WaterSmart-GIS: A Web Application of a Data Assimilation Model to Support Irrigation Research and Decision Making
<p>WaterSmart-GIS architect design.</p> "> Figure 2
<p>WaterSmart-GIS web interface.</p> "> Figure 3
<p>The Nebraska maps of its: (<b>a</b>) location; (<b>b</b>) crop types; (<b>c</b>) soil texture class; and (<b>d</b>) annual total precipitation (mm).</p> "> Figure 3 Cont.
<p>The Nebraska maps of its: (<b>a</b>) location; (<b>b</b>) crop types; (<b>c</b>) soil texture class; and (<b>d</b>) annual total precipitation (mm).</p> "> Figure 4
<p>Soil moisture map in Nebraska on 7 March 2022.</p> "> Figure 5
<p>Results table and charts for selected AOI and points returned by provided analysis functions: (<b>a</b>) Statistical result of ET in the user-defined AOI; (<b>b</b>) Hourly ET time series of line chart of user-selected point; (<b>c</b>,<b>d</b>) Pie chart and bar chart of the statistical result in (<b>a</b>).</p> "> Figure 6
<p>Information needed before irrigation decision making. (<b>a</b>) Soil properties; (<b>b</b>) Weather variables; (<b>c</b>,<b>d</b>) Recent and future soil moisture; (<b>e</b>,<b>f</b>) Recent and future ET; (<b>g</b>,<b>h</b>) Recent and future rain rate.</p> "> Figure 6 Cont.
<p>Information needed before irrigation decision making. (<b>a</b>) Soil properties; (<b>b</b>) Weather variables; (<b>c</b>,<b>d</b>) Recent and future soil moisture; (<b>e</b>,<b>f</b>) Recent and future ET; (<b>g</b>,<b>h</b>) Recent and future rain rate.</p> "> Figure 7
<p>(<b>a</b>) Selected farm field; (<b>b</b>) Generating a customized profile of multiple variables for the selected location; (<b>c</b>) A photo of the selected farm filed.</p> "> Figure 7 Cont.
<p>(<b>a</b>) Selected farm field; (<b>b</b>) Generating a customized profile of multiple variables for the selected location; (<b>c</b>) A photo of the selected farm filed.</p> "> Figure 8
<p>A comparison of HRLDAS SM and ground-observed SM in 2020, averaged over three sites inside Nebraska (from top to bottom: 0–10 cm, 10–100 cm depth).</p> "> Figure 9
<p>A comparison of HRLDAS ET and ground-observed ET in 2020 growing season, averaged over three sites inside Nebraska.</p> "> Figure 10
<p>HRLDAS SM with and without in situ irrigation information incorporated in 2020, averaged over three sites inside Nebraska (from top to bottom: 0–10 cm, 10–100 cm depth).</p> "> Figure 11
<p>HRLDAS ET with and without in situ irrigation information incorporated in the 2020 growing season, averaged over three sites inside Nebraska.</p> ">
Abstract
:1. Introduction
2. Related Work
3. Architecture Design
3.1. Soil Vegetation and Climate Model Layer
3.2. WaterSmart-GIS Service Layer
3.3. WaterSmart-GIS User Layer
- Product Catalog provides a browser and selector to all the SM and ET products. The catalog serves as the entry point for users to choose a product from a hierarchical tree selector based on the irrigation needs. Each product name is associated with a short description and unit explanation.
- Layer Management controls all the layers selected in the product catalog and added into the map. Via this module, users can manipulate the layers’ visibility, order, and opacity to discover abnormal events, water stress information, and potential wilting point for irrigation.
- AOI selector is a drawing tool to specify the area of interest. It supports drawing multiple types of AOIs including point, rectangle, polygon, and uploading a Geography Markup Language (GML) file or a zipped ESRI Shapefile. It also allows users to choose from the county list to define the AOI by county administrative boundaries.
- Legend is explicitly displayed along with the rendered products, showing the value range and corresponding color palette. The units of products are placed alongside as the units of different products are quite different.
- Map Viewer is the interface to display the WMS layers of the WaterSmart products. It comes with a base map as location and context reference, such as the OpenStreetMap tile map layer, and Global Land Cover layer. The most recent SM image layer is placed on top as default.
