A Blockchain Copyright Protection Model Based on Vector Map Unique Identification
<p>Copyright registration process in the BCPM-UI model: feature identifier construction, watermark embedding, and blockchain registration.</p> "> Figure 2
<p>Antchain combined with IPFS for vector map copyright protection.</p> "> Figure 3
<p>Schematic diagram of angle feature parameter acquisition.</p> "> Figure 4
<p>Schematic of nearest neighbor non-intersecting heterogeneous feature query based on Hausdorff distance.</p> "> Figure 5
<p>Calculation diagram of distance ratio.</p> "> Figure 6
<p>Quantization mechanism watermark embedding diagram.</p> "> Figure 7
<p>The dataset used in the experiment: (<b>a</b>) Shanghai dataset; (<b>b</b>) Beijing dataset; (<b>c</b>) Chengdu dataset; (<b>d</b>) Jiangsu dataset; (<b>e</b>) Hangzhou dataset; (<b>f</b>) Nanjing dataset.</p> "> Figure 8
<p>Watermark images used in the experiment.</p> "> Figure 9
<p>The amount of memory space occupied in the blockchain.</p> "> Figure 10
<p>Watermarked vector map: (<b>a</b>) Shanghai dataset; (<b>b</b>) Beijing dataset; (<b>c</b>) Chengdu dataset; (<b>d</b>) Jiangsu dataset; (<b>e</b>) Hangzhou dataset; (<b>f</b>) Nanjing dataset.</p> "> Figure 11
<p>Robustness experiment results: (<b>a</b>) rotation attack; (<b>b</b>) scaling attack; (<b>c</b>) translation attack; (<b>d</b>) object-add attack; (<b>e</b>) object-delete attack; (<b>f</b>) layer-add attack; (<b>g</b>) layer-delete attack; (<b>h</b>) cropping attack; (<b>i</b>) merge attack.</p> "> Figure 11 Cont.
<p>Robustness experiment results: (<b>a</b>) rotation attack; (<b>b</b>) scaling attack; (<b>c</b>) translation attack; (<b>d</b>) object-add attack; (<b>e</b>) object-delete attack; (<b>f</b>) layer-add attack; (<b>g</b>) layer-delete attack; (<b>h</b>) cropping attack; (<b>i</b>) merge attack.</p> "> Figure 12
<p>Experimental results of uniqueness between datasets with different unique identification lengths: (<b>a</b>) Shanghai dataset; (<b>b</b>) Beijing dataset; (<b>c</b>) Chengdu dataset; (<b>d</b>) Jiangsu dataset; (<b>e</b>) Hangzhou dataset; (<b>f</b>) Nanjing dataset.</p> "> Figure 13
<p>Experimental results of robustness with different unique identification length: (<b>a</b>) cropping attack; (<b>b</b>) layer-delete attack; (<b>c</b>) object-delete attack.</p> "> Figure 14
<p>Vector map dataset with small data volume: (<b>a</b>) Chongqing dataset; (<b>b</b>) Xi’an dataset.</p> "> Figure 15
<p>Experimental results of robustness under vector maps with small data volume: (<b>a</b>) object-delete attack; (<b>b</b>) cropping attack.</p> ">
Abstract
:1. Introduction
2. Related Work
2.1. Research on Copyright Protection Technology for Vector Maps Combining Blockchain and Digital Watermark
2.2. Research on Methods for Constructing Vector Map Unique Identifiers
3. Basic Idea and Preliminaries
3.1. Basic Idea
3.2. AntChain Combined with IPFS for Vector Map Copyright Protection
3.3. Vector Map Unique Identification Based on Geometric and Topological Relationships
4. Blockchain Copyright Protection Model Based on Vector Map Unique Identification
4.1. Copyright Registration Process
