Effect of the COVID-19 Pandemic on Suicide Mortality in Brazil: An Interrupted Time Series Analysis
<p>Map of Brazil, according to geographic region and states.</p> "> Figure 2
<p>Standardized annual suicide rates per 100,000 men, by year, Brazil, 2024. Note: N—North; NE—Northeast; S—South; SE—Southeast; and MW—Midwest; source: Mortality Information System (SIM/SUS), National Bureau of Statistics (IBGE).</p> "> Figure 3
<p>Standardized annual suicide rates per 100,000 women, by year, Brazil, 2024. Note: N—North; NE—Northeast; S—South; SE—Southeast; and MW—Midwest; source: Mortality Information System (SIM/SUS), National Bureau of Statistics (IBGE).</p> "> Figure 4
<p>Smoothed monthly suicide rates per 100,000 men using LOESS (Locally Estimated Scatterplot Smoothing) by region (January 2017 to December 2023), Brazil, 2024. Source: Mortality Information System (SIM/SUS), National Bureau of Statistics (IBGE).</p> "> Figure 5
<p>Smoothed monthly suicide rates per 100.000 women using LOESS (Locally Estimated Scatterplot Smoothing) by region (January 2017 to December 2023), Brazil, 2024. Source: Mortality Information System (SIM/SUS), National Bureau of Statistics (IBGE).</p> ">
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design and Location
2.2. Data Source
2.3. Data Analysis
Exploratory and Bivariate Analysis
2.4. An Analysis of the Impact of the Pandemic on Suicides in Brazil Using Interrupted Time Series
2.5. Ethical Aspects
3. Results
3.1. Descriptive Analysis
3.2. Bivariate Analyses
3.3. An Analysis of the Impact of the Pandemic on Suicides in Brazil Using Interrupted Time Series
4. Discussion
Strengths and Limitations of the Study
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- WHO (Word Health Organization). Suicide Worldwide in 2019: Global Health Estimates; WHO: Geneva, Switzerland, 2021. [Google Scholar]
- BRASIL, Ministério da Saúde, Secretaria de Vigilância em Saúde. Panorama de suicídios e lesões autoprovocadas no Brasil de 2010 a 2021. Bol. Epidemiológico 2024, 55. [Google Scholar]
- Cheung, Y.T.; Chau, P.H.; Yip, P.S.F. A revisit on older adults’ suicides and severe acute respiratory syndrome (SARS) epidemic in Hong Kong. Int. J. Geriatr. Psychiatry 2008, 23, 1231–1238. [Google Scholar] [CrossRef] [PubMed]
- Basta, M.; Vgontzas, A.N.; Bixler, E.O.; Kales, A. Suicide rates in Crete, Greece during the economic crisis: The effect of age, gender, unemployment and mental health service provision. BMC Psychiatry 2018, 18, 356. [Google Scholar] [CrossRef] [PubMed]
- Botega, N.J. Comportamento suicida: Epidemiologia. Psicol. USP 2014, 25, 231–236. [Google Scholar] [CrossRef]
- Yao, H.; Chen, J.; Xu, Y. Patients with mental health disorders in the COVID-19 epidemic. Lancet Psychiatry 2020, 7, e21. [Google Scholar] [CrossRef]
- Gunnell, D.; Appleby, L.; Arensman, E.; Hawton, K.; John, A.; Kapur, N.; Khan, M.; O’Connor, R.C.; Pirkis, J.; Caine, E.D.; et al. Suicide risk and prevention during the COVID-19 pandemic. Lancet Psychiatry 2020, 7, 468–471. [Google Scholar] [CrossRef]
- Banerjee, D.; Kosagisharaf, J.R.; Sathyanarayana Rao, T.S. ‘The dual pandemic’ of suicide and COVID-19: A biopsychosocial narrative of risks and prevention. Psychiatry Res. 2021, 295, 113577. [Google Scholar] [CrossRef]
- Souza, A.S.R.; Souza, G.F.A.; Souza, G.A.; Cordeiro, A.L.N.; Praciano, G.A.F.; Alves, A.C.S.; Santos, A.C.D.; Silva Junior, J.R.; Souza, M.B.R. Factors associated with stress, anxiety, and depression during social distancing in Brazil. Rev. Saúde Pública 2021, 55, 5. [Google Scholar] [CrossRef]
- Armitage, R.; Nellums, L.B. COVID-19 and the consequences of isolating the elderly. Lancet Public Health 2020, 5, e256. [Google Scholar] [CrossRef]
- Devitt, P. Can we expect an increased suicide rate due to COVID-19? Ir. J. Psychol. Med. 2020, 37, 264–268. [Google Scholar] [CrossRef]
- Ganesan, B.; Al-Jumaily, A.; Fong, K.N.K.; Prasad, P.; Meena, S.K.; Tong, R.K.-Y. Impact of coronavirus disease 2019 (COVID-19) outbreak quarantine, isolation, and lockdown policies on mental health and suicide. Front Psychiatry 2021, 12, 565190. [Google Scholar] [CrossRef] [PubMed]
- Moyer, J.D.; Verhagen, W.; Mapes, B.; Bohl, D.K.; Xiong, Y.; Yang, V.; McNeil, K.; Solórzano, J.; Irfan, M.; Carter, C. How many people is the COVID-19 pandemic pushing into poverty? A long-term forecast to 2050 with alternative scenarios. PLoS ONE 2022, 17, e0270846. [Google Scholar] [CrossRef] [PubMed]
- McGowan, V.J.; Bambra, C. COVID-19 mortality and deprivation: Pandemic, syndemic, and endemic health inequalities. Lancet Public Health 2022, 7, e966–e975. [Google Scholar] [CrossRef] [PubMed]
- Munford, L.; Khavandi, S.; Bambra, C.; Barr, B.; Davies, H.; Doran, T.; Kontopantelis, E.; Norman, P.; Pickett, K.; Sutton, M.; et al. A Year of COVID-19 in the North: Regional Inequalities in Health and Economic Outcomes; Northern Health Science Alliance: Manchester, UK, 2021; Available online: https://www.thenhsa.co.uk/about/publications/ (accessed on 1 September 2024).
