CPRN_LC1E_BRDTH | COPERNICUS LAND COVER (CO) | Percentage of breadth East | %, —1: Not Relevant | Primary |
CPRN_LC1S_BRDTH | COPERNICUS LAND COVER (CO) | Percentage of breadth South | %, —1: Not Relevant | Primary |
CPRN_LC1W_BRDTH | COPERNICUS LAND COVER (CO) | Percentage of breadth West | %, —1: Not Relevant | Primary |
CPRN_LC1N_NEXT | COPERNICUS LAND COVER (CO) | Next copernicus Land Cover North | Primary | |
CPRN_LC1E_NEXT | COPERNICUS LAND COVER (CO) | Next copernicus Land Cover East | Primary | |
CPRN_LC1S_NEXT | COPERNICUS LAND COVER (CO) | Next copernicus Land Cover South | Primary | |
CPRN_LC1W_NEXT | COPERNICUS LAND COVER (CO) | Next copernicus Land Cover West | Primary | |
CPRN_URBAN | URBAN (CO) | Point in Urban area | 1: Yes, 2: No, —1: Not Relevant | Primary |
CPRN_IMPERVIOUS _PERC | IMPERVIOUS (CO) | Percentage of imperviousness | %, —1: Not Relevant | Primary |
INSPIRE_PLCC1 | INSPIRE PLCC (IN) | Percentage of Coniferous forest trees | %, —1: Not Relevant | Primary |
INSPIRE_PLCC2 | INSPIRE PLCC (IN) | Percentage of Broadleaved forest trees | %, —1: Not Relevant | Primary |
INSPIRE_PLCC3 | INSPIRE PLCC (IN) | Percentage of Shrubs | %, —1: Not Relevant | Primary |
INSPIRE_PLCC4 | INSPIRE PLCC (IN) | Percentage of herbaceous plants | %, —1: Not Relevant | Primary |
INSPIRE_PLCC5 | INSPIRE PLCC (IN) | Percentage of Lichens and mosses | %, —1: Not Relevant | Primary |
INSPIRE_PLCC6 | INSPIRE PLCC (IN) | Percentage of consolidated bare land | %, —1: Not Relevant | Primary |
INSPIRE_PLCC7 | INSPIRE PLCC (IN) | Percentage of unconsolidated bare land | %, —1: Not Relevant | Primary |
INSPIRE_PLCC8 | INSPIRE PLCC (IN) | Percentage of other land | %, —1: Not Relevant | Primary |
EUNIS_COMPLEX | EUNIS (LC_LU) | EUNIS Complex | 6: X06, 9: X09, 10: Other, 11: Unknown, —1: Not Relevant | Primary |
GRASSLAND _SAMPLE | GRASS (LC_LU) | Sample Grassland module | 0: FALSE, 1: TRUE | Primary |
GRASS_CANDO | GRASS (LC_LU) | Grassland taken | 1: Yes, 2: No, —1: Not Relevant | Primary |
GRAZING | LAND USE (LC_LU, LC_LU_SO) | Signs of grazing | 1: Visible sighns of grazing, 2: No sighn of grazing, —1: Not Relevant | Harmonized |
WM | LAND USE (LC_LU, LC_LU_SO) | Presence of Water Management | 1: Irrigation, 2: Potential irrigation, 3: Drainage, 4: Irrigation and drainage, 5: No visible Water management, —1: Not Relevant | Primary |
WM_SOURCE | LAND USE (LC_LU, LC_LU_SO) | Source of irrigation | 1: Well, 2: Pond/Lake/Reservoir, 3: Stream/Canal/Ditch, 4: Lagoon/Wastewater, 5: Other/Not identifiable, —1: Not Relevant | Harmonized |