4.1.1. Watermark Embedding
4.1.2. Unique Identification Construction
4.2. Copyright Verification Process
4.2.1. Unique Identification Matching
4.2.2. Watermark Extraction
5. Experiment Results and Analysis
5.1. Experimental Dataset
5.2. Evaluation Index
5.2.1. Evaluation Index for Vector Map Imperceptibility
5.2.2. Evaluation Index for Watermark Correlation
5.2.3. Evaluation Index for Unique Identification Similarity
5.3. Experiment
5.3.1. Storage Space of Vector Maps
5.3.2. Uniqueness Experiment of Unique Identification
5.3.3. Imperceptibility Experiment of Vector Maps
5.3.4. Robustness Experiment
5.3.5. Computational Complexity Analysis
6. Discussion
6.1. Impact of Character Length on the Uniqueness and Robustness of Unique Identification
6.2. Applicability of the BCPM-UI Model to Small-Scale Vector Maps
7. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Luo, L.; Hou, X.; Cai, W.; Bin, G. Incremental route inference from low-sampling GPS data: An opportunistic approach to online map matching. Inf. Sci. 2020, 512, 1407–1423. [Google Scholar] [CrossRef]
- Zhou, Q.; Ren, N.; Zhu, C.; Zhu, A. Blind digital watermarking algorithm against projection transformation for vector geographic data. ISPRS Int. J. Geo-Inf. 2020, 9, 692. [Google Scholar] [CrossRef]
- Ren, N.; Zhou, Q.; Zhu, C.; Zhu, A.; Chen, W. A lossless watermarking algorithm based on line pairs for vector data. IEEE Access 2020, 8, 156727–156739. [Google Scholar] [CrossRef]
- Ren, N.; Tong, D.; Cui, H.; Zhu, C.; Zhou, Q. Congruence and geometric feature-based commutative encryption-watermarking method for vector maps. Comput. Geosci. 2022, 159, 105009. [Google Scholar] [CrossRef]
- Guo, S.; Zhu, S.; Zhu, C.; Ren, N.; Tang, W.; Xu, D. A robust and lossless commutative encryption and watermarking algorithm for vector geographic data. J. Inf. Secur. Appl. 2023, 75, 103503. [Google Scholar] [CrossRef]
- Xi, X.; Zhang, X.; Liang, W.; Xin, Q.; Zhang, P. Dual zero-watermarking scheme for two-dimensional vector map based on delaunay triangle mesh and singular value decomposition. Appl. Sci. 2019, 9, 642. [Google Scholar] [CrossRef]
- Qiu, Y.; Sun, J.; Zheng, J. A Self-Error-Correction-Based Reversible Watermarking Scheme for Vector Maps. ISPRS Int. J. Geo-Inf. 2023, 12, 84. [Google Scholar] [CrossRef]
- Lin, Z.; Peng, F.; Long, M. A Low-Distortion Reversible Watermarking for 2D Engineering Graphics Based on Region Nesting. IEEE Trans. Inf. Forensics Secur. 2018, 13, 2372–2382. [Google Scholar] [CrossRef]
- Meng, Z.; Morizumi, T.; Miyata, S.; Kinoshita, H. Design Scheme of Copyright Management System Based on Digital Watermarking and Blockchain. In Proceedings of the IEEE 42nd Annual Computer Software and Applications Conference (COMPSAC), Tokyo, Japan, 23–27 July 2018; pp. 359–364. [Google Scholar]
- Ma, Z.; Jiang, M.; Gao, H.; Wang, Z. Blockchain for digital rights management. Future Gener. Comput. Syst. 2018, 89, 746–764. [Google Scholar] [CrossRef]
- Xu, D.; Ren, N.; Zhu, C. Integrity Authentication Based on Blockchain and Perceptual Hash for Remote-Sensing Imagery. Remote Sens. 2023, 15, 4860. [Google Scholar] [CrossRef]
