A Gravity-Based Food Flow Model to Identify the Source of Foodborne Disease Outbreaks
<p>(<b>a</b>) Location network-theoretic source estimator using the food-supply network and outbreak cases to predict the contamination source [<a href="#B8-ijerph-17-00444" class="html-bibr">8</a>]. (<b>b</b>) Spatial distribution of sales of one product as input for the food item estimator [<a href="#B9-ijerph-17-00444" class="html-bibr">9</a>].</p> "> Figure 2
<p>(<b>Left</b>): Given consumer zones where outbreaks were reported. (<b>Right</b>): Buffered gravity models around outbreak zones.</p> "> Figure 3
<p>Retailer in a lattice arranged grid [<a href="#B43-ijerph-17-00444" class="html-bibr">43</a>].</p> "> Figure 4
<p>Trip length distribution of shopping trips in Germany.</p> "> Figure 5
<p>Food outflow proportions for retailer zone Wendlingen.</p> "> Figure 6
<p>Decomposed food outflows from <a href="#ijerph-17-00444-f005" class="html-fig">Figure 5</a> for retailer zone Wendlingen.</p> "> Figure 7
<p>Food Supply Network with gravity model connecting retailer and consumer.</p> "> Figure 8
<p>Food Supply Network where consumers are expected to shop intra-zonally.</p> "> Figure 9
<p>Accuracy measure on food network A and B with |<math display="inline"><semantics> <mi>θ</mi> </semantics></math> | = 20.</p> "> Figure 10
<p>Average rank of true brand on food network A and B with |<math display="inline"><semantics> <mi>θ</mi> </semantics></math> | = 20.</p> "> Figure 11
<p>Accuracy of traceback algorithm on food network A based on spread.</p> "> Figure 12
<p>Average rank of true brand on food network A based on spread.</p> ">
Abstract
:1. Introduction
2. Gravity Model
2.1. Method
2.2. Model Inputs
2.2.1. Area of Analysis and Zone Delineation
2.2.2. Inter-Zonal Distance Estimation
2.2.3. Intra-Zonal Distance Estimation
2.2.4. Retailer Revenue Estimation
2.2.5. Consumption Potential Estimation
2.2.6. Observed Trip Data
2.3. Model Calibration
2.4. Gravity Model Results
2.4.1. Food Flow Distribution
- (i)
- How many postal zones are supplied by a retailer zone?
- (ii)
- What proportion of goods are expected to be sold intra-zonally to consumers?
2.4.2. Revenue Estimation of Food Retailers in Affected Regions
2.4.3. Implication of Gravity Model Results
3. Application: Retailer Brand Identification
3.1. Retail Brand Source Identification Model
3.1.1. Network Model
3.1.2. Transmission Model
- The contaminated quantity is fixed and is composed of individual contaminated units that neither spread nor recover from contamination as they travel through the supply network.
- Each unit travels independently through the supply network.
- Each transition of a unit from one node to the next entails an independent transmission direction.
3.1.3. Traceback Algorithm: Bayesian Inference
3.2. Model Evaluation
3.2.1. Food Network Models
Food Network A (with Gravity Model)
Food Network B (without Gravity Model)
3.2.2. Outbreak Simulation
3.2.3. Modeling Results
3.2.4. Interpretation of Results
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- World Health Organisation. WHO Estimates of the Global Burden of Foodborne Diseases; World Health Organization: Geneva, Switzerland, 2015. [Google Scholar]
- Scallan, E.; Hoekstra, R.M.; Angulo, F.J.; Tauxe, R.V.; Widdowson, M.-A.; Roy, S.L.; Jones, J.L.; Griffin, P.M. Foodborne Illness Acquired in the United States—Major Pathogens. Emerg. Infect. Dis. 2011, 17, 7–15. [Google Scholar] [CrossRef] [PubMed]
- Ärztezeitung. RKI Meldet Dritten Listerien-Todesfall. Available online: https://www.aerztezeitung.de/Medizin/RKI-meldet-dritten-Listerien-Todesfall-402360.html (accessed on 1 December 2019).
- Robert Koch Institut. RKI-Archiv 2019—Listeriose-Ausbruch mit Listeria Monocytogenes Sequenz-Cluster-Typ 2521 (Sigma1) in Deutschland. Available online: https://www.rki.de/DE/Content/Infekt/EpidBull/Archiv/2019/41/Art_02.html (accessed on 1 December 2019).
