Effects of a Comprehensive Pulmonary Rehabilitation in Severe Post-COVID-19 Patients
<p>6-min walk test of post-COVID-19 Group and lung diseases group.</p> "> Figure 2
<p>Feeling thermometer of post-COVID-19 group and lung diseases group. ns: no significative.</p> "> Figure 3
<p>Functional Independence Measurement of post-COVID-19 group and lung diseases group. ns: no significative.</p> ">
Abstract
:1. Introduction
2. Materials and Methods
2.1. Participants and Procedures
2.2. Pulmonary Rehabilitation
2.3. Hygiene Concept during Rehabilitation
2.4. Exercise Capacity
2.5. Quality of Life
2.6. Functional Independence Measure (FIM)
2.7. Hospital Anxiety and Depression Scale (HADS)
2.8. Cumulative Illness Rating Scale (CIRS)
2.9. Feeling Thermometer (FT)
2.10. Pulmonary Function Tests (PFT) and Blood Gas Analysis
2.11. Statistics
3. Results
3.1. Baseline Characteristics of the Post-COVID-19 Group (PG) and the Control Group (LG)
3.2. Comorbidities of the Post-COVID-19-Group (PG) and Complications Due to the COVID-19 Infection
3.3. Assessments on Admission or Discharge to PR of the Post-COVID-19 Group
3.4. Results of Pulmonary Rehabilitation in the PG and LG
3.5. Multivariate Analysis of the Results
4. Discussion
Study Limitations
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Li, Q.; Guan, X.; Wu, P.; Qun, L.; Xuhua, G.; Peng, W.; Xiaoye, W.; Lei, Z.; Yeqing, T.; Ruiqi, R.; et al. Early transmission dynamics in Wuhan, China, of Novel Coronavirus—Infected pneumonia. N. Engl. J. Med. 2020, 382, 1199–1207. [Google Scholar] [CrossRef]
- Huang, C.; Wang, Y.; Li, X.; Ren, L.; Zhao, J.; Hu, Y.; Zhang, L.; Fan, G.; Xu, J.; Gu, X.; et al. Clinical features of patients infected with 2019 novel coronavirus in wuhan, china. Lancet 2020, 395, 497–506. [Google Scholar] [CrossRef] [Green Version]
- Guan, W.J.; Ni, Z.Y.; Hu, Y.; Liang, W.H.; Ou, C.Q.; He, J.X.; Liu, L.; Shan, H.; Lei, C.L.; Hui, D.S.C.; et al. Clinical Characteristics of Coronavirus Disease 2019 in China. N. Engl. J. Med. 2020, 382, 1708–1720. [Google Scholar] [CrossRef]
- Bhatraju, P.K.; Ghassemieh, B.J.; Nichols, M.; Kim, R.; Jerome, K.R.; Nalla, A.K.; Greninger, A.L.; Pipavath, S.; Wurfel, M.M.; Evans, L.; et al. Covid-19 in Critically Ill Patients in the Seattle Region—Case Series. N. Engl. J. Med. 2020, 382, 2012–2022. [Google Scholar] [CrossRef]
- Sun, Z.; Zhang, N.; Li, Y.; Xu, X. A systematic review of chest imaging findings in COVID-19. Quant. Imaging Med. Surg. 2020, 10, 1058–1079. [Google Scholar] [CrossRef] [PubMed]
- Gao, J.; Zheng, P.; Jia, Y.; Chen, H.; Mao, Y.; Chen, S.; Wang, Y.; Fu, H.; Dai, J. Mental health problems and social media exposure during covid-19 outbreak. PLoS ONE 2020, 15, e0231924. [Google Scholar]
- Roberts, P.; Wertheimer, J.; Park, E.; Nuño, M.; Riggs, R. Identification of Functional Limitations and Discharge Destination in Patients with COVID-19. Arch. Phys. Med. Rehabil. 2021, 102, 351–358. [Google Scholar] [CrossRef] [PubMed]