- Ren, N.; Zhao, Y.; Zhu, C.; Zhou, Q.; Xu, D. Copyright Protection Based on Zero Watermarking and Blockchain for Vector Maps. ISPRS Int. J. Geo-Inf. 2021, 10, 294. [Google Scholar] [CrossRef]
- Zhou, C.; Lu, H.; Xiang, Y.; Wu, J.; Wang, F. Geohashtile: Vector geographic data display method based on geohash. Int. J. Geo-Inf. 2020, 9, 418. [Google Scholar] [CrossRef]
- Lee, S.; Kwon, S.; Kwon, K. Robust hashing of vector data using generalized curvatures of polyline. IEICE Trans. Inf. Syst. 2013, 96, 1105–1114. [Google Scholar] [CrossRef]
- Lee, S.; Hwang, W.; Kwon, K. Polyline curvatures based robust vector data hashing. Multimed. Tools Appl. 2014, 73, 1913–1942. [Google Scholar] [CrossRef]
- Wang, B.; Shi, J.; Wang, W.; Zhao, P. Image Copyright Protection Based on Blockchain and Zero-Watermark. IEEE Trans. Netw. Sci. Eng. 2022, 9, 2188–2199. [Google Scholar] [CrossRef]
- Yu, F.; Peng, J.; Li, X.; Li, C.; Qu, B. A Copyright-Preserving and Fair Image Trading Scheme Based on Blockchain. Tsinghua Sci. Technol. 2023, 28, 849–861. [Google Scholar] [CrossRef]
- Lizama, M.G.; Huesa, J.; Claudio, B.M. Use of Blockchain technology for the exchange and secure transmission of medical images in the cloud: Systematic Review with Bibliometric Analysis. ASEAN J. Sci. Eng. 2024, 4, 7. [Google Scholar] [CrossRef]
- Xu, D.; Ren, N.; Zhu, C. High-Resolution Remote Sensing Image Zero-Watermarking Algorithm Based on Blockchain and SDAE. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2024, 17, 323–339. [Google Scholar] [CrossRef]
- Zhu, C.; Xu, D.; Ren, N.; Cui, H.; Zhao, Y. Model and implementation of geographic data transaction certificate and copyright protection based on blockchain and digital watermarking. Acta Geod. Cartogr. Sin. 2021, 50, 1694–1704. [Google Scholar]
- Liu, H.; Yan, F.; Tian, H. A Vector Map of Carbon Emission Based on Point-Line-Area Carbon Emission Classified Allocation Method. Sustainability 2020, 12, 10058. [Google Scholar] [CrossRef]
- Da, Q.; Sun, J.; Zhang, L.; Kou, L.; Wang, W.; Han, Q.; Zhou, R. A novel hybrid information security scheme for 2D vector map. Mob. Netw. Appl. 2018, 23, 734–742. [Google Scholar] [CrossRef]
- Wang, S.; Zhang, L.; Li, Y.; Qin, R.; Zhang, Q. A zero-watermarking algorithm of vector geographic data using singular value decomposition. Sci. Surv. Mapp. 2022, 47, 196–203. [Google Scholar]
- Li, W.; Yan, H.; Wang, Z.; Zhang, L.; Lu, X. A zero-watermarking algorithm for vector geo-spatial data based on logistic chaotic mapping and DFT. Sci. Surv. Mapp. 2017, 42, 143–148. [Google Scholar]
- Xi, X.; Hua, Y.; Chen, Y.; Zhu, Q. Zero-Watermarking for Vector Maps Combining Spatial and Frequency Domain Based on Constrained Delaunay Triangulation Network and Discrete Fourier Transform. Entropy 2023, 25, 682. [Google Scholar] [CrossRef] [PubMed]
- Wang, S.; Zhang, L.; Zhang, Q.; Li, Y. A zero-watermarking algorithm for vector geographic data based on feature invariants. Earth Sci. Inform. 2023, 16, 1073–1089. [Google Scholar] [CrossRef]
- Peng, F.; Jiang, W.; Qi, Y.; Lin, Z.; Long, M. Separable Robust Reversible Watermarking in Encrypted 2D Vector Graphics. IEEE Trans. Circuits Syst. Video Technol. 2020, 30, 2391–2405. [Google Scholar] [CrossRef]
