The Spatiotemporal Pattern and Driving Factors of Cyber Fraud Crime in China
<p>Spatial clusters of cyber fraud cases in China for (<b>a</b>) 2014 and (<b>b</b>) 2018. See <a href="#app1-ijgi-10-00802" class="html-app">Figure S2 (Supplementary Materials)</a> for other years.</p> "> Figure 2
<p>Spatial flow of cyber fraud offenders in China.</p> "> Figure 3
<p>(<b>a</b>–<b>f</b>) Relationships between cyber fraud cases and environmental factors. The x-axis represents the distribution of data points for each variable. The y-axis represents the partial effect of each variable. The grey shaded areas indicate the 95% confidence intervals.</p> ">
Abstract
:1. Introduction
2. Materials and Methods
2.1. Cyber Fraud Cases
2.2. Environmental Factors
2.3. Moran’s I
2.4. Generalized Additive Model
3. Results
3.1. Spatiotemporal Distribution of Cyber Fraud
3.2. Spatial Clustering of Cyber Fraud
3.3. Spatial Flow of Cyber Fraudsters
3.4. Relationships between Cyber Fraud and Environmental Factors
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Gao, C.; Guo, Q.; Jiang, D.; Wang, Z.; Fang, C.; Hao, M. Theoretical basis and technical methods of cyberspace geography. J. Geogr. Sci. 2019, 29, 1949–1964. [Google Scholar] [CrossRef] [Green Version]
- McAfee. The Hidden Costs of Cybercrime. 2020. Available online: https://www.mcafee.com/enterprise/en-us/assets/reports/rp-hidden-costs-of-cybercrime.pdf (accessed on 25 July 2021).
- Warf, B. The SAGE Encyclopedia of the Internet; Sage: Thousand Oaks, CA, USA, 2018. [Google Scholar]
- Buil-Gil, D.; Miró-Llinares, F.; Moneva, A.; Kemp, S.; Díaz-Castaño, N. Cybercrime and shifts in opportunities during COVID-19: A preliminary analysis in the UK. Eur. Soc. 2021, 23, S47–S59. [Google Scholar] [CrossRef]
- Naidoo, R. A multi-level influence model of COVID-19 themed cybercrime. Eur. J. Inf. Syst. 2020, 29, 306–321. [Google Scholar] [CrossRef]
- CNNIC. The 47th China Statistical Report on Internet Development. 2021. Available online: http://www.cnnic.net.cn/hlwfzyj/hlwxzbg/hlwtjbg/202102/t20210203_71361.htm (accessed on 25 July 2021).
- China tMoPSotPsRo. China’s Public Security Authorities Cracked 256,000 Cases of Telecom and Internet Fraud. 2021. Available online: https://www.mps.gov.cn/n7944517/n7944597/n7945893/n7956607/c7633791/content.html (accessed on 7 November 2021).
- Cohen, L.E.; Felson, M. Social change and crime rate trends: A routine activity approach. Am. Sociol. Rev. 1979, 44, 588–608. [Google Scholar] [CrossRef]
- Messner, S.F.; Tardiff, K. The social ecology of urban homicide: An application of the “routine activities” approach. Criminology 1985, 23, 241–267. [Google Scholar] [CrossRef]
- Mannon, J.M. Domestic and intimate violence: An application of routine activities theory. Aggress. Violent Behav. 1997, 2, 9–24. [Google Scholar] [CrossRef]
- Smith, W.R.; Frazee, S.G.; Davison, E.L. Furthering the integration of routine activity and social disorganization theories: Small units of analysis and the study of street robbery as a diffusion process. Criminology 2000, 38, 489–524. [Google Scholar] [CrossRef]
- Stalans, L.J.; Donner, C.M. Explaining why cybercrime occurs: Criminological and psychological theories. In Cyber Criminology; Springer: Berlin/Heidelberg, Germany, 2018; pp. 25–45. [Google Scholar]
- Mandelcorn, S.M. An Explanatory Model of Motivation for Cyber-Attacks Drawn from Criminological Theories; University of Maryland: College Park, MD, USA, 2013. [Google Scholar]
- Higgins, G.E. Value and choice: Examining their roles in digital piracy. In Cyber Criminology; Routledge: Boca Raton, FL, USA, 2011; pp. 177–190. [Google Scholar]
- Reyns, B.W.; Henson, B.; Fisher, B.S. Being pursued online: Applying cyberlifestyle–routine activities theory to cyberstalking victimization. Crim. Justice Behav. 2011, 38, 1149–1169. [Google Scholar] [CrossRef]