WM_TYPE | LAND USE (LC_LU, LC_LU_SO) | Type of irrigation | 1: Gravity, 2: Pressure sprinkler irrigation, 3: Pressure micro-irrigation, 4: Gravity/Pressure, 5: Other/Not identifiable, —1: Not Relevant | Harmonized |
WM_DELIVERY | LAND USE (LC_LU, LC_LU_SO) | Delivery System | 1: Canal, 2: Ditch, 3: Pipeline, 4: Other/Not identifiable, —1: Not Relevant | Harmonized |
SOIL_TAKEN | SOIL (LC_LU_SO) | Soil taken | 1: Yes, 2: Not possible, 3: No, already taken, 4: No sample required, —1: Not Relevant | Harmonized |
EROSION_CANDO | SOIL (LC_LU_SO) | Erosion taken | 1: Yes, 2: No, —1: Not Relevant | Primary |
BIO_SAMPLE | SOIL (LC_LU_SO) | Sample bio soil module | 0: FALSE, 1: TRUE | Primary |
SOIL_BIO_TAKEN | SOIL (LC_LU_SO) | Bio soil taken | 0: FALSE, 1: TRUE, —1: Not Relevant | Primary |
BULK0_10_SAMPLE | SOIL (LC_LU_SO) | Sample bulk 0–10 module | 0: FALSE, 1: TRUE | Primary |
SOIL_BLK_0_10 _TAKEN | SOIL (LC_LU_SO) | Bulk 0–10 taken | 1: Yes, 2: No, —1: Not Relevant | Primary |
BULK10_20_SAMPLE | SOIL (LC_LU_SO) | Sample bulk 10–20 module | 0: FALSE, 1: TRUE | Primary |
SOIL_BLK_10_20 _TAKEN | SOIL (LC_LU_SO) | Bulk 10–20 taken | 1: Yes, 2: No, —1: Not Relevant | Primary |
BULK20_30_SAMPLE | SOIL (LC_LU_SO) | Sample bulk 20–30 module | 0: FALSE, 1: TRUE | Primary |
SOIL_BLK_20_30 _TAKEN | SOIL (LC_LU_SO) | Bulk 20–30 taken | 1: Yes, 2: No, —1: Not Relevant | Primary |
STANDARD_SAMPLE | SOIL (LC_LU_SO) | Sample standard soil module | 0: FALSE, 1: TRUE | Primary |
SOIL_STD_TAKEN | SOIL (LC_LU_SO) | Standard soil taken | 1: Yes, 2: No, —1: Not Relevant | Primary |
ORGANIC_SAMPLE | SOIL (LC_LU_SO) | Sample organic soil module | 0: FALSE, 1: TRUE | Primary |
SOIL_ORG_DEPTH _CANDO | SOIL (LC_LU_SO) | Organic soil taken | 1: Yes, 2: No, —1: Not Relevant | Primary |
OFFICE_PI | DEFAULT | Sample photo interpreted in office | 0: FALSE, 1: TRUE | Harmonized |
PI_EXTENSION | DEFAULT | Point on extened part of survey (photo-interpreted) | 0: FALSE, 1: TRUE | Primary |
LNDMNG_PLOUGH | LAND USE (LC_LU, LC_LU_SO) | Signs of ploughing | 1: Yes, 2: No, —1: Not Relevant | Primary |
SPECIAL_STATUS | LAND USE (LC_LU, LC_LU_SO) | Special status | 1: Protected, 2: Hunting, 3: Protected and hunting, 4: No special status, —1: Not Relevant | Primary |
LC_LU_SPECIAL _REMARK | LAND COVER (LC_LU, LC_LU_SO) | Special remarks in LC/LU | 1: Harvested field, 2: Tilled/sowed, 3: Clear cut, 4: Burnt area, 5: Fire break, 6: Nursey, 7: Dump site, 8: Temporary dry, 9: Temporary flooded, 10: No remark, —1: Not Relevant | Harmonized |