- Map Controller allows users to manipulate the map viewer and find more information from it. It provides functions such as obtaining pixel info of all the displayed layers on the clicked position. Other basic functions such as panning/zooming in/out, navigation window, and changing base maps (including the latest cropland data layer), are supported.
- Data Analysis is the graphical interface allowing users to directly invoke the data analysis web services described in the section above. This system is specifically designed for agriculture and irrigation. Therefore, the analysis is able to focus on cropland by overlaying a crop mask. It also allows users to export or print the analysis results.
- Data Download is a function for directly downloading the data of the selected AOI. GeoTiff is the essential format for the output files due to its feasibility and flexibility in subsequent processing.
- Comparison enables side-by-side observation by adding a slider line to directly compare two layers in one view.
- Animation provides advanced features for users to view the changes in SM and ET in a dynamic way. Spatial pattern changes can be easily observed by users through this function. Reasonable timeframe, e.g., irrigation season or early growing season, are recommended considering server burden.
4. WaterSmart-GIS System Implementation
4.1. Technology Used
4.2. Web-Based Interface
4.3. Developer-Oriented Web API
5. Use Cases in Nebraska
5.1. Use Scenario #1: Early Growing Season (April, May, June)
5.2. Use Scenario #2: Irrigation Season (July, August)
5.3. Evaluation of HRLDAS SM and ET with Ground Observations
6. Discussion
6.1. Benefits for Agriculture Researchers and Decision Making
6.2. Future Work
7. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Masson-Delmotte, V.; Zhai, P.; Pirani, A.; Connors, S.L.; Péan, C.; Berger, S.; Caud, N.; Chen, Y.; Goldfarb, L.; Gomis, M.I.; et al. (Eds.) IPCC, 2021: Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change; Cambridge University Press: Cambridge, UK, 2021. [Google Scholar]
- Lin, L.; Di, L.; Zhang, C.; Guo, L.; Tang, J.; Yu, E.; Rahman, M.S.; Zhao, H.; Yu, Z.; Sun, Z. Building Near-Real-Time MODIS Data Fusion Workflow to Support Agricultural Decision-making Applications. In Proceedings of the 2019 8th International Conference on Agro-Geoinformatics (Agro-Geoinformatics), Istanbul, Turkey, 16–19 July 2019; pp. 1–5. [Google Scholar]
- Sun, Z.; Di, L. A Review of Smart Irrigation Decision Support Systems. In Proceedings of the 2021 9th International Conference on Agro-Geoinformatics (Agro-Geoinformatics), Shenzhen, China, 26–29 July 2021; pp. 1–4. [Google Scholar]
- Zhang, C.; Di, L.; Hao, P.; Yang, Z.; Lin, L.; Zhao, H.; Guo, L. Rapid in-season mapping of corn and soybeans using machine-learned trusted pixels from Cropland Data Layer. Int. J. Appl. Earth Obs. Geoinf. 2021, 102, 102374. [Google Scholar] [CrossRef]
- Green, T.R.; Kipka, H.; David, O.; McMaster, G.S. Where is the USA Corn Belt, and how is it changing? Sci. Total Environ. 2018, 618, 1613–1618. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Christiansen, J.E. Irrigation by Sprinkling; University of California Berkeley: Berkeley, CA, USA, 1942; Volume 4. [Google Scholar]