- Tinga, C.; TODD, E.; Cassidy, M.; Pollari, F.; Marshall, B.; Greig, J.; Campbell, G.; Ravel, A. Exploring Historical Canadian Foodborne Outbreak Data Sets for Human Illness Attribution. J. Food Prot. 2016, 72, 1963–1976. [Google Scholar] [CrossRef]
- National Center for Emerging; Zoonotic Infectious Diseases; Division of Foodborne, Waterborne; Environmental Diseases. Surveillance for Foodborne Disease Outbreaks United States, 2017. Annual Report; 2017. Available online: https://www.cdc.gov/fdoss/pdf/2016_FoodBorneOutbreaks_508.pdf (accessed on 7 January 2020).
- Marvin, H.J.P.; Janssen, E.M.; Bouzembrak, Y.; Hendriksen, P.J.M.; Staats, M. Big Data in Food Safety: An Overview. Crit. Rev. Food Sci. Nutr. 2017, 57, 2286–2295. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Horn, A.L.; Friedrich, H. Locating the Source of Large-Scale Diffusion of Foodborne Contamination. J. R. Soc. Interface 2019, 16, 1–11. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Manitz, J.; Kneib, T.; Schlather, M.; Helbing, D.; Brockmann, D. Origin Detection During Food-Borne Disease Outbreaks—A Case Study of the 2011 EHEC/HUS Outbreak in Germany. PLoS Curr. 2014. [Google Scholar] [CrossRef] [PubMed]
- Kaufman, J.; Lessler, J.; Harry, A.; Edlund, S.; Hu, K.; Douglas, J.; Thoens, C.; Appel, B.; Käsbohrer, A.; Filter, M. A Likelihood-Based Approach to Identifying Contaminated Food Products Using Sales Data: Performance and Challenges. PLoS Comput. Biol. 2014, 10, 1–10. [Google Scholar] [CrossRef] [PubMed]
- Norström, M.; Kristoffersen, A.B.; Görlach, F.S.; Nygård, K.; Hopp, P. An Adjusted Likelihood Ratio Approach Analysing Distribution of Food Products to Assist the Investigation of Foodborne Outbreaks. PLoS ONE 2015, 10, 1–13. [Google Scholar] [CrossRef]
- Hu, K.; Renly, S.; Edlund, S.; Davis, M.; Kaufman, J. A Modeling Framework to Accelerate Food-Borne Outbreak Investigations. Food Control 2016, 59, 53–58. [Google Scholar] [CrossRef] [Green Version]
- Infas. Mobilität in Deutschland—Ergebnisbericht; Infas: Brrlin, Germany, 2017. [Google Scholar]
- Veenstra, S.A.; Thomas, T.; Tutert, S.I.A. Trip Distribution for Limited Destinations: A Case Study for Grocery Shopping Trips in the Netherlands. Transportation (Amst.) 2010, 37, 663–676. [Google Scholar] [CrossRef] [Green Version]
- Jonker, N.J.; Venter, C.J. Modeling Trip-Length Distribution of Shopping Center Trips from GPS Data. J. Transp. Eng. Part A Syst. 2019, 145, 04018079. [Google Scholar] [CrossRef]
- McFadden, D. Disaggregate Behavioral Travel Demand’s RUM Side A 30-Year Retrospective; University of Sydney: Sydney, Australia, 2000. [Google Scholar]
- Suhara, Y.; Bahrami, M.; Bozkaya, B.; Pentland, A. Validating Gravity-Based Market Share Models Using Large-Scale Transactional Data; MIT Media Lab: Cambridge, MA, USA, 2019. [Google Scholar]
- Cascetta, E.; Pagliara, F.; Papola, A. Alternative Approaches to Trip Distribution Modelling: A Retrospective Review and Suggestions for Combining Different Approaches. Pap. Reg. Sci. 2007, 86, 597–620. [Google Scholar] [CrossRef]
- Drezner, T. Derived Attractiveness of Shopping Malls. IMA J. Manag. Math. 2006, 17, 349–358. [Google Scholar] [CrossRef]
- Hyman, G.M. The Calibration of Trip Distribution Models. Environ. Plan. 1969, 1, 105–112. [Google Scholar] [CrossRef]
- Furness, K.P. Time Function Iteration. Traffic Eng. Control 1965, 7, 458–460. [Google Scholar]
- Huff, D.L. A Probabilistic Analysis of Shopping Center Trade Areas. Land Econ. 1963, 39, 81. [Google Scholar] [CrossRef]
- Nakanishi, M.; Cooper, L. Parameter Estimation for a Multiplicative Competitive Interaction Model—Least Squares Approach. J. Mark. Res. 1974, 11, 303–311. [Google Scholar] [CrossRef]
- Bawa, K.; Ghosh, A. A Model of Household Grocery Shopping Behavior; Springer: Berlin, Germany, 1999; Volume 10. [Google Scholar]