- Bastos, L.S.; Ranzani, O.T.; Souza, T.M.L.; Hamacher, S.; Bozza, F.A. COVID-19 hospital admissions: Brazil’s first and second waves compared. Lancet Respir. Med. 2021, 9, e82–e83. [Google Scholar] [CrossRef]
- Mendenhall, E. Syndemics: A new path for global health research. Lancet 2017, 389, 889–891. [Google Scholar] [CrossRef]
- Guimarães, R.M. Suicide as a response for economic crisis: A call for action in Brazil. Int. J. Soc. Psychiatry 2024, 70, 830–831. [Google Scholar] [CrossRef]
- Appleby, L.; Richards, N.; Ibrahim, S.; Turnbull, P.; Rodway, C.; Kapur, N. Suicide in England in the COVID-19 pandemic: Early observational data from real-time surveillance. Lancet Reg. Health Eur. 2021, 4, 100110. [Google Scholar] [CrossRef]
- McIntyre, R.S.; Lui, L.M.; Rosenblat, J.D.; Ho, R.; Gill, H.; Mansur, R.B.; Teopiz, K.; Liao, Y.; Lu, C.; Subramaniapillai, M.; et al. Suicide reduction in Canada during the COVID-19 pandemic: Lessons informing national prevention strategies for suicide reduction. J. R. Soc. Med. 2021, 114, 473–479. [Google Scholar] [CrossRef]
- Pirkis, J.; John, A.; Shin, S.; DelPozo-Banos, M.; Arya, V.; Analuisa-Aguilar, P.; Appleby, L.; Arensman, E.; Bantjes, J.; Baran, A.; et al. Suicide trends in the early months of the COVID-19 pandemic: An interrupted time-series analysis of preliminary data from 21 countries. Lancet Psychiatry 2021, 8, 579–588. [Google Scholar] [CrossRef]
- Tanaka, T.; Okamoto, S. Increase in suicide following an initial decline during the COVID-19 pandemic in Japan. Nat. Hum. Behav. 2021, 5, 229–238. [Google Scholar] [CrossRef]
- Chang, Y.H.; Chang, S.S.; Hsu, C.Y.; Gunnell, D. Impact of Pandemic on Suicide: Excess Suicides in Taiwan During the 1918–1920 Influenza Pandemic. J. Clin. Psychiatry 2020, 81, 20l13454. [Google Scholar] [CrossRef] [PubMed]
- Acharya, B.; Subedi, K.; Acharya, P.; Ghimire, S. Association between COVID-19 pandemic and the suicide rates in Nepal. PLoS ONE 2022, 17, e0262958. [Google Scholar] [CrossRef] [PubMed]
- Ornell, F.; Benzano, D.; Borelli, W.V.; Narvaez, J.C.M.; Moura, H.F.; Passos, I.C.; Sordi, A.O.; Schuch, J.B.; Kessler, F.H.P.; Scherer, J.N.; et al. Differential impact on suicide mortality during the COVID-19 pandemic in Brazil. Braz. J. Psychiatry 2022, 44, 628–634. [Google Scholar] [CrossRef]
- Durkheim, E. O Suicídio: Estudo de Sociologia; Martins Fontes: São Paulo, Brazil, 2019. [Google Scholar]
- Salib, E. Effect of 11 September 2001 on suicide and homicide in England and Wales. Br. J. Psychiatry 2003, 183, 207–212. [Google Scholar] [CrossRef] [PubMed]
- Salib, E.; Cortina-Borja, M. Effect of 7 July 2005 terrorist attacks in London on suicide in England. Br. J. Psychiatry 2009, 194, 80–85. [Google Scholar] [CrossRef]
- Claassen, C.A.; Carmody, T.; Stewart, S.M.; Bossarte, R.M.; Larkin, G.L.; Woodward, W.A.; Trivedi, M.H. Effect of 11 September 2001 terrorist attacks in the USA on suicide in areas surrounding the crash sites. Br. J. Psychiatry 2010, 196, 359–364. [Google Scholar] [CrossRef]
- Mak, I.W.C.; Chu, C.M.; Pan, P.C.; Yiu, M.G.C.; Chan, V.L. Long-term psychiatric morbidities among SARS survivors. Gen. Hosp. Psychiatry 2009, 31, 318–326. [Google Scholar] [CrossRef]
- Orellana, J.D.Y.; de Souza, M.L.P. Excess suicides in Brazil: Inequalities according to age groups and regions during the COVID-19 pandemic. Int. J. Soc. Psychiatry 2022, 68, 997–1009. [Google Scholar] [CrossRef]