- Zhao, H.M.; Xie, Y.X.; Wang, C.; Rehabilitation. Recommendations for respiratory rehabilitation in adults with coronavirus disease 2019. Chin. Med. J. 2020, 133, 1595–1602. [Google Scholar] [CrossRef]
- Mao, L.; Jin, H.; Wang, M.; Hu, Y.; Chen, S.; He, Q.; Chang, J.; Hong, C.; Zhou, Y.; Wang, D.; et al. Neurologic Manifestations of Hospitalized Patients With Coronavirus Disease 2019 in Wuhan, China. JAMA Neurol. 2020, 77, 683. [Google Scholar] [CrossRef] [Green Version]
- Sheehy, L.M. Considerations for Postacute Rehabilitation for Survivors of COVID-19. JMIR Public Health Surveill. 2020, 6, e19462. [Google Scholar] [CrossRef] [PubMed]
- Spielmanns, M.; Pekacka-Egli, A.M.; Cecon, M.; Witassek, F.; Schoendorf, S.; Lutz, D.; Hermann, M. Covid-19 outbreak during inpatient rehabilitation: Impact on settings and clinical course of neuromusculoskeletal rehabilitation patients. Am. J. Phys. Med. Rehabil. 2021, 100, 203–208. [Google Scholar] [CrossRef] [PubMed]
- Hermann, M.; Pekacka-Egli, A.-M.; Witassek, F.; Baumgaertner, R.; Schoendorf, S.; Spielmanns, M. Feasibility and Efficacy of Cardiopulmonary Rehabilitation following COVID-19. Am. J. Phys. Med. Rehabil. 2020, 99, 865–869. [Google Scholar] [CrossRef] [PubMed]
- Glockl, R.; Buhr-Schinner, H.; Koczulla, A.R.; Schipmann, R.; Schultz, K.; Spielmanns, M.; Stenzel, N.; Dewey, S. Recommendations from the german respiratory society for pulmonary rehabilitation in patients with covid-19. Pneumologie 2020, 74, 496–504. [Google Scholar]
- Vitacca, M.; Carone, M.; Clini, E.M.; Paneroni, M.; Lazzeri, M.; Lanza, A.; Privitera, E.; Pasqua, F.; Gigliotti, F.; Castellana, G.; et al. Joint Statement on the Role of Respiratory Rehabilitation in the COVID-19 Crisis: The Italian Position Paper. Respiration 2020, 99, 493–499. [Google Scholar] [CrossRef]
- Xiang, Y.-T.; Yang, Y.; Li, W.; Zhang, L.; Zhang, Q.; Cheung, T.; Ng, C.H. Timely mental health care for the 2019 novel coronavirus outbreak is urgently needed. Lancet Psychiatry 2020, 7, 228–229. [Google Scholar] [CrossRef] [Green Version]
- Cooper, C.B. Exercise in chronic pulmonary disease: Aerobic exercise prescription. Med. Sci. Sports Exerc. 2001, 33, S671–S679. [Google Scholar] [CrossRef]
- Spruit, M.A.; Singh, S.J.; Garvey, C.; ZuWallack, R.; Nici, L.; Rochester, C.; Hill, K.; Holland, A.E.; Lareau, S.C.; Man, W.D.-C.; et al. An Official American Thoracic Society/European Respiratory Society Statement: Key Concepts and Advances in Pulmonary Rehabilitation. Am. J. Respir. Crit. Care Med. 2013, 188, e13–e64. [Google Scholar] [CrossRef]
- Borg, G.A. Psychophysical bases of perceived exertion. Med. Sci. Sports Exerc. 1982, 14, 377–381. [Google Scholar] [CrossRef]
- ATS Committee on Proficiency Standards for Clinical Pulmonary Function Laboratories. ATS statement: Guidelines for the six-minute walk test. Am. J. Respir. Crit. Care Med. 2002, 166, 111–117. [Google Scholar] [CrossRef]