SOIL_STONES _PERC | SOIL (LC_LU_SO) | Percentage of Stones on the surface | %, —1: Not Relevant | Harmonized |
SOIL_STONES _PERC_CLS | SOIL (LC_LU_SO) | Percentage of Stones on the surface by codes | 1: 5%, 2: 20%, 3: 40%, 4: 75%, —1: Not Relevant | New |
PHOTO_POINT | LAND COVER (LC_LU, LC_LU_SO) | Photo point taken | 1: Taken, 2: Not Taken, —1: Not Relevant | Primary |
PHOTO_NORTH | LAND COVER (LC_LU, LC_LU_SO) | Photo north taken | 1: Taken, 2: Not Taken, —1: Not Relevant | Primary |
PHOTO_EAST | LAND COVER (LC_LU, LC_LU_SO) | Photo east taken | 1: Taken, 2: Not Taken, —1: Not Relevant | Primary |
PHOTO_SOUTH | LAND COVER (LC_LU, LC_LU_SO) | Photo south taken | 1: Taken, 2: Not Taken, —1: Not Relevant | Primary |
PHOTO_WEST | LAND COVER (LC_LU, LC_LU_SO) | Photo west taken | 1: Taken, 2: Not Taken, —1: Not Relevant | Primary |
CROP_RESIDUES | LAND COVER (LC_LU, LC_LU_SO) | Presence of crop residues | 1: Yes, 2: No, —1: Not Relevant | Harmonized |
TRANSECT | LAND COVER (LC_LU, LC_LU_SO) | Transect LC sequence | Primary | |
EX_ANTE | DEFAULT | Visited in the field | 0: FALSE, 1: TRUE | Primary |
SURVEY_YEAR | DEFAULT | Survey year | New | |
SURVEY_COUNT | SPACE-TIME | Number of visits | New | |
SURVEY_DIST | SPACE-TIME | Distance computed from representative location (GEOM) and measured GPS location (GEOM_GPS) | m | New |
SURVEY_MAXDIST | SPACE-TIME | Maximum distance computed from representative location (GEOM) and measured GPS location (GEOM_GPS) | m | New |
References
- Akitsu, T.K.; Nasahara, K.N. In-Situ observations on a moderate resolution scale for validation of the Global Change Observation Mission-Climate ecological products: The uncertainty quantification in ecological reference data. Int. J. Appl. Earth Obs. Geoinf. 2022, 107, 102639. [Google Scholar] [CrossRef]
- Lee, J.G.; Kang, M. Geospatial Big Data: Challenges and Opportunities. Big Data Res. 2015, 2, 74–81. [Google Scholar] [CrossRef]
- Ishwarappa; Anuradha, J. A Brief Introduction on Big Data 5Vs Characteristics and Hadoop Technology. Procedia Comput. Sci. 2015, 48, 319–324. [Google Scholar] [CrossRef] [Green Version]
- Koubarakis, M.; Stamoulis, G.; Bilidas, D.; Ioannidis, T.; Pantazi, D.A.; Vlassov, V.; Payberah, A.H.; Wang, T.; Sheikholeslami, S.; Hagos, D.H.; et al. Artificial Intelligence and big data technologies for Copernicus data: The EXTREMEEARTH project. In Proceedings of the 2021 Conference on Big Data from Space, Virtual Event, 18–20 May 2021; pp. 9–12. [Google Scholar] [CrossRef]
- Overview—Land Cover/Use Statistics. Available online: https://ec.europa.eu/eurostat/web/lucas (accessed on 11 April 2022).