- Chen, Y.-Y.; Yang, C.-T.; Pinkney, E.; Yip, P.S.F. Suicide trends varied by age-subgroups during the COVID-19 pandemic in 2020 in Taiwan. J. Formosan Med. Assoc. 2021, 121, 1174–1177. [Google Scholar] [CrossRef]
- Ueda, M.; Nordström, R.; Matsubayashi, T. Suicide and mental health during the COVID-19 pandemic in Japan. J. Public Health 2022, 25, 541–548. [Google Scholar] [CrossRef]
- Orellana, J.D.Y.; de Souza, M.L.P.; Horta, B.L. Excess suicides in Brazil during the first two years of the COVID-19 pandemic: Gender, regional and age group inequalities. Int. J. Soc. Psychiatry 2024, 70, 99–112. [Google Scholar] [CrossRef] [PubMed]
- Min, J.; Oh, J.; Kim, S.I.; Kang, C.; Ha, E.; Kim, H.; Lee, W. Excess suicide attributable to the COVID-19 pandemic and social disparities in South Korea. Sci. Rep. 2022, 12, 18390. [Google Scholar] [CrossRef] [PubMed]
- The Lancet. COVID-19 in Brazil: “So what?”. Lancet 2020, 395, 1461. [Google Scholar] [CrossRef] [PubMed]
- Ventura, D.; Aith, F.; Reis, R. Crimes against humanity in Brazil’s COVID-19 response—A lesson to us all. BMJ 2021, 375, 2625. [Google Scholar] [CrossRef]
- Bispo Júnior, J.P.; Santos, D.B.D. COVID-19 as a syndemic: A theoretical model and foundations for a comprehensive approach in health. Cad. Saúde Pública 2021, 37, e00119021. [Google Scholar] [CrossRef]
- Soares, F.C.; Stahnke, D.N.; Levandowski, M.L. Tendência de suicídio no Brasil de 2011 a 2020: Foco especial na pandemia de COVID-19 [Trends in suicide rates in Brazil from 2011 to 2020: Special focus on the COVID-19 pandemic]. Rev. Panam. Salud Publica 2022, 46, e212. [Google Scholar] [CrossRef]
- Beautrais, A.L. Women and suicidal behavior. Crisis 2006, 27, 153–156. [Google Scholar] [CrossRef]
- Shelef, L. The Gender Paradox: Do Men Differ from Women in Suicidal Behavior? J. Mens. Health 2021, 17, 22–29. [Google Scholar] [CrossRef]
- Kirmayer, L.J. Suicide in cultural context: An ecosocial approach. Transcult. Psychiatry 2022, 59, 3–12. [Google Scholar] [CrossRef]
- Scott, J.W. Gender: A Useful Category of Historical Analysis. Am. Hist. Rev. 1988, 91, 1053–1075. [Google Scholar] [CrossRef]
- Zanello, V. Saúde Mental, Gênero e Dispositivos: Cultura e Processos de Subjetivação; Appris Editora: Curitiba, Brazil, 2018; 301p. [Google Scholar]
- Canetto, S.S.; Sakinofsky, I. The gender paradox in suicide. Suicide Life Threat. Behav. 1998, 28, 1–23. [Google Scholar] [CrossRef] [PubMed]
- Canetto, S.S. Women and suicidal behavior: A cultural analysis. Am. J. Orthopsychiatry 2008, 78, 259–266. [Google Scholar] [CrossRef] [PubMed]
- Jaworski, K. The gender-ing of suicide. Aust. Fem. Stud. 2010, 25, 47–61. [Google Scholar] [CrossRef]
- Meneghel, S.N.; Gutierez, D.M.D.; Silva, R.M.; Grubits, S.; Hesler, L.Z.; Ceccon, R.F. Suicide in the elderly from a gender perspective. Ciênc. Saúde Colet. 2012, 17, 1983–1992. [Google Scholar] [CrossRef] [PubMed]
- Stevens, G.A.; Alkema, L.; Black, R.E.; Boerma, J.T.; Collins, G.S.; Ezzati, M.; Grove, J.T.; Hogan, D.R.; Hogan, M.C.; Horton, R.; et al. Guidelines for Accurate and Transparent Health Estimates Reporting: The GATHER statement. Lancet 2016, 388, e19–e23. [Google Scholar] [CrossRef]
- IBGE—Instituto Brasileiro de Geografia e Estatística. Estimativas de População Enviadas ao TCU; IBGE: Rio de Janeiro, Brazil, 2021.