- Peng, Y.; Yue, M. A zero-watermarking scheme for vector map based on feature vertex distance ratio. J. Electr. Comput. Eng. 2015, 2015, 421529. [Google Scholar] [CrossRef]
- Lyu, W.; Zhang, L. A zero-watermark algorithm for vector data based on distribution center. Eng. Surv. Mapp. 2017, 26, 50–53+61. [Google Scholar]
- Xi, X.; Zhang, X.; Sun, Y.; Jiang, X.; Xin, Q. Topology-Preserving and Geometric Feature-Correction Watermarking of Vector Maps. IEEE Access 2020, 8, 33428–33441. [Google Scholar] [CrossRef]
- Ren, N.; Guo, S.; Zhu, C.; Hu, Y. A zero-watermarking scheme based on spatial topological relations for vector dataset. Expert Syst. Appl. 2023, 226, 120217. [Google Scholar] [CrossRef]
- Li, A.; Zhu, A. Copyright authentication of digital vector maps based on spatial autocorrelation indices. Earth Sci. Inform. 2019, 12, 629–639. [Google Scholar] [CrossRef]
- Khan, P.; Byun, Y. A blockchain-based secure image encryption scheme for the industrial Internet of Things. Entropy 2020, 22, 175. [Google Scholar] [CrossRef] [PubMed]
- Wang, S.; Ouyang, L.; Yuan, Y.; Ni, X.; Han, X.; Wang, F.Y. Blockchain-enabled smart contracts: Architecture, applications, and future trends. IEEE Trans. Syst. Man Cybern. Syst. 2019, 49, 2266–2277. [Google Scholar] [CrossRef]
- Xu, Y.; Zhang, C.; Zeng, Q.; Wang, G.; Ren, J.; Zhang, Y. Blockchain-Enabled Accountability Mechanism Against Information Leakage in Vertical Industry Services. IEEE Trans. Netw. Sci. Eng. 2021, 8, 1202–1213. [Google Scholar] [CrossRef]
- Abrar, A.; Abdul, W.; Ghouzali, S. Secure Image Authentication Using Watermarking and Blockchain. Intell. Autom. Soft Comput. 2021, 28, 577–591. [Google Scholar] [CrossRef]
- Wang, B.; Shi, J.; Wang, W.; Zhao, P. A Blockchain-based System for Secure Image Protection Using Zero-watermark. In Proceedings of the IEEE 17th International Conference on Mobile Ad Hoc and Sensor Systems, Delhi, India, 10–13 December 2020; pp. 62–70. [Google Scholar]
- Zou, W.; Long, R.; Zhang, Y.; Liao, M.; Zhou, Z.; Tian, S. Dual geometric perception for cross-domain road segmentation. Displays 2023, 76, 102332. [Google Scholar] [CrossRef]
- Deng, M.; Li, C.; Liu, W. Describing spatial relations between area objects via combining topology with metrization. Acta Geod. Cartogr. Sin. 2002, 31, 164–169. [Google Scholar]
- Chen, J.; Li, C.; Li, Z.; Gold, C. A Voronoi-based 9-intersection model for spatial relations. Int. J. Geogr. Inf. Sci. 2001, 15, 201–220. [Google Scholar] [CrossRef]
- Abubahia, A.; Cocea, M. Evaluating the topological quality of watermarked vector maps. Appl. Soft Comput. 2018, 71, 849–860. [Google Scholar] [CrossRef]
- Ren, N.; Wang, H.; Chen, Z.; Zhu, C.; Gu, J. A multilevel digital watermarking protocol for vector geographic data based on blockchain. J. Geovisualization Spat. Anal. 2023, 7, 31. [Google Scholar] [CrossRef]
- Lu, C.; Hsu, C. Near-optimal watermark estimation and its countermeasure: Antidisclosure watermark for multiple watermark embedding. IEEE Trans. Circuits Syst. Video Technol. 2007, 17, 454–467. [Google Scholar] [CrossRef]