- Bettio, M.; Delincé, J.; Bruyas, P.; Croi, W.; Eiden, G. Area frame surveys: Aim, Principals and Operational Surveys. In Building Agri-Environmental Indicators, Focussing on the European Area Frame Survey LUCAS; Eurostat: Luxembourg, 2002; pp. 12–27. [Google Scholar] [CrossRef]
- Fritz, S.; McCallum, I.; Schill, C.; Perger, C.; Grillmayer, R.; Achard, F.; Kraxner, F.; Obersteiner, M. Geo-Wiki.Org: The Use of Crowdsourcing to Improve Global Land Cover. Remote Sens. 2009, 1, 345–354. [Google Scholar] [CrossRef] [Green Version]
- Defourny, P.; Mayaux, P.; Herold, M.; Bontemps, S. Global land-cover map validation experiences: Toward the characterization of quantitative uncertainty. In Remote Sensing of Land Use and Land Cover; Giri, C.P., Ed.; CRC Press: Boca Raton, FL, USA, 2016; pp. 207–223. [Google Scholar] [CrossRef]
- Close, O.; Benjamin, B.; Petit, S.; Fripiat, X.; Hallot, E. Use of Sentinel-2 and LUCAS Database for the Inventory of Land Use, Land Use Change, and Forestry in Wallonia, Belgium. Land 2018, 7, 154. [Google Scholar] [CrossRef] [Green Version]
- Weigand, M.; Staab, J.; Wurm, M.; Taubenböck, H. Spatial and semantic effects of LUCAS samples on fully automated land use/land cover classification in high-resolution Sentinel-2 data. Int. J. Appl. Earth Obs. Geoinf. 2020, 88, 102065. [Google Scholar] [CrossRef]
- Pflugmacher, D.; Rabe, A.; Peters, M.; Hostert, P. Mapping pan-European land cover using Landsat spectral-temporal metrics and the European LUCAS survey. Remote Sens. Environ. 2019, 221, 583–595. [Google Scholar] [CrossRef]
- Gao, Y.; Liu, L.; Zhang, X.; Chen, X.; Mi, J.; Xie, S. Consistency Analysis and Accuracy Assessment of Three Global 30-m Land-Cover Products over the European Union using the LUCAS Dataset. Remote Sens. 2020, 12, 3479. [Google Scholar] [CrossRef]
- d’Andrimont, R.; Yordanov, M.; Martinez-Sanchez, L.; Eiselt, B.; Palmieri, A.; Dominici, P.; Gallego, J.; Reuter, H.I.; Joebges, C.; Lemoine, G.; et al. Harmonised LUCAS In-Situ land cover and use database for field surveys from 2006 to 2018 in the European Union. Sci. Data 2020, 7, 352. [Google Scholar] [CrossRef]
- Borrelli, P.; Poesen, J.; Vanmaercke, M.; Ballabio, C.; Hervás, J.; Maerker, M.; Scarpa, S.; Panagos, P. Monitoring gully erosion in the European Union: A novel approach based on the Land Use/Cover Area frame survey (LUCAS). Int. Soil Water Conserv. Res. 2022, 10, 17–28. [Google Scholar] [CrossRef]
- Jeppesen, J.H.; Ebeid, E.; Jacobsen, R.H.; Toftegaard, T.S. Open geospatial infrastructure for data management and analytics in interdisciplinary research. Comput. Electron. Agric. 2018, 145, 130–141. [Google Scholar] [CrossRef]
- Wiemann, S.; Brauner, J.; Karrasch, P.; Henzen, D.; Bernard, L. Design and prototype of an interoperable online air quality information system. Environ. Model. Softw. 2016, 79, 354–366. [Google Scholar] [CrossRef]
- Li, W.; Wang, S.; Bhatia, V. PolarHub: A large-scale web crawling engine for OGC service discovery in cyberinfrastructure. Comput. Environ. Urban Syst. 2016, 59, 195–207. [Google Scholar] [CrossRef] [Green Version]
- Klug, H.; Kmoch, A. A SMART groundwater portal: An OGC web services orchestration framework for hydrology to improve data access and visualisation in New Zealand. Comput. Geosci. 2014, 69, 78–86. [Google Scholar] [CrossRef]
- Best, B.D.; Halpin, P.N.; Fujioka, E.; Read, A.J.; Qian, S.S.; Hazen, L.J.; Schick, R.S. Geospatial web services within a scientific workflow: Predicting marine mammal habitats in a dynamic environment. Ecol. Inform. 2007, 2, 210–223. [Google Scholar] [CrossRef]
- Rosatti, G.; Zorzi, N.; Zugliani, D.; Piffer, S.; Rizzi, A. A Web Service ecosystem for high-quality, cost-effective debris-flow hazard assessment. Environ. Model. Softw. 2018, 100, 33–47. [Google Scholar] [CrossRef]
- Rautenbach, V.; Coetzee, S.; Iwaniak, A. Orchestrating OGC web services to produce thematic maps in a spatial information infrastructure. Comput. Environ. Urban Syst. 2013, 37, 107–120. [Google Scholar] [CrossRef] [Green Version]
- Web Feature Service|OGC. Available online: https://www.ogc.org/standards/wfs (accessed on 11 April 2022).