- De Beule, M.; Van den Poel, D.; Van de Weghe, N. An Extended Huff-Model for Robustly Benchmarking and Predicting Retail Network Performance. Appl. Geogr. 2014, 46, 80–89. [Google Scholar] [CrossRef]
- Baviera-Puig, A.; Buitrago-Vera, J.; Escriba-Perez, C. Geomarketing Strategies in Supermarkt Location Strategies. J. Bus. Econ. Manag. 2016, 17, 1205–1221. [Google Scholar] [CrossRef] [Green Version]
- Suel, E.; Polak, J.W. Development of Joint Models for Channel, Store, and Travel Mode Choice: Grocery Shopping in London. Transp. Res. Part A Policy Pract. 2017, 99, 147–162. [Google Scholar] [CrossRef]
- Wilson, A.G. The Use of the Concept of Entropy in System Modelling. Oper. Res. Q. 1970, 21, 247–265. [Google Scholar] [CrossRef]
- Schlaich, T.; Friedrich, H.; Horn, A. A Gravity-Based Approach to Connect Food Retailers with Consumers for Traceback Models of Food-Borne Diseases. In Complex Networks and Their Applications VIII.; Cherifi, H., Gaito, S., Mendes, J.F., Moro, E., Rocha, R.L., Eds.; Springer: Berlin, Germany, 2020; pp. 363–375. [Google Scholar] [CrossRef]
- De Ortúzar, J.D.; Willumsen, L.G. Modelling Transport; John Wiley & Sons, Ltd.: Chichester, UK, 2011. [Google Scholar] [CrossRef]
- Open Street Map. OpenStreetMap Deutschland: Die freie Wiki-Weltkarte. Available online: https://www.openstreetmap.de/ (accessed on 9 April 2019).
- Statistische Ämter des Bundes und der Länder. ZENSUS2011—Homepage. Available online: https://www.zensus2011.de/EN/Home/home_node.html;jsessionid=8A55DF20B6CB474A1DB6DEFDD94B4949.1_cid389 (accessed on 9 April 2019).
- Mekky, A. A Direct Method for Speeding up the Convergence of the Furness Biproportional Method. Transp. Res. Part B 1983, 17B, 1–11. [Google Scholar] [CrossRef]
- Chang, K.-T.; Khatib, Z.; Ou, Y. Effects of Zoning Structure and Network Detail on Traffic Demand Modeling. Environ. Plan. B Plan. Des. 2002, 29, 37–52. [Google Scholar] [CrossRef]
- Kordi, M.; Kaiser, C.; Fotheringham, A.S. A Possible Solution for the Centroid-to-Centroid and Intra-Zonal Trip Length Problems. In Multidisciplinary Research on Geographical Information in Europe and Beyond; Gense, J., Josselin, D., Vandenbroucke, D., Eds.; Centre for GeoInformatics (CGI): Avignon, France, 2012; pp. 147–152. [Google Scholar]
- Bhatta, B.P.; Larsen, O.I. Are Intrazonal Trips Ignorable? Transp. Policy 2010, 18, 13–22. [Google Scholar] [CrossRef] [Green Version]
- Manout, O.; Bonnel, P. The Impact of Ignoring Intrazonal Trips in Assignment Models: A Stochastic Approach. Transportation (Amst.) 2018, 46, 1–21. [Google Scholar] [CrossRef]
- Zhu, J.; Ye, X. Development of Destination Choice Model with Pairwise District-Level Constants Using Taxi GPS Data. Transp. Res. Part C Emerg. Technol. 2018, 93, 410–424. [Google Scholar] [CrossRef]
- US Bureau of Public Roads. Calibrating and Treating a Gravity Model for Any Size Urban Area; US Bureau of Public Roads: Washington, DC, USA, 1965. [Google Scholar]
- CZuber, E. Geometrische Wahrscheinlichkeiten Und Mittelwerte; T.B. Teubner: Leipzig, Germany, 1884. [Google Scholar]
- Balster, A.; Friedrich, H. Dynamic Freight Flow Modelling for Risk Evaluation in Food Supply. Transp. Res. Part E Logist. Transp. Rev. 2019, 121, 4–22. [Google Scholar] [CrossRef]
- Friedrich, H. Simulation of Logistics in Food Retailing for Freight Transportation Analysis; Karlsruher Institut für Technologie: Karlsruhe, Germany, 2010. [Google Scholar]
- Larson, R.; Odoni, A. Chapter 3.8.3: Application to Facility Location and Districting. In Urban Operations Research; Prentice Hall: New Jersey, NJ, USA, 1981. [Google Scholar]
- Lebensmittel Zeitung. Ranking: Top 30 Lebensmittelhandel Deutschland 2018. Available online: https://www.lebensmittelzeitung.net/handel/Ranking-Top-30-Lebensmittelhandel-Deutschland-2018-134606 (accessed on 6 May 2019).