- Nam, S.; Mun, S.; Ahn, W.; Kim, D.; Yu, I.; Kim, W.; Lee, H. NSCT-based robust and perceptual watermarking for DIBR 3D images. IEEE Access 2020, 8, 93760–93781. [Google Scholar] [CrossRef]
- Zhou, Q.; Zhu, C.; Ren, N.; Chen, W.; Gong, W. Zero watermarking algorithm for vector geographic data based on the number of neighboring features. Symmetry 2021, 13, 208. [Google Scholar] [CrossRef]
- Wang, N.; Zhao, X.; Xie, C. RST invariant reversible watermarking for 2D vector map. Int. J. Multimed. Ubiquitous Eng. 2016, 11, 265–276. [Google Scholar] [CrossRef]
- Li, Y.; Zhang, L.; Wang, X.; Zhang, X.; Zhang, Q. A Novel Invariant Based Commutative Encryption and Watermarking Algorithm for Vector Maps. ISPRS Int. J. Geo-Inf. 2021, 10, 718. [Google Scholar] [CrossRef]
- Wang, Y.; Yang, C.; Ding, K. Multiple watermarking algorithms for vector geographic data based on multiple quantization index modulation. Appl. Sci. 2023, 13, 12390. [Google Scholar] [CrossRef]
- Zhou, Q.; Ren, N.; Zhu, C.; Tong, D. Storage feature-based watermarking algorithm with coordinate values preservation for vector line data. KSII Trans. Internet Inf. Syst. (TIIS) 2018, 12, 3475–3496. [Google Scholar]
- Tong, D.; Zhu, C.; Ren, N. Watermarking algorithm applying to small amount of vector geographical data. Acta Geod. Cartogr. Sin. 2018, 47, 1518. [Google Scholar]
Name of Vector Map | Quantity of Map Layers | Quantity of Features | Coordinate System | ||
---|---|---|---|---|---|
Point Layer | Line Layer | Polygon Layer | |||
Shanghai dataset | 1 | 1 | 1 | 6214 | WGS 1984 Albers |
Beijing dataset | 2 | 1 | 1 | 16,343 | GCS Beijing 1954 |
Chengdu dataset | 3 | 1 | 1 | 18,769 | WGS 1984 Albers |
Jiangsu dataset | 2 | 2 | 1 | 22,168 | GCS WGS 1984 |
Hangzhou dataset | 9 | 4 | 2 | 64,810 | WGS 1984 Albers |
Nanjing dataset | 10 | 6 | 3 | 53,660 | WGS 1984 Albers |
Experiments Name | Attack Type | Vector Map Data |
---|---|---|
Vector map storage experiment | - | Chengdu dataset, Jiangsu dataset, Hangzhou dataset, Nanjing dataset |
Uniqueness experiment | - | Shanghai dataset, Beijing dataset, Chengdu dataset, Jiangsu dataset, Hangzhou dataset |
Imperceptibility experiment | - | All datasets |
Geometric attacks | Rotation | Shanghai dataset, Jiangsu dataset |
Scaling | ||
Translation | ||
Cropping and merge attacks | Cropping | Jiangsu dataset |
Merging | ||
Object attacks | Object addition | |
Object deletion | ||
Layer attacks | Layer addition | |
Layer deletion | ||
Format conversion attack | Dwg | Chengdu dataset, Nanjing dataset, Shanghai dataset |
E00 | ||
Gdb | ||
Reordering attack | Reordering | Nanjing dataset |
Dataset | Shanghai | Beijing | Chengdu | Jiangsu | Hangzhou | Nanjing |
---|---|---|---|---|---|---|
Shanghai | 0.00 | 0.42 | 0.39 | 0.42 | 0.38 | 0.39 |
Beijing | 0.42 | 0.00 | 0.36 | 0.44 | 0.38 | 0.37 |
Chengdu | 0.39 | 0.36 | 0.00 | 0.50 | 0.34 | 0.45 |
Jiangsu | 0.42 | 0.44 | 0.50 | 0.00 | 0.50 | 0.42 |
Hangzhou | 0.38 | 0.38 | 0.34 | 0.50 | 0.00 | 0.41 |
Nanjing | 0.39 | 0.37 | 0.45 | 0.42 | 0.41 | 0.00 |
Watermarked Vector Map | Data Accuracy | Error Index | ||
---|---|---|---|---|
Maximum Distance | Mean Distance | Standard Deviation | ||