- Departamento de Informática do Sistema Único de Saúde, Ministério da Saúde, Brasil. Sistema de Informação Sobre Mortalidade; Ministério da Saúde: Brasília, Brazil, 2024. Available online: http://www2.datasus.gov.br/DATASUS/index.php?area=0205 (accessed on 30 April 2024).
- Instituto de Pesquisas Econômicas e Aplicadas, Brasil. O Retrato das Desigualdades de Gênero e Raça. 2024. Available online: https://www.ipea.gov.br/portal/retrato/indicadores/fontes-e-metadados (accessed on 15 May 2024).
- Mathers, C.D.; Bernard, C.; Iburg, K.M.; Inoue, M.; Fat, D.M.; Shibuya, K.; Stein, C.; Tomijima, N.; Xu, H. Global Burden of Disease in 2002: Data Sources, Methods and Results; Global Programme on Evidence for Health Policy Discussion Paper; World Health Organization: Geneva, Switzerland, 2004. [Google Scholar]
- Triola, M.F. Estatística, 13th ed.; Pearson: São Paulo, Brazil, 2018. [Google Scholar]
- Morettin, P.A.; Toloi, C.M. Análise de Séries Temporais, 2nd ed.; Blucher: São Paulo, Brazil, 2006; 564p. [Google Scholar]
- Bernal, J.L.; Cummins, S.; Gasparrini, A.; Artundo, C.; McKee, M. The effect of the late 2000s financial crisis on suicides in Spain: An interrupted time series analysis. Eur. J. Public Health 2013, 23, 732–736. [Google Scholar] [CrossRef]
- Shadish, W.R.; Cook, T.D.; Campbell, D.T. Experimental and Quasi—Experimental Designs for Generalized Causal Inference; Houghton Mifflin: Boston, MA, USA, 2002. [Google Scholar]
- Biglan, A.; Ary, D.; Wagenaar, A.C. The value of interrupted time series experiments for community intervention research. Prev. Sci. 2000, 1, 31–49. [Google Scholar] [CrossRef]
- Kontopantelis, E.; Doran, T.; Springate, D.A.; Buchan, I.; Reeves, D. Regression based quasi-experimental approach when randomisation is not an option: Interrupted time series analysis. BMJ 2015, 350, h2750. [Google Scholar] [CrossRef]
- Figueiredo, D.C.M.M.; Sanchéz-Villegas, P.; Figueiredo, A.M.; Moraes, R.M.; Daponte-Codina, A.; Schmidt Filho, R.; Vianna, R.P.T. Effects of the economic recession on suicide mortality in Brazil: Interrupted time series analysis. Rev. Bras. Enferm. 2022, 75 (Suppl. 3), e20210778. [Google Scholar] [CrossRef]
- Nascimento, M.I.; Massahud, F.C.; Barbosa, N.G.; Lopes, C.D.; Rodrigues, V.C. Mortalidade prematura por câncer de colo uterino: Estudo de séries temporais interrompidas. Rev. Saúde Pública 2020, 54, 139. [Google Scholar] [CrossRef]
- Wagner, A.K.; Soumerai, S.B.; Zhang, F.; Ross-Degnan, D. Segmented regression analysis of interrupted time series studies in medication use research. J. Clin. Pharm. Ther. 2002, 27, 299–309. [Google Scholar] [CrossRef] [PubMed]
- Bernal, J.L.; Cummins, S.; Gasparrini, A. Corrigendum to: Interrupted time series regression for the evaluation of public health interventions: A tutorial. Int. J. Epidemiol. 2017, 46, 348–355. [Google Scholar] [CrossRef] [PubMed]
- Durbin, J.; Watson, G.S. Testing for serial correlation in least squares regression. Biometrika 1951, 38, 159–178. [Google Scholar] [CrossRef] [PubMed]
- R Development Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2013; Available online: https://www.R-project.org/ (accessed on 15 January 2024).
- Conselho Nacional de Saúde (BR). Resolução n° 510, de 7 de Abril de 2016. 2016. Available online: http://bvsms.saude.gov.br/bvs/saudelegis/cns/2016/res0510_07_04_2016.html (accessed on 15 January 2024).