- Grabosky, P.N. Virtual criminality: Old wine in new bottles? Soc. Leg. Stud. 2001, 10, 243–249. [Google Scholar] [CrossRef]
- Reyns, B.W. Routine activity theory and cybercrime: A theoretical appraisal and literature review. Technocrime Criminol. Theory 2017, 35–54. [Google Scholar] [CrossRef] [Green Version]
- Yar, M. The Novelty of ‘Cybercrime’ An Assessment in Light of Routine Activity Theory. Eur. J. Criminol. 2005, 2, 407–427. [Google Scholar] [CrossRef]
- Reyns, B.W.; Henson, B.; Fisher, B.S. Guardians of the cyber galaxy: An empirical and theoretical analysis of the guardianship concept from routine activity theory as it applies to online forms of victimization. J. Contemp. Crim. Justice 2016, 32, 148–168. [Google Scholar] [CrossRef]
- Ngo, F.T.; Paternoster, R. Cybercrime victimization: An examination of individual and situational level factors. Int. J. Cyber Criminol. 2011, 5, 773. [Google Scholar]
- Navarro, J.N.; Jasinski, J.L. Going cyber: Using routine activities theory to predict cyberbullying experiences. Sociol. Spectr. 2012, 32, 81–94. [Google Scholar] [CrossRef]
- Leukfeldt, E.R.; Yar, M. Applying routine activity theory to cybercrime: A theoretical and empirical analysis. Deviant Behav. 2016, 37, 263–280. [Google Scholar] [CrossRef] [Green Version]
- Leukfeldt, E.R. Phishing for suitable targets in the Netherlands: Routine activity theory and phishing victimization. Cyberpsychol. Behav. Soc. Netw. 2014, 17, 551–555. [Google Scholar] [CrossRef]
- Hutchings, A.; Hayes, H. Routine activity theory and phishing victimisation: Who gets caught in the ‘net’? Curr. Issues Crim. Justice 2009, 20, 433–452. [Google Scholar] [CrossRef] [Green Version]
- Holt, T.J.; Bossler, A.M. Examining the applicability of lifestyle-routine activities theory for cybercrime victimization. Deviant Behav. 2008, 30, 1–25. [Google Scholar] [CrossRef]
- Reyns, B.W. Online routines and identity theft victimization: Further expanding routine activity theory beyond direct-contact offenses. J. Res. Crime Delinq. 2013, 50, 216–238. [Google Scholar] [CrossRef]
- Pratt, T.C.; Holtfreter, K.; Reisig, M.D. Routine online activity and internet fraud targeting: Extending the generality of routine activity theory. J. Res. Crime Delinq. 2010, 47, 267–296. [Google Scholar] [CrossRef]
- Park, J.; Cho, D.; Lee, J.K.; Lee, B. The economics of cybercrime: The role of broadband and socioeconomic status. ACM Trans. Manag. Inf. Syst. (TMIS) 2019, 10, 1–23. [Google Scholar] [CrossRef]
- Kigerl, A. Routine activity theory and the determinants of high cybercrime countries. Soc. Sci. Comput. Rev. 2012, 30, 470–486. [Google Scholar] [CrossRef]
- Song, H.; Lynch, M.J.; Cochran, J.K. A macro-social exploratory analysis of the rate of interstate cyber-victimization. Am. J. Crim. Justice 2016, 41, 583–601. [Google Scholar] [CrossRef]
- Akdemir, N.; Yenal, S. Card-not-present fraud victimization: A routine activities approach to understand the risk factors. Güvenlik Bilimleri Derg. 2020, 9, 243–268. [Google Scholar] [CrossRef]
- Mesch, G.S.; Dodel, M. Low self-control, information disclosure, and the risk of online fraud. Am. Behav. Sci. 2018, 62, 1356–1371. [Google Scholar] [CrossRef]
- Bolimos, I.A.; Choo, K.-K.R. Online fraud offending within an Australian jurisdiction. J. Financ. Crime 2017, 24, 277–308. [Google Scholar] [CrossRef]
- Kerr, J.; Owen, R.; Nicholls, C.M.; Button, M. Research on Sentencing Online Fraud Offences; Sentencing Council: London, UK, 2013. [Google Scholar]
- Bivand, R.; Müller, W.G.; Reder, M. Power calculations for global and local Moran’s I. Comput. Stat. Data Anal. 2009, 53, 2859–2872. [Google Scholar] [CrossRef]
- Cliff, A.D.; Ord, J.K. Spatial Processes: Models & Applications; Taylor & Francis: Oxfordshire, UK, 1981. [Google Scholar]
- Anselin, L. Local indicators of spatial association—LISA. Geogr. Anal. 1995, 27, 93–115. [Google Scholar] [CrossRef]