- Bohannon, R.W.; Crouch, R. Minimal clinically important difference for change in 6-minute walk test distance of adults with pathology: A systematic review. J. Eval. Clin. Pr. 2016, 23, 377–381. [Google Scholar] [CrossRef] [PubMed]
- Chan, K.S.; Pfoh, E.R.; Denehy, L.; Elliott, D.; Holland, A.E.; Dinglas, V.D.; Needham, D.M. Construct Validity and Minimal Important Difference of 6-Minute Walk Distance in Survivors of Acute Respiratory Failure. Chest 2015, 147, 1316–1326. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Enright, P.L.; Sherrill, D.L. Reference Equations for the Six-Minute Walk in Healthy Adults. Am. J. Respir. Crit. Care Med. 1998, 158, 1384–1387. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Guyatt, G.H.; Berman, L.B.; Townsend, M.; Pugsley, S.O.; Chambers, L.W. A measure of quality of life for clinical trials in chronic lung disease. Thorax 1987, 42, 773–778. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Linacre, J.M.; Heinemann, A.W.; Wright, B.D.; Granger, C.V.; Hamilton, B.B. The structure and stability of the functional independence measure. Arch. Phys. Med. Rehabil. 1994, 75, 127–132. [Google Scholar] [CrossRef]
- Beninato, M.; Gill-Body, K.M.; Salles, S.; Stark, P.C.; Black-Schaffer, R.M.; Stein, J. Determination of the Minimal Clinically Important Difference in the FIM Instrument in Patients With Stroke. Arch. Phys. Med. Rehabil. 2006, 87, 32–39. [Google Scholar] [CrossRef]
- Zigmond, A.S.; Snaith, R.P. The Hospital Anxiety and Depression Scale. Acta Psychiatr. Scand. 1983, 67, 361–370. [Google Scholar] [CrossRef] [Green Version]
- Osborn, K.; Nothelle, S.; Slaven, J.E. Cumulative illness rating scale (cirs) can be used to predict hospital outcomes in older adults. J. Geriatr. Med. Gerontol. 2017, 3, 30. [Google Scholar] [CrossRef] [Green Version]
- Schunemann, H.J.; Griffith, L.; Jaeschke, R.; Goldstein, R.; Stubbing, D.; Guyatt, G.H. Evaluation of the minimal important difference for the feeling thermometer and the st. George’s respiratory questionnaire in patients with chronic airflow obstruction. J. Clin. Epidemiol. 2003, 56, 1170–1176. [Google Scholar] [CrossRef]
- McCormack, M.C.; Bascom, R.; Brandt, M.; Burgos, F.; Butler, S.; Caggiano, C.; Dimmock, A.E.F.; Fineberg, A.; Goldstein, J.; Guzman, F.C.; et al. Electronic Health Records and Pulmonary Function Data: Developing an Interoperability Roadmap. An Official American Thoracic Society Workshop Report. Ann. Am. Thorac. Soc. 2021, 18, 1–11. [Google Scholar] [CrossRef]
- Graham, B.L.; Steenbruggen, I.; Miller, M.R.; Barjaktarevic, I.Z.; Cooper, B.G.; Hall, G.L.; Hallstrand, T.S.; Kaminsky, D.A.; McCarthy, K.; McCormack, M.C.; et al. Standardization of Spirometry 2019 Update. An Official American Thoracic Society and European Respiratory Society Technical Statement. Am. J. Respir. Crit. Care Med. 2019, 200, e70–e88. [Google Scholar] [CrossRef] [PubMed]
- Davis, M.D.; Walsh, B.K.; E Sittig, S.; Restrepo, R.D. AARC Clinical Practice Guideline: Blood Gas Analysis and Hemoximetry: 2013. Respir. Care 2013, 58, 1694–1703. [Google Scholar] [CrossRef] [PubMed]