- Rodrigues, C.D.; Souza, D.S.; Rodrigues, H.M.; Konstantyner, T.C.R.O. Trends in suicide rates in Brazil from 1997 to 2015. Braz. J. Psychiatry 2019, 41, 380–388. [Google Scholar] [CrossRef]
- Galvão, P.V.M.; da Silva, C.M.F.P. Analysis of age, period, and birth cohort effects on suicide mortality in Brazil and the five major geographic regions. BMC Public Health 2023, 23, 1351. [Google Scholar] [CrossRef]
- Rodrigues, W.T.D.S.; Simões, T.C.; Magnago, C.; Dantas, E.S.O.; Guimarães, R.M.; Jesus, J.C.; de Andrade Fernandes, S.M.B.; Meira, K.C. The influence of the age-period-cohort effects on male suicide in Brazil from 1980 to 2019. PLoS ONE 2023, 18, e0284224. [Google Scholar] [CrossRef]
- Meneghel, S.N.; Moura, R. Suicídio, cultura e trabalho em município de colonização alemã no sul do Brasil. Interface 2018, 22, 1135–1146. [Google Scholar] [CrossRef]
- Palma, D.C.A.; Oliveira, B.F.A.; Ignotti, E. Suicide rates between men and women in Brazil, 2000–2017. Cad. Saúde Pública 2021, 37, e00281020. [Google Scholar] [CrossRef]
- Meneghel, S.N.; Danilevicz, I.M.; Polidoro, M.; Plentz, L.M.; Meneghetti, B.P. Femicide in borderline Brazilian municipalities. Ciênc. Saúde Colet. 2020, 27, 493–502. [Google Scholar] [CrossRef]
- Martins, J.S. Fronteira: A Degradação do Outro Nos Confins do Humano; Contexto: São Paulo, Brazil, 2009. [Google Scholar]
- López, M.V.; Pastor, M.P.; Giraldo, C.A.; García, H.I. Delimitación de froneras como estrategia de control social: El caso de la violencia homicida en Medellín, Colombia. Salud Colect. 2014, 10, 397–406. [Google Scholar] [CrossRef]
- Jafari, H.; Heidari, M.; Heidari, S.; Sayfouri, N. Risk Factors for Suicidal Behaviours after Natural Disasters: A Systematic Review. Malays, J. Med. Sci. 2020, 27, 20–33. [Google Scholar] [CrossRef] [PubMed]
- Sinyor, M.; Knipe, D.; Borges, G.; Ueda, M.; Pirkis, J.; Phillips, M.R.; Gunnell, D. Suicide Risk and Prevention During the COVID-19 Pandemic: One Year On. Arch. Suicide Res. 2022, 26, 1944–1949. [Google Scholar] [CrossRef] [PubMed]
- Rahimi-Ardabili, H.; Feng, X.; Nguyen, P.Y.; Astell-Burt, T. Have Deaths of Despair Risen during the COVID-19 Pandemic? A Systematic Review. Int. J. Environ. Res. Public Health 2022, 19, 12835. [Google Scholar] [CrossRef] [PubMed]
- Gelezelyte, O.; Dragan, M.; Grajewski, P.; Kvedaraite, M.; Lotzin, A.; Skrodzka, M.; Nomeikaite, A.; Kazlauskas, E. Factors Associated With Suicide Ideation in Lithuania and Poland Amid the COVID-19 Pandemic. Crisis 2022, 43, 460–467. [Google Scholar] [CrossRef]
- Guimarães, R.M.; Oliveira, M.P.R.P.B.; Dutra, V.G.P. Excesso de mortalidade segundo grupo de causas no primeiro ano de pandemia de COVID-19 no Brasil. Rev. Bras. Epidemiol. 2022, 25, e220029. [Google Scholar] [CrossRef]
- Guimarães, R.M.; Meira, K.C.; da Silva Vicente, C.T.; de Araújo Caribé, S.S.; da Silva Neves, L.B.; Vardiero, N.A. The Role of Race in Deaths of Despair in Brazil: Is it a White People Problem? J. Racial Ethn. Health Disparities 2024. epub ahead of print. [Google Scholar] [CrossRef]
- Barbosa, J.P.M.; Moreira, L.R.d.C.; Santos, G.B.M.; Lanna, S.D.; Andrade, M.A.C. Interseccionalidade e violência contra as mulheres em tempos de pandemia de COVID-19: Diálogos e possibilidades. Saúde Soc. 2021, 30, e200367. [Google Scholar] [CrossRef]
- Bezerra, C.F.M.; Vidal, E.C.F.; Kerntopf, M.R.; Lima Júnior, C.M.; Alves, M.N.T.; Carvalho, M.G. Violência contra as mulheres na pandemia do COVID-19: Um estudo sobre casos durante o período de quarentena no Brasil. Rev. Multidiscip. Psicol. 2020, 14, 474–485. [Google Scholar] [CrossRef]
- Onocko-Campos, R.T. Saúde mental no Brasil: Avanços, retrocessos e desafios. Cad. Saúde Pública 2019, 35, e00056419. [Google Scholar] [CrossRef]
- Ministério da Saúde (BR). Portaria GM/MS n° 757, de 21 de Junho de 2023. Revoga a Portaria GM/MS n° 3.588, de 21 de Dezembro de 2017, e Dispositivos das Portarias de Consolidação GM/MS n° 3 e 6, de 28 de Setembro de 2017, e Repristina Redações. Diário Oficial da União. Available online: https://www.gov.br/saude/pt-br/composicao/saes/legislacao/portaria-gm-ms-no-757-de-21-de-junho-de-2023/view (accessed on 1 February 2024).