Shanghai dataset | 0.1 m | 3.20 × 10−4 m | 1.61 × 10−5 m | 6.54 × 10−6 m |
Beijing dataset | 0.1 m | 4.00 × 10−4 m | 2.94 × 10−5 m | 2.28 × 10−5 m |
Chengdu dataset | 0.1 m | 3.70 × 10−4 m | 2.03 × 10−5 m | 1.42 × 10−5 m |
Jiangsu dataset | 0.1 m | 2.75 × 10−4 m | 1.35 × 10−5 m | 5.80 × 10−6 m |
Hangzhou dataset | 0.1 m | 2.85 × 10−4 m | 1.69 × 10−5 m | 7.34 × 10−6 m |
Nanjing dataset | 0.1 m | 4.02 × 10−4 m | 2.67 × 10−5 m | 2.02 × 10−5 m |
Dataset | Degree of Attack | BER | NC | Unique Identification Match Result |
---|---|---|---|---|
Add 50% | 0.09 | 0.93 | Match | |
Delete 50% | 0.09 | 0.90 | Match | |
Add 5 layers | 0.10 | 0.96 | Match | |
Delete 5 layers | 0.10 | 0.88 | Match | |
Cropping 50% | 0.06 | 0.91 | Match | |
Merge 50% | 0.05 | 0.91 | Match |
Data Format | NC | BER | ||||
---|---|---|---|---|---|---|
Chengdu Dataset | Nanjing Dataset | Shanghai Dataset | Chengdu Dataset | Nanjing Dataset | Shanghai Dataset | |
dwg | 1.00 | 1.00 | 1.00 | 0.00 | 0.00 | 0.00 |
e00 | 1.00 | 1.00 | 1.00 | 0.00 | 0.00 | 0.00 |
gdb | 1.00 | 1.00 | 1.00 | 0.00 | 0.00 | 0.00 |
Name of Vector Map | Quantity of Map Layers | Quantity of Features | Registration Time (s) | Verification Time (s) | ||
---|---|---|---|---|---|---|
Point Layer | Line Layer | Polygon Layer | ||||
Shanghai dataset | 1 | 1 | 1 | 6214 | 66.9 | 65.7 |
Beijing dataset | 2 | 1 | 1 | 16,343 | 80.4 | 80.2 |
Chengdu dataset | 3 | 1 | 1 | 18,769 | 101.7 | 105.1 |
Jiangsu dataset | 2 | 2 | 1 | 22,168 | 112.4 | 108.0 |
Hangzhou dataset | 9 | 4 | 2 | 64,810 | 166.0 | 157.6 |
Nanjing dataset | 10 | 6 | 3 | 53,660 | 188.0 | 180.9 |
Model | Blockchain Storage Capacity | Robustness to Geometric Attacks | Robustness to Feature Addition/Deletion | Robustness to Layer Addition/Deletion | Robustness to Cropping and Merging Attacks |
---|---|---|---|---|---|
BCPM-UI | Minimal | Yes | Yes | Yes | Yes |
Ren | Significant | N/A | N/A | N/A | N/A |
Lee | N/A | Yes | No | No | Yes |
Li | N/A | Yes | No | No | No |
Zhou | N/A | Yes | No | No | Yes |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Published by MDPI on behalf of the International Society for Photogrammetry and Remote Sensing. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, H.; Tang, N.; Zhu, C.; Ren, N.; Wang, C. A Blockchain Copyright Protection Model Based on Vector Map Unique Identification. ISPRS Int. J. Geo-Inf. 2025, 14, 53. https://doi.org/10.3390/ijgi14020053
Wang H, Tang N, Zhu C, Ren N, Wang C. A Blockchain Copyright Protection Model Based on Vector Map Unique Identification. ISPRS International Journal of Geo-Information. 2025; 14(2):53. https://doi.org/10.3390/ijgi14020053
Chicago/Turabian StyleWang, Heyan, Nannan Tang, Changqing Zhu, Na Ren, and Changhong Wang. 2025. "A Blockchain Copyright Protection Model Based on Vector Map Unique Identification" ISPRS International Journal of Geo-Information 14, no. 2: 53. https://doi.org/10.3390/ijgi14020053
APA StyleWang, H., Tang, N., Zhu, C., Ren, N., & Wang, C. (2025). A Blockchain Copyright Protection Model Based on Vector Map Unique Identification. ISPRS International Journal of Geo-Information, 14(2), 53. https://doi.org/10.3390/ijgi14020053