- OGC API—Features. Available online: https://ogcapi.ogc.org/features/ (accessed on 11 April 2022).
- Giuliani, G.; Ray, N.; Lehmann, A. Grid-enabled Spatial Data Infrastructure for environmental sciences: Challenges and opportunities. Future Gener. Comput. Syst. 2011, 27, 292–303. [Google Scholar] [CrossRef] [Green Version]
- Blauth, D.A.; Ducati, J.R. A Web-based system for vineyards management, relating inventory data, vectors and images. Comput. Electron. Agric. 2010, 71, 182–188. [Google Scholar] [CrossRef]
- Zioti, F.; Ferreira, K.R.; Queiroz, G.R.; Neves, A.K.; Carlos, F.M.; Souza, F.C.; Santos, L.A.; Simoes, R.E.O. A platform for land use and land cover data integration and trajectory analysis. Int. J. Appl. Earth Obs. Geoinf. 2022, 106, 102655. [Google Scholar] [CrossRef]
- Data—Land Cover/Use Statistics. Available online: https://ec.europa.eu/eurostat/web/lucas/data (accessed on 11 April 2022).
- Eurostat Regional Yearbook 2021. Available online: https://ec.europa.eu/statistical-atlas/viewer/ (accessed on 11 April 2022).
- Witjes, M.; Parente, L.; van Diemen, C.; Hengl, T.; Landa, M.; Brodsky, L.; Halounova, L.; Krizan, J.; Antonic, L.; Ilie, C.; et al. A spatiotemporal ensemble machine learning framework for generating land use/land cover time-series maps for Europe (2000–2019) based on LUCAS, CORINE and GLAD Landsat. PeerJ-Life Environ. 2022; accepted. [Google Scholar] [CrossRef]
- LUCAS Primary Data 2006. Available online: https://ec.europa.eu/eurostat/en/web/lucas/data/primary-data/2006 (accessed on 8 April 2022).
- LUCAS Primary Data 2009. Available online: https://ec.europa.eu/eurostat/en/web/lucas/data/primary-data/2009 (accessed on 8 April 2022).
- LUCAS Primary Data 2012. Available online: https://ec.europa.eu/eurostat/en/web/lucas/data/primary-data/2012 (accessed on 8 April 2022).
- LUCAS Primary Data 2015. Available online: https://ec.europa.eu/eurostat/en/web/lucas/data/primary-data/2015 (accessed on 8 April 2022).
- LUCAS Primary Data 2018. Available online: https://ec.europa.eu/eurostat/en/web/lucas/data/primary-data/2018 (accessed on 8 April 2022).
- LUCAS Grid—Land Cover/Use Statistics. Available online: https://ec.europa.eu/eurostat/web/lucas/data/lucas-grid (accessed on 8 April 2022).
- LUCAS 2009. Technical Reference Document C3 Classification (Land Cover & Land Use). Available online: https://ec.europa.eu/eurostat/documents/205002/208938/LUCAS2009_C3-Classification_20121004.pdf (accessed on 27 May 2020).
- LUCAS 2012. Technical Reference Document C3 Classification (Land Cover & Land Use). Available online: https://ec.europa.eu/eurostat/documents/205002/208012/LUCAS_2012_C3-Classification_20131004_0.pdf (accessed on 27 May 2020).