- Lee, S.A.; Park, E.-C.; Ju, Y.J.; Han, K.-T.; Yoon, H.J.; Kim, T.H. The association between satisfaction with husband’s participation in housework and suicidal ideation among married working women in Korea. Psychiatry Res. 2018, 261, 541–546. [Google Scholar] [CrossRef]
Step 1: Estimate models without seasonality and models with seasonality. |
A quasi-Poisson model without seasonality (Model 1) and a quasi-Poisson model with seasonality (Model 2) are estimated. Model 1: L represents the seasonality period (12 months); are coefficients associated with the fundamental frequency . is the amplitude of the sinusoidal component of the fundamental frequency, is the amplitude of the cosine component of the fundamental frequency, are coefficients associated with the first harmonic is the amplitude of the sinusoidal component of the first harmonic, and is the amplitude of the cosine component of the first harmonic. |
Step 2: Compare the models’ fit through a deviance analysis (akin to an ANOVA for GLMs) by employing an appropriate F-test. |
To compare their fit, one may resort to a deviance analysis (analogous to an ANOVA for generalized linear models) using an appropriate F-test. The null hypothesis (H0) posits no significant difference in fit between the models, implying that the model without seasonality (Model 1) is adequate. If the p-value exceeds 0.05, H0 is not rejected, and it is concluded that the model without seasonality provides a sufficiently good fit to the data. If the p-value is below 0.05, H0 is rejected, and it is deduced that the model with seasonality (Model 2) achieves a superior fit. |
Step 3: Assess the presence of serial autocorrelation in the residuals of the chosen model using the Durbin–Watson (DW) test as well as the autocorrelation function (ACF) and the partial autocorrelation function (PACF). |
If there is no evidence of serial autocorrelation, the final model selected in the previous step is retained (Step 2). If there is evidence of serial autocorrelation, one or more autoregressive terms are added to the model selected in Step 2, as indicated by significant peaks in the PACF, resulting in an AR (autoaegressive) model. The autoregressive terms (ϕ1,ϕ2, …, ϕp) are as follows:
|
Variable | Men | Women | ||
---|---|---|---|---|
Mean (SD) a | p-Value | Mean (SD) a | p-Value | |
Age group (age) b | ||||
10 to 14 | 0.097 (0.039) | <0.0001 | 0.109 (0.041) | <0.0001 |
15 to 19 | 0.714 (0.126) | 0.314 (0.080) | ||
20 to 39 | 1.165 (0.175) | 0.294 (0.055) | ||
40 to 59 | 1.236 (0.129) | 0.317 (0.047) | ||
60 or more | 1.310 (0.139) | 0.251 (0.045) | ||
Locality b | ||||
North | 0.958 (0.172) | <0.0001 | 0.246 (0.069) | <0.0001 |
Northeast | 0.976 (0.117) | 0.201 (0.029) | ||
Southeast | 0.907 (0.109) | 0.224 (0.040) | ||
South | 1.707 (0.224) | 0.394 (0.074) | ||
Midwest | 1.267 (0.202) | 0.367 (0.084) | ||
Brazil | 1.074 (0.125) | 0.281 (0.037) | ||
Race/skin color c | ||||
Black | 0.821 (0.123) | <0.0001 | 0.195 (0.035) | <0.0001 |
White | 1.011 (0.134) | 0.292 (0.037) | ||
Method of perpetration b | ||||
Firearm | 0.087 (0.012) | <0.0001 | 0.008 (0.002) | <0.0001 |
Self-poisoning | 0.0919 (0.087) | 0.061 (0.011) | ||
Hanging, strangulation, and suffocation | 0.795 (0.101) | 0.162 (0.023) |
Variable | Before Pandemic | After Pandemic | Men | Before Pandemic | After Pandemic | Women |
---|---|---|---|---|---|---|
Men | Men | Women | Women | |||
Mean (SD a) | Mean (SD a) | p-Value c | Mean (SD a) | Mean (SD a) | p-Value c | |
Age group (age) b | ||||||
10 to 14 | 0.092 (0.041) | 0.100 (0.037) | 0.332 | 0.097 (0.041) | 0.118 (0.037) | 0.025 |
15 to 19 | 0.669 (0.138) | 0.751 (0.102) | 0.003 | 0.283 (0.066) | 0.340 (0.083) | 0.001 |
20 to 39 | 1.051 (0.09) | 1.258 (0.172) | <0.0001 | 0.253 (0.035) | 0.329 (0.044) | 0.056 |
40 to 59 | 1.148 (0.091) | 1.308 (0.110) | <0.0001 | 0.294 (0.030) | 0.336 (0.052) | <0.0001 |