- Grassini, P.; Yang, H.; Irmak, S.; Thorburn, J.; Burr, C.; Cassman, K.G. High-yield irrigated maize in the Western US Corn Belt: II. Irrigation management and crop water productivity. Field Crops Res. 2011, 120, 133–141. [Google Scholar] [CrossRef] [Green Version]
- Martin, D.; Kranz, W.; Smith, T.; Irmak, S.; Burr, C.; Yoder, R. Center Pivot Irrigation Handbook (ec3017); University of Nebraska-Lincoln: Lincoln, NE, USA, 2017. [Google Scholar]
- Neissi, L.; Albaji, M.; Nasab, S.B. Combination of GIS and AHP for site selection of pressurized irrigation systems in the Izeh plain, Iran. Agric. Water Manag. 2020, 231, 106004. [Google Scholar] [CrossRef]
- Yousaf, W.; Awan, W.K.; Kamran, M.; Ahmad, S.R.; Bodla, H.U.; Riaz, M.; Umar, M.; Chohan, K. A paradigm of GIS and remote sensing for crop water deficit assessment in near real time to improve irrigation distribution plan. Agric. Water Manag. 2021, 243, 106443. [Google Scholar] [CrossRef]
- Melton, F.S.; Huntington, J.; Grimm, R.; Herring, J.; Hall, M.; Rollison, D.; Erickson, T.; Allen, R.; Anderson, M.; Fisher, J.B. OpenET: Filling a critical data gap in water management for the western united states. JAWRA J. Am. Water Resour. Assoc. 2021. [Google Scholar] [CrossRef]
- Di, L.; Sun, Z. Big data and its applications in agro-geoinformatics. In Agro-Geoinformatics; Springer: Cham, Switzerland, 2021; pp. 143–162. [Google Scholar]
- Ara, I.; Turner, L.; Harrison, M.T.; Monjardino, M.; DeVoil, P.; Rodriguez, D. Application, adoption and opportunities for improving decision support systems in irrigated agriculture: A review. Agric. Water Manag. 2021, 257, 107161. [Google Scholar] [CrossRef]
- Fields, C.M.; Labadie, J.W.; Rohmat, F.I.; Johnson, L.E. Geospatial decision support system for ameliorating adverse impacts of irrigated agriculture on aquatic ecosystems. Agric. Water Manag. 2021, 252, 106877. [Google Scholar] [CrossRef]
- Chen, F.; Manning, K.W.; LeMone, M.A.; Trier, S.B.; Alfieri, J.G.; Roberts, R.; Tewari, M.; Niyogi, D.; Horst, T.W.; Oncley, S.P. Description and evaluation of the characteristics of the NCAR high-resolution land data assimilation system. J. Appl. Meteorol. Climatol. 2007, 46, 694–713. [Google Scholar] [CrossRef] [Green Version]
- Entekhabi, D.; Njoku, E.G.; O’Neill, P.E.; Kellogg, K.H.; Crow, W.T.; Edelstein, W.N.; Entin, J.K.; Goodman, S.D.; Jackson, T.J.; Johnson, J. The soil moisture active passive (SMAP) mission. Proc. IEEE 2010, 98, 704–716. [Google Scholar] [CrossRef]
- Justice, C.; Townshend, J.; Vermote, E.; Masuoka, E.; Wolfe, R.; Saleous, N.; Roy, D.; Morisette, J. An overview of MODIS Land data processing and product status. Remote Sens. Environ. 2002, 83, 3–15. [Google Scholar] [CrossRef]
- Bonfante, A.; Monaco, E.; Manna, P.; De Mascellis, R.; Basile, A.; Buonanno, M.; Cantilena, G.; Esposito, A.; Tedeschi, A.; De Michele, C. LCIS DSS—An irrigation supporting system for water use efficiency improvement in precision agriculture: A maize case study. Agric. Syst. 2019, 176, 102646. [Google Scholar] [CrossRef]
- Han, W.; Yang, Z.; Di, L.; Mueller, R. CropScape: A Web service based application for exploring and disseminating US conterminous geospatial cropland data products for decision support. Comput. Electron. Agric. 2012, 84, 111–123. [Google Scholar] [CrossRef]