- Guler, S.A.; Ebner, L.; Beigelman, C.; Bridevaux, P.-O.; Brutsche, M.; Clarenbach, C.; Garzoni, C.; Geiser, T.K.; Lenoir, A.; Mancinetti, M.; et al. Pulmonary function and radiological features four months after COVID-19: First results from the national prospective observational Swiss COVID-19 lung study. Eur. Respir. J. 2021. [Google Scholar] [CrossRef] [PubMed]
- Spielmanns, M.; Gloeckl, R.; Schmoor, C.; Windisch, W.; Storre, J.; Boensch, M.; Kenn, K. Effects on pulmonary rehabilitation in patients with COPD or ILD: A retrospective analysis of clinical and functional predictors with particular emphasis on gender. Respir. Med. 2016, 113, 8–14. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Puchner, B.; Sahanic, S.; Kirchmair, R.; Pizzini, A.; Sonnweber, B.; Wöll, E.; Mühlbacher, A.; Garimorth, K.; Dareb, B.; Ehling, R.; et al. Beneficial effects of multi-disciplinary rehabilitation in post-acute COVID-19—An observational cohort study. Eur. J. Phys. Rehabil. Med. 2021. [Google Scholar] [CrossRef]
Type of Exercise | Frequency per Week | Maximum Duration per Session (min) |
---|---|---|
Endurance | 5–6 | 10–30 |
Gymnastics | 5–6 | 45 |
Outdoor walking | 2–3 | 45 |
Strength training | 3–4 | 30 |
Relaxation | 2 | 45 |
Respiratory therapy | 3 | 30 |
PG (n = 99) | LG (n = 419) | p | |
---|---|---|---|
Age (mean) | 67.72 (±10.23) | 69.28 (±11.29) | 0.207 |
Sex, female (%) | 42 (±42.4) | 213 (±50.8) | 0.163 |
BMI kg/m2 (mean) | 28.21 (±6.11) | 24.50 (±6.10) | <0.001 |
PR days (median [IQR]) | 20 [18.00, 22.00] | 21 [18.00, 21.00] | 0.042 |
CIRS points (mean) | 14.18 (±5.92) | 14.52 (±5.6) | 0.324 |
Comorbidities Prior COVID-19 | |
---|---|
(n = 99) | n (%) |
Hypertension | 54 (54) |
Smokers or Ex-Smokers | 27 (27) |
Adiposities | 25 (25) |
Musculoskeletal disease | 25 (25) |
Dyslipidemia | 20 (20.2) |
Neurological disease | 20 (20) |
Chronic renal failure | 19 (19) |
Coronary artery disease | 18 (18.2) |
Malignancy | 15 (15) |
COPD | 11 (11) |
Cerebrovascular insufficiency | 9 (9) |
Atrial Fibrillation | 8 (8.1) |
Diabetes | 8 (8) |
Obstructive sleep apnea | 7 (7) |
Chronic heart failure | 6 (6) |
Venous thromboembolism | 5 (5) |
Interstitial lung disease | 5 (5) |
Liver disease | 5 (5) |
Complications or New Diagnosis | n (%) |
---|---|
Sepsis | 37 (37) |
Delirium | 36 (35) |
ARDS severe | 27 (27) |
ICU acquired weakness | 24 (24) |
Anemia | 24 (24) |
Electrolyte disturbance | 18 (18) |
Acute renal failure | 14 (14) |
Atrial Fibrillation | 13 (13) |
Myocarditis | 12 (12) |
Hepatitis | 12 (12) |
Venous Thromboembolism | 11 (11) |
Bacterial superinfection | 11 (11) |
Diabetes | 8 (8) |
Arterial Hypertension | 6 (6) |
Acute Heart failure | 4 (2) |
ARDS mild | 4 (4) |
COPD | 1 (1) |
Coronary Artery Disease | 1 (1) |
Pulmonal Artery Disease | 1 (1) |
Mean | SD | |
---|---|---|
Assessments on admission to PR (n = 99) | ||
CIRS; points | 14.2 | 5.8 |