- REWE Group. REWE Markttypen. Available online: https://www.rewe-group.com/de/unternehmen/vertriebslinien/rewe (accessed on 1 July 2019).
- Edeka. EDEKA Markttypen. Available online: https://verbund.edeka/südbayern/über-uns/märkte-vertrieb/markttypen/ (accessed on 1 July 2019).
- Infas. Mobilität in Deutschland—Wissenschaftlicher Hintergrund. Available online: http://www.mobilitaet-in-deutschland.de/ (accessed on 10 April 2019).
- KNIME. KNIME Analytics Platform|KNIME. Available online: https://www.knime.com/knime-software/knime-analytics-platform (accessed on 14 June 2019).
- Infectious Intestinal Disease Study Team. A Report of the Study of Infectious Intestinal Disease in England; Infectious Intestinal Disease Study Team: London, UK, 2000. [Google Scholar]
- World Health Organization. Foodborne Disease Outbreaks: Guidelines for Investigation and Control WHO Library Cataloguing-in-Publication Data; World Health Organization: Geneva, Switzerland, 2008. [Google Scholar]
- Statista. Marktanteil von Eigenmarken in Deutschland bis 2018|Statista. Available online: https://de.statista.com/statistik/daten/studie/184142/umfrage/umsatzanteil-von-handelsmarken-im-deutschen-einzelhandel/ (accessed on 17 December 2019).
- Baratloo, A.; Hosseini, M.; Negida, A.; El Ashal, G. Part 1: Simple Definition and Calculation of Accuracy, Sensitivity and Specificity. Emergency (Tehran, Iran) 2015, 3, 48–49. [Google Scholar] [CrossRef]
- Rhone, A.; Ploeg, M.V.; Dicken, C.; Williams, R.; Breneman, V. Low-Income and Low-Supermarket-Access Census Tracts, 2010-2015; Economic Research Service: Washington, DC, USA, 2017. [Google Scholar]
Parameter | Flow Threshold | ||
---|---|---|---|
>0% | >5% | >10% | |
Number of supplied consumer zones | 49 | 5.3 | 2.6 |
Proportion of intra-zonal flows | 28.5% |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Schlaich, T.; Horn, A.L.; Fuhrmann, M.; Friedrich, H. A Gravity-Based Food Flow Model to Identify the Source of Foodborne Disease Outbreaks. Int. J. Environ. Res. Public Health 2020, 17, 444. https://doi.org/10.3390/ijerph17020444
Schlaich T, Horn AL, Fuhrmann M, Friedrich H. A Gravity-Based Food Flow Model to Identify the Source of Foodborne Disease Outbreaks. International Journal of Environmental Research and Public Health. 2020; 17(2):444. https://doi.org/10.3390/ijerph17020444
Chicago/Turabian StyleSchlaich, Tim, Abigail L. Horn, Marcel Fuhrmann, and Hanno Friedrich. 2020. "A Gravity-Based Food Flow Model to Identify the Source of Foodborne Disease Outbreaks" International Journal of Environmental Research and Public Health 17, no. 2: 444. https://doi.org/10.3390/ijerph17020444