- Simionesei, L.; Ramos, T.B.; Palma, J.; Oliveira, A.R.; Neves, R. IrrigaSys: A web-based irrigation decision support system based on open source data and technology. Comput. Electron. Agric. 2020, 178, 105822. [Google Scholar] [CrossRef]
- Zhang, C.; Yang, Z.; Di, L.; Yu, E.; Li, L.; Zhao, H. Web Geoprocessing Services for Disseminating and Analyzing SMAP Derived Soil Moisture Data Products. Earth Space Sci. Open Arch. ESSOAr 2020. [Google Scholar] [CrossRef]
- Bastiaanssen, W.G.; Menenti, M.; Feddes, R.; Holtslag, A. A remote sensing surface energy balance algorithm for land (SEBAL). 1. Formulation. J. Hydrol. 1998, 212, 198–212. [Google Scholar] [CrossRef]
- MacEachren, A.M.; Kraak, M.-J. Research challenges in geovisualization. Cartogr. Geogr. Inf. Sci. 2001, 28, 3–12. [Google Scholar] [CrossRef]
- Kilsedar, C.E.; Brovelli, M.A. Multidimensional Visualization and Processing of Big Open Urban Geospatial Data on the Web. ISPRS Int. J. Geo-Inf. 2020, 9, 434. [Google Scholar] [CrossRef]
- Salcedo-Gonzalez, M.; Suarez-Paez, J.; Esteve, M.; Gómez, J.A.; Palau, C.E. A novel method of spatiotemporal dynamic geo-visualization of criminal data, applied to command and control centers for public safety. ISPRS Int. J. Geo-Inf. 2020, 9, 160. [Google Scholar] [CrossRef] [Green Version]
- Guimarães, N.; Pádua, L.; Adão, T.; Hruška, J.; Peres, E.; Sousa, J.J. VisWebDrone: A Web Application for UAV Photogrammetry Based on Open-Source Software. ISPRS Int. J. Geo-Inf. 2020, 9, 679. [Google Scholar] [CrossRef]
- Neuville, R.; Pouliot, J.; Poux, F.; De Rudder, L.; Billen, R. A formalized 3D geovisualization illustrated to selectivity purpose of virtual 3D city model. ISPRS Int. J. Geo-Inf. 2018, 7, 194. [Google Scholar] [CrossRef] [Green Version]
- Balla, D.; Zichar, M.; Kiss, E.; Szabó, G.; Mester, T. Possibilities for Assessment and Geovisualization of Spatial and Temporal Water Quality Data Using a WebGIS Application. ISPRS Int. J. Geo-Inf. 2022, 11, 108. [Google Scholar] [CrossRef]
- Mazzei, M.; Quaroni, D. Development of a 3D WebGIS Application for the Visualization of Seismic Risk on Infrastructural Work. ISPRS Int. J. Geo-Inf. 2022, 11, 22. [Google Scholar] [CrossRef]
- Papadopoulou, E.-E.; Kasapakis, V.; Vasilakos, C.; Papakonstantinou, A.; Zouros, N.; Chroni, A.; Soulakellis, N. Geovisualization of the Excavation Process in the Lesvos Petrified Forest, Greece Using Augmented Reality. ISPRS Int. J. Geo-Inf. 2020, 9, 374. [Google Scholar] [CrossRef]
- Wang, W.; Cui, Y.; Luo, Y.; Li, Z.; Tan, J. Web-based decision support system for canal irrigation management. Comput. Electron. Agric. 2019, 161, 312–321. [Google Scholar] [CrossRef]
- Ramos, T.; Simionesei, L.; Jauch, E.; Almeida, C.; Neves, R. Modelling soil water and maize growth dynamics influenced by shallow groundwater conditions in the Sorraia Valley region, Portugal. Agric. Water Manag. 2017, 185, 27–42. [Google Scholar] [CrossRef]
- Li, H.; Li, J.; Shen, Y.; Zhang, X.; Lei, Y. Web-based irrigation decision support system with limited inputs for farmers. Agric. Water Manag. 2018, 210, 279–285. [Google Scholar] [CrossRef]