60 or more | 1.255 (0.119) | 1.355 (0.139) | 0.001 | 0.2425 (0.048) | 0.259 (0.041) | 0.090 |
Locality b | ||||||
North | 0.861 (0.137) | 1.039 (0.156) | <0.0001 | 0.246 (0.049) | 0.298 (0.074) | <0.0001 |
Northeast | 0.8762 (0.0702) | 1.058 (0.117) | <0.0001 | 0.201 (0.042) | 0.249 (0.042) | <0.0001 |
Southeast | 0.846 (0.081) | 0.956 (0.104) | <0.0001 | 0.224 (0.027) | 0.275 (0.033) | <0.0001 |
South | 1.583 (0.165) | 1.810 (0.215) | <0.0001 | 0.394 (0.051) | 0.445 (0.082) | <0.0001 |
Midwest | 1.144 (0.143) | 1.369 (0.188) | <0.0001 | 0.340 (0.06) | 0.389 (0.091) | 0.006 |
Brazil | 0.9858 (0.0744) | 1.147 (0.110) | <0.0001 | 0.253 (0.020) | 0.303 (033) | <0.0001 |
Race/skin color c | ||||||
White | 0.970 (0.073) | 1.046 (0.108) | 0.0001 | 0.271 (0.028) | 0.311 (0.033) | <0.0001 |
Black | 0.722 (0.0630) | 0.901 (0.097) | <0.0001 | 0.169 (0.021) | 0.216 (0.030) | <0.0001 |
Methods b | ||||||
Firearm | 0.084 (0.011) | 0.089 (0.012) | <0.0001 | 0.009 (0.003) | 0.008 (0.002) | 0.458 |
Self-poisoning | 0.097 (0.131) | 0.0877 (0.012) | 0.053 | 0.054 (0.007) | 0.065 (0.0115) | <0.0001 |
Hanging, strangulation, and suffocation | 0.722 (0.061) | 0.855 (0.0856) | <0.0001 | 0.147 (0.018) | 0.174 (0.020) | <0.0001 |
Variables | Categories | Interpretation | RR a | CI95% b | p-Value c |
---|---|---|---|---|---|
Age group (years) | 10 to 14 | ||||
Level change | Not detected | 1.142 | 0.805–1.620 | 0.459 | |
Trend change | Not detected | 0.999 | 0.992–1.006 | 0.772 | |
15 to 19 | |||||
Level change | Not detected | 0.997 | 0.953–1.043 | 0.886 | |
Trend change | Progressive increase | 1.003 | 1.002–1.004 | <0.0001 | |
20 to 39 | |||||
Level change | Abrupt reduction | 0.893 | 0.875–0.911 | <0.0001 | |
Trend change | Progressive increase | 1.0070 | 1.006–1.009 | <0.0001 | |
40 to 59 | |||||
Level change | Not detected | 1.004 | 0.950–1.061 | 0.887 | |
Trend change | Progressive increase | 1.003 | 1.002–1.004 | <0.0001 | |
60 or more years | |||||
Level change | Abrupt increase | 1.067 | 1.056–1.078 | <0.0001 | |
Trend change | Progressive increase | 1.002 | 1.001–1.003 | 0.011 | |
Locality | North | ||||
Level change | Abrupt reduction | 0.890 | 0.801–0.991 | 0.036 | |
Trend change | Progressive increase | 1.007 | 1.005–1.009 | <0.0001 | |
Northeast | |||||
Level change | Not detected | 1.010 | 0.998–1.023 | 0.115 | |
Trend change | Progressive increase | 1.005 | 1.003–1.006 | <0.0001 | |
Southeast | |||||
Level change | Abrupt reduction | 0.971 | 0.959–0.984 | <0.0001 | |
Trend change | Progressive increase | 1.004 | 1.001–1.005 | <0.0001 | |
South | |||||
Level change | Abrupt reduction | 0.955 | 0.948–0.962 | <0.0001 | |
Trend change | Progressive increase | 1.004 | 1.003–1.005 | <0.0001 | |
Midwest | |||||
Level change | Not detected | 0.941 | 0.862–1.028 | 0.181 | |
Trend change | Progressive increase | 1.006 | 1.004–1.007 | <0.0001 | |
Brazil | |||||
Level change | Abrupt reduction | 0.967 | 0.962–0.973 | <0.0001 | |
Trend change | Progressive increase | 1.004 | 1.003–1.005 | <0.0001 | |
Race/skin color | Black | ||||
Level change | Abrupt increase | 1.015 | 1.005–1.026 | 0.006 | |
Trend change | Progressive increase | 1.005 | 1.004–1.007 | <0.0001 | |
White | |||||
Level change | Abrupt reduction | 0.928 | 0.878–0.982 | 0.012 | |
Trend change | Progressive increase | 1.004 | 1.003–1.005 | <0.0001 | |
Methods | Firearm | ||||
Level change | Abrupt reduction | 0.894 | 0.806–0.992 | 0.037 | |
Trend change | Progressive increase | 1.004 | 1.002–1.006 | 0.000 | |
Self-poisoning | |||||
Level change | Not detected | 0.754 | 0.381–1.493 | 0.420 | |
Trend change | Not detected | 1.005 | 0.991–1.019 | 0.529 | |
HSS d | |||||
Level change | Abrupt reduction | 0.981 | 0.973–0.989 | <0.0001 | |
Trend change | Progressive increase | 1.005 | 1.003–1.005 | <0.0001 |
Variables | Categories | Interpretation | RR a | CI95% b | p-Value c |