HADS A; points | 5.58 | 3.87 |
HADS D; points | 5.52 | 3.09 |
FIM total; points | 100 | 15.1 |
FIM social; points | 29 | 4,65 |
FIM motoric; points | 71.4 | 12.3 |
CRQ; points | 4.66 | 0.93 |
Laboratory parameters on admission to PR | ||
PaO2 (kPa) (n = 72) | 9.22 | 1.85 |
PaCO2 (kPa) (n = 72) | 4.6 | 0.68 |
SpO2% (n = 99) | 93.6 | 3 |
C-Reactive Protein (mg/dL) (n = 88) | 151 | 134 |
Ferritin (mg/L) (n = 55) | 1190 | 1170 |
Hemoglobin (mg/L) (n = 99) | 99.8 | 24.1 |
Creatinin (mg/L) (n = 99) | 128 | 122 |
Pulmonary function test at discharge PR (n = 69) | ||
FEV1 % pred. | 74.9 | 38.94 |
FVC % pred. | 74.1 | 37.6 |
FEV1 % FVC | 85.2 | 25.6 |
DLCO % pred. | 61 | 38.56 |
LG | PG | Intergroup | ||||||
---|---|---|---|---|---|---|---|---|
Pre | Post | p | Pre | Post | p | p Pre | p Post | |
FIM (points) | 99.7 (±9.72) | 107 (±10.7) | <0.0001 | 100 (±15.1) | 111 (±15.0) | <0.0001 | 0.771 | 0.0063 |
6-MWT (meter) | 210 (±128) | 312 (±126) | <0.0001 | 176 (±141) | 357 (±132) | <0.0001 | 0.034 | 0.0026 |
FT (degrees) | 51.9 (±18.1) | 68.6 (±17.2) | <0.0001 | 52.6 (±15.5) | 73.8 (±14.5) | <0.0001 | 0.706 | 0.0038 |
Δ FT | Δ FIM | Δ 6-MWT | ||||
---|---|---|---|---|---|---|
Beta [95% CI] | p | Beta [95% CI] | p | Beta [95% CI] | p | |
(Intercept) | 20.09 [6.32–33.87] | 0.004 | 9.49 [2.43–16.55] | 0.009 | 237.47 [172.84–302.09] | <0.001 |
No Covid (LG) | −4.37 [−8.23–−0.52] | 0.026 | −3.62 [−5.69–−1.56] | 0.001 | −81.03 [−101.78–−60.27] | <0.001 |
Age | 0.06 [−0.10–0.21] | 0.477 | 0.00 [−0.08–0.07] | 0.933 | −0.32 [−1.04–0.39] | 0.374 |
Sex, female | 0.00 [−3.36–3.36] | 0.999 | −1.40 [−3.10–0.30] | 0.105 | −11.55 [−27.38–4.28] | 0.153 |
BMI | −0.09 [−0.37–0.19] | 0.526 | 0.08 [−0.05–0.22] | 0.232 | −1.06 [−2.36–0.24] | 0.108 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Spielmanns, M.; Pekacka-Egli, A.-M.; Schoendorf, S.; Windisch, W.; Hermann, M. Effects of a Comprehensive Pulmonary Rehabilitation in Severe Post-COVID-19 Patients. Int. J. Environ. Res. Public Health 2021, 18, 2695. https://doi.org/10.3390/ijerph18052695
Spielmanns M, Pekacka-Egli A-M, Schoendorf S, Windisch W, Hermann M. Effects of a Comprehensive Pulmonary Rehabilitation in Severe Post-COVID-19 Patients. International Journal of Environmental Research and Public Health. 2021; 18(5):2695. https://doi.org/10.3390/ijerph18052695
Chicago/Turabian StyleSpielmanns, Marc, Anna-Maria Pekacka-Egli, Sabine Schoendorf, Wolfram Windisch, and Matthias Hermann. 2021. "Effects of a Comprehensive Pulmonary Rehabilitation in Severe Post-COVID-19 Patients" International Journal of Environmental Research and Public Health 18, no. 5: 2695. https://doi.org/10.3390/ijerph18052695
APA StyleSpielmanns, M., Pekacka-Egli, A. -M., Schoendorf, S., Windisch, W., & Hermann, M. (2021). Effects of a Comprehensive Pulmonary Rehabilitation in Severe Post-COVID-19 Patients. International Journal of Environmental Research and Public Health, 18(5), 2695. https://doi.org/10.3390/ijerph18052695