- Allen, R.G.; Pereira, L.S.; Smith, M.; Raes, D.; Wright, J.L. FAO-56 dual crop coefficient method for estimating evaporation from soil and application extensions. J. Irrig. Drain. Eng. 2005, 131, 2–13. [Google Scholar] [CrossRef] [Green Version]
- Machwitz, M.; Hass, E.; Junk, J.; Udelhoven, T.; Schlerf, M. CropGIS–A web application for the spatial and temporal visualization of past, present and future crop biomass development. Comput. Electron. Agric. 2019, 161, 185–193. [Google Scholar] [CrossRef]
- Zhang, C.; Di, L.; Yang, Z.; Lin, L.; Eugene, G.Y.; Yu, Z.; Rahman, M.S.; Zhao, H. Cloud environment for disseminating NASS cropland data layer. In Proceedings of the 2019 8th International Conference on Agro-Geoinformatics (Agro-Geoinformatics), Istanbul, Turkey, 16–19 July 2019; pp. 1–5. [Google Scholar]
- Yang, Z.; Yu, G.; Di, L.; Zhang, B.; Han, W.; Mueller, R. Web service-based vegetation condition monitoring system-vegscape. In Proceedings of the 2013 IEEE International Geoscience and Remote Sensing Symposium-IGARSS, Melbourne, Australia, 21–26 July 2013; pp. 3638–3641. [Google Scholar]
- Huang, J.; Buchanan, S.; Bishop, T.; Triantafilis, J. terra GIS-a web GIS for delivery of digital soil maps in cotton-growing areas of Australia. Soil Use Manag. 2017, 33, 568–582. [Google Scholar] [CrossRef]
- Piedelobo, L.; Ortega-Terol, D.; Del Pozo, S.; Hernández-López, D.; Ballesteros, R.; Moreno, M.A.; Molina, J.-L.; González-Aguilera, D. HidroMap: A new tool for irrigation monitoring and management using free satellite imagery. ISPRS Int. J. Geo-Inf. 2018, 7, 220. [Google Scholar] [CrossRef] [Green Version]
- Sun, Z.; Di, L.; Fang, H.; Guo, L.; Yu, E.; Tang, J.; Zhao, H.; Gaigalas, J.; Zhang, C.; Lin, L. Advanced cyberinfrastructure for agricultural drought monitoring. In Proceedings of the 2019 8th International Conference on Agro-Geoinformatics (Agro-Geoinformatics), Istanbul, Turkey, 16–19 July 2019; pp. 1–5. [Google Scholar]
- Sun, Z.; Di, L.; Zhang, C.; Fang, H.; Yu, E.; Lin, L.; Tang, J.; Tan, X.; Liu, Z.; Jiang, L. Building robust geospatial web services for agricultural information extraction and sharing. In Proceedings of the 2017 6th International Conference on Agro-Geoinformatics, Fairfax, VA, USA, 7–10 August 2017; pp. 1–4. [Google Scholar]
- Cosgrove, B.; Gochis, D.; Clark, E.P.; Cui, Z.; Dugger, A.L.; Feng, X.; Karsten, L.R.; Khan, S.; Kitzmiller, D.; Lee, H.S. An Overview of the National Weather Service National Water Model. In Proceedings of the AGU Fall Meeting Abstracts, San Francisco, CA, USA, 12–16 December 2016; p. H42B–05. [Google Scholar]
- NCEP; NWS; NOAA; DOC. NCEP Global Forecast System (GFS) Analyses and Forecasts; The National Center for Atmospheric Research: Boulder, CO, USA, 2007. [Google Scholar] [CrossRef]
- Baldocchi, D.; Falge, E.; Gu, L.; Olson, R.; Hollinger, D.; Running, S.; Anthoni, P.; Bernhofer, C.; Davis, K.; Evans, R. FLUXNET: A new tool to study the temporal and spatial variability of ecosystem-scale carbon dioxide, water vapor, and energy flux densities. Bull. Am. Meteorol. Soc. 2001, 82, 2415–2434. [Google Scholar] [CrossRef]
- Chan, S.K.; Bindlish, R.; O’Neill, P.E.; Njoku, E.; Jackson, T.; Colliander, A.; Chen, F.; Burgin, M.; Dunbar, S.; Piepmeier, J. Assessment of the SMAP passive soil moisture product. IEEE Trans. Geosci. Remote Sens. 2016, 54, 4994–5007. [Google Scholar] [CrossRef]