- LUCAS 2015. Technical Reference Document C3 Classification (Land Cover & Land Use). Available online: https://ec.europa.eu/eurostat/documents/205002/6786255/LUCAS2015_C3-Classification_20160729.pdf (accessed on 27 May 2020).
- LUCAS 2018. Technical Reference Document C3 Classification (Land Cover & Land Use). Available online: https://ec.europa.eu/eurostat/documents/205002/8072634/LUCAS2018-C3-Classification.pdf (accessed on 27 May 2020).
- Contents of the 2006 Lucas Primary Data. Available online: https://ec.europa.eu/eurostat/documents/205002/209869/Contents_LUCAS_2006_primary_data.xls (accessed on 27 May 2020).
- LUCAS Survey 2009 Technical Reference Document c-1: Instructions for Surveyors. Available online: https://ec.europa.eu/eurostat/documents/205002/208938/LUCAS+2009+Instructions (accessed on 27 May 2020).
- LUCAS Survey 2012 Technical Reference Document c-1: Instructions for Surveyors. Available online: https://ec.europa.eu/eurostat/documents/205002/208012/LUCAS2012_C1-InstructionsRevised_20130110b.pdf (accessed on 27 May 2020).
- LUCAS Survey 2015 Web CSV Record Descriptor. Available online: https://ec.europa.eu/eurostat/documents/205002/6786255/WebCsv_RecordDescriptor20161006.pdf (accessed on 27 May 2020).
- LUCAS Survey 2018 Web CSV Record Descriptor. Available online: https://ec.europa.eu/eurostat/documents/205002/8072634/LUCAS2018-RecordDescriptor-190611.pdf (accessed on 27 May 2020).
- PostGIS Documentation—ST_GeometricMedian. Available online: https://postgis.net/docs/ST_GeometricMedian.html (accessed on 11 April 2022).
- Weiszfeld, E.; Plastria, F. On the point for which the sum of the distances to n given points is minimum. Ann. Oper. Res. 2009, 167, 7–41. [Google Scholar] [CrossRef]
- Vale, T.; Crnkovic, I.; de Almeida, E.S.; da Mota Silveira Neto, P.A.; Cavalcanti, Y.C.; de Lemos Meira, S.R. Twenty-eight years of component-based software engineering. J. Syst. Softw. 2016, 111, 128–148. [Google Scholar] [CrossRef]
- Nierstrasz, O.; Meijler, T.D. Research Directions in Software Composition. ACM Comput. Surv. 1995, 27, 262–264. [Google Scholar] [CrossRef]
- Pytest: Helps You Write Better Programs—Pytest Documentation. Available online: https://docs.pytest.org/en/7.1.x/ (accessed on 13 April 2022).
- Merkel, D. Docker: Lightweight Linux Containers for Consistent Development and Deployment. Linux J. 2014, 2014, 2. Available online: https://dl.acm.org/doi/10.5555/2600239.2600241 (accessed on 13 April 2022).
- PostgreSQL: The World’s Most Advanced Open-Source Database. Available online: https://www.postgresql.org/ (accessed on 13 April 2022).
- PostGIS Documentation. Available online: https://postgis.net/ (accessed on 13 April 2022).
- GDAL Documentation. Available online: https://gdal.org/ (accessed on 13 April 2022).
- GeoServer Documentation. Available online: https://geoserver.org/ (accessed on 13 April 2022).
- GeoPandas Documentation. Available online: https://geopandas.org/en/stable/ (accessed on 13 April 2022).
- Perkel, J.M. BY Jupyter, it all makes sense. Nature 2018, 563, 145–146. [Google Scholar] [CrossRef] [Green Version]
- Reference Data—GISCO. Available online: https://gisco-services.ec.europa.eu/lucas/photos/ (accessed on 11 April 2022).
- Land Parcel Identification System–LPIS. Available online: https://eagri.cz/public/app/lpisext/lpis/verejny2/plpis/ (accessed on 1 February 2022).