---|---|---|---|---|---|
Age group (years) | 10 to 14 | ||||
Level change | Not detected | 1.050 | 0.765–1.442 | 0.763 | |
Trend change | Not detected | 1.003 | 0.997–1.010 | 0.317 | |
15 to 19 | |||||
Level change | Abrupt increase | 1.063 | 1.022–1.106 | 0.003 | |
Trend change | Progressive increase | 1.003 | 1.002–1.005 | <0.0001 | |
20 to 39 | |||||
Level change | Abrupt reduction | 0.967 | 0.957–0.978 | <0.0001 | |
Trend change | Progressive increase | 1.009 | 1.007–1010 | <0.0001 | |
40 to 59 | |||||
Level change | Not detected | 0.969 | 0.870–1.080 | 0.571 | |
Trend change | Progressive increase | 1.004 | 1.002–1.006 | 0.001 | |
60 or more years | |||||
Level change | Abrupt increase | 1.038 | 1.019–1.057 | 0.000 | |
Trend change | Progressive increase | 1.002 | 1.0001–1.003 | 0.000 | |
Locality | North | ||||
Level change | Not detected | 0.932 | 0.771–1.126 | 0.465 | |
Trend change | Progressive increase | 1.006 | 1.002–1.010 | 0.0021 | |
Northeast | |||||
Level change | Not detected | 1.037 | 0.911–1.180 | 0.584 | |
Trend change | Progressive increase | 1.004 | 1.002–1.007 | 0.0023 | |
Southeast | |||||
Level change | Not detected | 1.051 | 0.964–1.145 | 0.267 | |
Trend change | Progressive increase | 1.004 | 1.002–1.005 | <0.0001 | |
South | |||||
Level change | Not detected | 0.907 | 0.796–1.034 | 0.146 | |
Trend change | Progressive increase | 1.005 | 1.002–1.007 | 0.000 | |
Midwest | |||||
Level change | Not detected | 0.921 | 0.768–1.101 | 0.366 | |
Trend change | Progressive increase | 1.005 | 1.002–1.009 | 0.007 | |
Brazil | |||||
Level change | Not detected | 0.995 | 0.930–1.064 | 0.875 | |
Trend change | Progressive increase | 1.004 | 1.003–1.006 | <0.0001 | |
Race/skin color | Black | ||||
Level change | Not detected | 0.963 | 0.877–1.057 | 0.428 | |
Trend change | Progressive increase | 1.007 | 1.005–1.009 | <0.0001 | |
White | |||||
Level change | Not detected | 1.018 | 0.936–1.107 | 0.674 | |
Trend change | Progressive increase | 1.003 | 1.001–1.005 | 0.001 | |
Methods | Firearm | ||||
Level change | Not detected | 1.092 | 0.854–1.396 | 0.484 | |
Trend change | Not detected | 0.997 | 0.992–1.002 | 0.212 | |
Self-poisoning | |||||
Level change | Not detected | 1.025 | 0.899–1.169 | 0.713 | |
Trend change | Progressive increase | 1.004 | 1.001–1.007 | 0.003 | |
HSS d | |||||
Level change | Not detected | 0.974 | 0.893–1.062 | 0.551 | |
Trend change | Progressive increase | 1.005 | 1.003–1.006 | <0.0001 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Meira, K.C.; Guimarães, R.M.; Jomar, R.T.; Silva, C.M.F.P.d.; Braiti, F.S.; Dantas, E.S.O. Effect of the COVID-19 Pandemic on Suicide Mortality in Brazil: An Interrupted Time Series Analysis. Int. J. Environ. Res. Public Health 2025, 22, 138. https://doi.org/10.3390/ijerph22020138
Meira KC, Guimarães RM, Jomar RT, Silva CMFPd, Braiti FS, Dantas ESO. Effect of the COVID-19 Pandemic on Suicide Mortality in Brazil: An Interrupted Time Series Analysis. International Journal of Environmental Research and Public Health. 2025; 22(2):138. https://doi.org/10.3390/ijerph22020138
Chicago/Turabian StyleMeira, Karina Cardoso, Raphael Mendonça Guimarães, Rafael Tavares Jomar, Cosme Marcelo Furtado Passos da Silva, Fabiana Serpa Braiti, and Eder Samuel Oliveira Dantas. 2025. "Effect of the COVID-19 Pandemic on Suicide Mortality in Brazil: An Interrupted Time Series Analysis" International Journal of Environmental Research and Public Health 22, no. 2: 138. https://doi.org/10.3390/ijerph22020138
APA StyleMeira, K. C., Guimarães, R. M., Jomar, R. T., Silva, C. M. F. P. d., Braiti, F. S., & Dantas, E. S. O. (2025). Effect of the COVID-19 Pandemic on Suicide Mortality in Brazil: An Interrupted Time Series Analysis. International Journal of Environmental Research and Public Health, 22(2), 138. https://doi.org/10.3390/ijerph22020138