- Colliander, A.; Reichle, R.H.; Crow, W.T.; Cosh, M.H.; Chen, F.; Chan, S.; Das, N.N.; Bindlish, R.; Chaubell, J.; Kim, S. Validation of soil moisture data products from the NASA SMAP mission. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2021, 15, 364–392. [Google Scholar] [CrossRef]
- Reichle, R.; De Lannoy, G.; Koster, R.D.; Crow, W.T.; Kimball, J.S. and Liu, Q. SMAP L4 Global 3-hourly 9 km EASE-Grid Surface and Root Zone Soil Moisture Geophysical Data, Version 6; SMAP observatory: Boulder, CO, USA, 2021. [Google Scholar] [CrossRef]
- Colliander, A.; Yang, Z.; Mueller, R.; Sandborn, A.; Reichle, R.; Crow, W.; Entekhabi, D.; Yueh, S. Consistency between NASS surveyed soil moisture conditions and SMAP soil moisture observations. Water Resour. Res. 2019, 55, 7682–7693. [Google Scholar] [CrossRef]
- Walkinshaw, M.; O’Geen, A.T.; Beaudette, D.E. Soil Properties; California Soil Resource Lab: Davis, CA, USA, 2020. [Google Scholar]
- Liu, W.T.; Kogan, F.N. Monitoring regional drought using the Vegetation Condition Index. Int. J. Remote Sens. 1996, 17, 2761–2782. [Google Scholar] [CrossRef]
- Zhao, H.; Di, L.; Sun, Z.; Hao, P.; Yu, E.; Zhang, C.; Lin, L. Impacts of Soil Moisture on Crop Health: A Remote Sensing Perspective. In Proceedings of the 2021 9th International Conference on Agro-Geoinformatics (Agro-Geoinformatics), Shenzhen, China, 26–29 July 2021; pp. 1–4. [Google Scholar]
- Sun, Z.; Peng, C.; Deng, M.; Chen, A.; Yue, P.; Fang, H.; Di, L. Automation of customized and near-real-time vegetation condition index generation through cyberinfrastructure-based geoprocessing workflows. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2014, 7, 4512–4522. [Google Scholar] [CrossRef]
- Sun, Z.; Di, L. Intercomparison of Agricultural Drought Monitoring Products. In Proceedings of the 2021 9th International Conference on Agro-Geoinformatics (Agro-Geoinformatics), Shenzhen, China, 26–29 July 2021; pp. 1–5. [Google Scholar]
- Hao, P.; Di, L.; Guo, L. Estimation of crop evapotranspiration from MODIS data by combining random forest and trapezoidal models. Agric. Water Manag. 2022, 259, 107249. [Google Scholar] [CrossRef]
- Wilson, K.; Goldstein, A.; Falge, E.; Aubinet, M.; Baldocchi, D.; Berbigier, P.; Bernhofer, C.; Ceulemans, R.; Dolman, H.; Field, C. Energy balance closure at FLUXNET sites. Agric. For. Meteorol. 2002, 113, 223–243. [Google Scholar] [CrossRef] [Green Version]
- Rew, R.; Davis, G. NetCDF: An interface for scientific data access. IEEE Comput. Graph. Appl. 1990, 10, 76–82. [Google Scholar] [CrossRef]
- Blower, J.D.; Gemmell, A.; Griffiths, G.H.; Haines, K.; Santokhee, A.; Yang, X. A Web Map Service implementation for the visualization of multidimensional gridded environmental data. Environ. Model. Softw. 2013, 47, 218–224. [Google Scholar] [CrossRef] [Green Version]
- Eaton, B.; Gregory, J.; Drach, B.; Taylor, K.; Hankin, S.; Caron, J.; Signell, R.; Bentley, P.; Rappa, G.; Höck, H. NetCDF Climate and Forecast (CF) Metadata Conventions. 2003. Available online: http://cfconventions.org/Data/cf-conventions/cf-conventions-1.8/cf-conventions.pdf (accessed on 17 April 2022).