- Hastie, T.; Tibshirani, R. Generalized Additive Models; Chapman and Hall: London, UK, 1990. [Google Scholar]
- Leathwick, J.; Elith, J.; Hastie, T. Comparative performance of generalized additive models and multivariate adaptive regression splines for statistical modelling of species distributions. Ecol. Model. 2006, 199, 188–196. [Google Scholar] [CrossRef]
- Zuur, A.F.; Ieno, E.N.; Walker, N.J.; Saveliev, A.A.; Smith, G.M. Mixed Effects Models and Extensions in Ecology with R; Springer: Berlin/Heidelberg, Germany, 2009; Volume 574. [Google Scholar]
- Sagarese, S.R.; Frisk, M.G.; Cerrato, R.M.; Sosebee, K.A.; Musick, J.A.; Rago, P.J. Application of generalized additive models to examine ontogenetic and seasonal distributions of spiny dogfish (Squalus acanthias) in the Northeast (US) shelf large marine ecosystem. Can. J. Fish. Aquat. Sci. 2014, 71, 847–877. [Google Scholar] [CrossRef]
- Wood, S.; Wood, M.S. Package ‘mgcv’. R Package Version 2015, 1, 29. [Google Scholar]
- R Core Team. R: A Language and Environment for Statistical Computing; R Core Team: Vienna, Austria, 2013. [Google Scholar]
- Chen, M.; Gong, Y.; Li, Y.; Lu, D.; Zhang, H. Population distribution and urbanization on both sides of the Hu Huanyong Line: Answering the Premier’s question. J. Geogr. Sci. 2016, 26, 1593–1610. [Google Scholar] [CrossRef]
- News, X. China Punishes 146,000 People for Telecom Fraud in Three Years. 2018. Available online: http://english.www.gov.cn/state_council/ministries/2018/11/29/content_281476411837636.htm (accessed on 8 November 2021).
- News, X. China Intensifies Crack Down on Telecom, Internet Fraud. 2017. Available online: http://english.www.gov.cn/state_council/ministries/2017/05/17/content_281475658092520.htm (accessed on 7 November 2021).
- CAICT. Telecom Network Fraud Governance Research Report under the New Situation. 2020. Available online: http://www.caict.ac.cn/kxyj/qwfb/ztbg/202012/t20201218_366375.htm (accessed on 25 July 2021).
Year | Moran’s I | Expected Index | Variance | z-Score | p-Value |
---|---|---|---|---|---|
2014 | 0.065 | −0.0027 | 0.000052 | 9.352 | 0.000 |
2015 | 0.078 | −0.0027 | 0.000055 | 10.875 | 0.000 |
2016 | 0.136 | −0.0027 | 0.000058 | 18.218 | 0.000 |
2017 | 0.145 | −0.0027 | 0.000057 | 19.464 | 0.000 |
2018 | 0.121 | −0.0027 | 0.000058 | 16.215 | 0.000 |
Parametric Coefficients: | ||||
Estimate | Standard Error | z Value | Pr(>|z|) | |
(Intercept) | −14.41 | 3.053 | −4.721 | 2.35 × 106 *** |
Approximate Significance of Smooth Terms: | ||||
edf | Chi.sq | p-Value | ||
s(pop_nonagricultural) | 7.560 | 51.58 | <2 × 1016 *** | |
s(unemployment) | 7.782 | 39.20 | 1.85 × 105 *** | |
s(GDP_tertiary) | 6.827 | 44.73 | <2 × 1016 *** | |
s(pop_higher_education) | 5.805 | 39.69 | <2 × 1016 *** | |
s(pop_internet) | 8.679 | 50.18 | <2 × 1016 *** | |
s(length_cable) | 4.876 | 16.83 | 0.00625 ** |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, S.; Gao, C.; Jiang, D.; Hao, M.; Ding, F.; Ma, T.; Zhang, S.; Li, S. The Spatiotemporal Pattern and Driving Factors of Cyber Fraud Crime in China. ISPRS Int. J. Geo-Inf. 2021, 10, 802. https://doi.org/10.3390/ijgi10120802
Chen S, Gao C, Jiang D, Hao M, Ding F, Ma T, Zhang S, Li S. The Spatiotemporal Pattern and Driving Factors of Cyber Fraud Crime in China. ISPRS International Journal of Geo-Information. 2021; 10(12):802. https://doi.org/10.3390/ijgi10120802
Chicago/Turabian StyleChen, Shuai, Chundong Gao, Dong Jiang, Mengmeng Hao, Fangyu Ding, Tian Ma, Shize Zhang, and Shunde Li. 2021. "The Spatiotemporal Pattern and Driving Factors of Cyber Fraud Crime in China" ISPRS International Journal of Geo-Information 10, no. 12: 802. https://doi.org/10.3390/ijgi10120802
APA StyleChen, S., Gao, C., Jiang, D., Hao, M., Ding, F., Ma, T., Zhang, S., & Li, S. (2021). The Spatiotemporal Pattern and Driving Factors of Cyber Fraud Crime in China. ISPRS International Journal of Geo-Information, 10(12), 802. https://doi.org/10.3390/ijgi10120802