ID | Name | Layer | Role | Objective |
---|---|---|---|---|
P1 | File system | Persistence | Store primary data | O1 |
P2 | Database | Persistence | Store and provide harmonized data | O1 |
A1 | Deployment package | Application | Deploy the system including data harmonization | O2 |
A2 | Web service | Application | Provide access to harmonized data through a web service | O3 |
C1 | Python package | Client | API interface to a web service and a set of analytical functions | O4, O5 |
C2 | Local file system | Client | Store locally harmonized LUCAS data | O4, O5 |
C3 | QGIS plugin | Client | Provide GUI interface via GIS to a web service and a set of selected analytical functions | O4, O5 |
Component ID | Test IDs | Description |
---|---|---|
A1, P1 | 1_001 | Primary data are downloaded according to the system configuration. |
A1, P2 | 2a_001 | DB is initialized according to the system configuration. |
2b_001-003 | Primary data are imported according to the system configuration. | |
2c_001-002 | Coordinates are harmonized according to the system configuration. | |
2d_001 | Attributes are harmonized according to the system configuration. | |
2e_001-002 | Data values are harmonized according to the system configuration. | |
2f_001 | Data types are harmonized according to the system configuration. | |
2g_001-004 | Harmonized data are merged according to the system configuration. | |
2h_001-003 | Data are space–time aggregated according to the system configuration. | |
2i_001-004 | Publication views are created according to the system configuration. | |
2j_001 | DB recovery file is created according to the system configuration. | |
A1, A2 | 3a_001-003 | Test case consists of checking OGC WFS operations: GetCapabilities, DescribeFeatureType and GetFeature. |
3b_001-003 | ST_LUCAS dataset available via WFS. | |
3c_001-003 | The test cases consist of checking that ST_LUCAS metadata are published according to the deployed database. | |
C1, C2 | 001-007 | Test cases consist of checking LucasRequest and LucasIO classes methods to build a request, download a LUCAS subset, store retrieved data on the local file system, and access associated photos. |
Interface ID | Test IDs | Description |
---|---|---|
IF1, IF2 | 001–004 | Test cases consist of checking WFS responses retrieved by the Python package (IF2) covering various combinations of spatial, attribute, thematic, and temporal filters. The responses are compared with the subsets retrieved from spatio-temporal DB via SQL statements (IF1). Test cases pass only if there is no difference between the WFS responses and the subsets retrieved from DB. |
Class | Code | Support | F1-Score | Precision | Recall |
---|---|---|---|---|---|
Cropland | 1 | 1941 | 98.1 | 97.1 | 99.1 |
Grassland | 2 | 690 | 94.1 | 96.1 | 92.1 |
Overall | 2631 | 96.1 | 97.1 | 95.1 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Landa, M.; Brodský, L.; Halounová, L.; Bouček, T.; Pešek, O. Open Geospatial System for LUCAS In Situ Data Harmonization and Distribution. ISPRS Int. J. Geo-Inf. 2022, 11, 361. https://doi.org/10.3390/ijgi11070361
Landa M, Brodský L, Halounová L, Bouček T, Pešek O. Open Geospatial System for LUCAS In Situ Data Harmonization and Distribution. ISPRS International Journal of Geo-Information. 2022; 11(7):361. https://doi.org/10.3390/ijgi11070361
Chicago/Turabian StyleLanda, Martin, Lukáš Brodský, Lena Halounová, Tomáš Bouček, and Ondřej Pešek. 2022. "Open Geospatial System for LUCAS In Situ Data Harmonization and Distribution" ISPRS International Journal of Geo-Information 11, no. 7: 361. https://doi.org/10.3390/ijgi11070361
APA StyleLanda, M., Brodský, L., Halounová, L., Bouček, T., & Pešek, O. (2022). Open Geospatial System for LUCAS In Situ Data Harmonization and Distribution. ISPRS International Journal of Geo-Information, 11(7), 361. https://doi.org/10.3390/ijgi11070361