- Spurlock, J. Bootstrap: Responsive Web Development; O’Reilly Media, Inc.: Sevastopol, CA, USA, 2013. [Google Scholar]
- Grinberg, M. Flask Web Development: Developing Web Applications with Python; O’Reilly Media, Inc.: Sevastopol, CA, USA, 2018. [Google Scholar]
- Brock, F.V.; Crawford, K.C.; Elliott, R.L.; Cuperus, G.W.; Stadler, S.J.; Johnson, H.L.; Eilts, M.D. The Oklahoma Mesonet: A technical overview. J. Atmos. Ocean. Technol. 1995, 12, 5–19. [Google Scholar] [CrossRef]
- Robock, A.; Luo, L.; Wood, E.F.; Wen, F.; Mitchell, K.E.; Houser, P.R.; Schaake, J.C.; Lohmann, D.; Cosgrove, B.; Sheffield, J. Evaluation of the North American Land Data Assimilation System over the southern Great Plains during the warm season. J. Geophys. Res. Atmos. 2003, 108, 8846. [Google Scholar]
- Anapalli, S.S.; Fisher, D.K.; Reddy, K.N.; Rajan, N.; Pinnamaneni, S.R. Modeling evapotranspiration for irrigation water management in a humid climate. Agric. Water Manag. 2019, 225, 105731. [Google Scholar]
- Almendra-Martín, L.; Martínez-Fernández, J.; Piles, M.; González-Zamora, Á. Comparison of gap-filling techniques applied to the CCI soil moisture database in Southern Europe. Remote Sens. Environ. 2021, 258, 112377. [Google Scholar]
- Sun, Z.; Di, L.; Cvetojevic, S.; Yu, Z. GeoFairy2: A Cross-Institution Mobile Gateway to Location-Linked Data for In-Situ Decision Making. ISPRS Int. J. Geo-Inf. 2021, 10, 1. [Google Scholar] [CrossRef]
- Sun, Z.; Di, L.; Cash, B.; Gaigalas, J. Advanced cyberinfrastructure for intercomparison and validation of climate models. Environ. Model. Softw. 2020, 123, 104559. [Google Scholar]
Data Category | Data Product | Spatial Resolution | Temporal Resolution |
---|---|---|---|
HRLDAS Outputs | Soil Moisture | 500 m | Hourly |
Forecasted Soil Moisture | 500 m | Hourly | |
ET | 500 m | Hourly | |
ET | 500 m | Daily | |
Forecasted ET | 500 m | Hourly | |
SMAP | Soil Moisture | 9 km | 3 Hours |
Soil Moisture | 9 km | Daily | |
Soil Moisture | 9 km | Weekly | |
Categorical Soil Moisture Condition | 9 km | Weekly | |
Soil Properties | Calcium Carbonate | 800 m | / * |
Cation Exchange Capacity | 800 m | / | |
Electrical Conductivity | 800 m | / | |
Electrical Conductivity | 800 m | / | |
pH | 800 m | / | |
Sodium Adsorption Ratio | 800 m | / | |
Available Water Holding Capacity | 800 m | / | |
Permanent Wilting Point | 800 m | / | |
Bulk Density | 800 m | / | |
Percent Sand | 800 m | / | |
Percent Clay | 800 m | / | |
Percent Silt | 800 m | / | |
Vegetation Index | NDVI | 250 m | Daily |
NDVI | 250 m | Weekly | |
VCI | 250 m | Weekly | |
ML-Derived Products | SM | 1 km | Daily |
ET | 1 km | Daily | |
Weather Variable (NWM/GFS) | Air temperature | 500 m | Hourly |
Surface Downward Longwave Flux | 500 m | Hourly | |
Surface Downward Shortwave Flux | 500 m | Hourly | |
Surface Specific Humidity | 500 m | Hourly | |
Wind Speed U-Component | 500 m | Hourly | |
Wind Speed V-Component | 500 m | Hourly | |
Air Pressure | 500 m | Hourly | |
Precipitation Flux | 500 m | Hourly | |
Precipitation | 500 m | Daily |
Data Format | Server | Service | Front-End |
---|---|---|---|
GeoTiff | MapServer | OGC WPS/WMS/WCS, Flask APIs | OpenLayers, React, Bootstrap |
NetCDF | ncWMS |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhao, H.; Di, L.; Sun, Z. WaterSmart-GIS: A Web Application of a Data Assimilation Model to Support Irrigation Research and Decision Making. ISPRS Int. J. Geo-Inf. 2022, 11, 271. https://doi.org/10.3390/ijgi11050271
Zhao H, Di L, Sun Z. WaterSmart-GIS: A Web Application of a Data Assimilation Model to Support Irrigation Research and Decision Making. ISPRS International Journal of Geo-Information. 2022; 11(5):271. https://doi.org/10.3390/ijgi11050271
Chicago/Turabian StyleZhao, Haoteng, Liping Di, and Ziheng Sun. 2022. "WaterSmart-GIS: A Web Application of a Data Assimilation Model to Support Irrigation Research and Decision Making" ISPRS International Journal of Geo-Information 11, no. 5: 271. https://doi.org/10.3390/ijgi11050271