Dynamic Correlation Analysis Method of Air Pollutants in Spatio-Temporal Analysis
<p>Framework of spatio-temporal correlation analysis on atmospheric pollutants.</p> "> Figure 2
<p>Flow chart of dynamic spatio-temporal correlation algorithm.</p> "> Figure 3
<p>Distribution of air monitoring points. HS: HengShui station.</p> "> Figure 4
<p>Correlation degree between PM<sub>2.5</sub> and PM<sub>10</sub>, CO, temperature, humidity. Temperature and humidity are abbreviated as Tem and Hum, respectively.</p> "> Figure 5
<p>Correlation degrees by different methods.</p> "> Figure 6
<p>Correlation degree deviation between dynamic and static methods.</p> "> Figure 6 Cont.
<p>Correlation degree deviation between dynamic and static methods.</p> "> Figure 7
<p>Cross-correlation degree of any two monitoring points at 4 moments.</p> "> Figure 7 Cont.
<p>Cross-correlation degree of any two monitoring points at 4 moments.</p> "> Figure 8
<p>Correlation degrees between any two points.</p> "> Figure 9
<p>Correlation degrees between two points by contrast methods (data of July 2016).</p> "> Figure 10
<p>Correlation degrees of variable and point crosswise.</p> "> Figure 10 Cont.
<p>Correlation degrees of variable and point crosswise.</p> "> Figure 11
<p>Correlation degree deviation between dynamic and static methods of data in July 2016.</p> ">
Abstract
:1. Introduction
2. Related Work
2.1. Spatio-Temporal Analysis Method
2.1.1. Gas Spatial Diffusion Model
2.1.2. Spatial–Temporal Statistics and Functional Data Analysis
2.2. Correlation Analysis Method
3. Dynamic Spatio-Temporal Correlation Analysis Method
3.1. Spatio-Temporal Correlation Analysis Framework
3.2. Dynamic Correlation Calculation
3.2.1. Adaptive Sliding Window with Information Entropy
3.2.2. Grey Relational Analysis
3.3. Dynamic Spatio-Temporal Correlation Algorithm
4. Experiment and Result
4.1. Dataset and Experiment Setting
4.2. Results
4.2.1. Correlation of Multiple Pollutants
4.2.2. Correlation of Multiple Points
4.2.3. Multidimensional Correlation
5. Discussion
6. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Hopke, P.K.; Ito, K.; Mar, T.; Christensen, W.F.; Eatough, D.J.; Henry, R.C.; Kim, E.; Laden, F.; Lall, R.; Larson, T.V.; et al. PM source apportionment and health effects: 1. Intercomparison of source apportionment results. J. Expo. Sci. Environ. Epidemiol. 2006, 16, 275. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shumake, K.L.; Sacks, J.D.; Lee, J.S.; Johns, D.O. Susceptibility of older adults to health effects induced by ambient air pollutants regulated by the European Union and the United States. Aging Clin. Exp. Res. 2013, 25, 3–8. [Google Scholar] [CrossRef] [PubMed]
- Kim, E.; Hopke, P.K.; Pinto, J.P.; Wilson, W.E. Spatial variability of fine particle mass, components, and source contributions during the regional air pollution study in St. Louis. Environ. Sci. Technol. 2005, 39, 4172–4179. [Google Scholar] [CrossRef] [PubMed]
- Hwang, I.; Hopke, P.K.; Pinto, J.P. Source apportionment and spatial distributions of coarse particles during the regional air pollution study. Environ. Sci. Technol. 2008, 42, 3524–3530. [Google Scholar] [CrossRef] [PubMed]
- Shang, X.; Li, Y.; Pan, Y.; Liu, R.F.; Lai, Y.P. Modification and application of gaussian plume model for an industrial transfer park. Adv. Mater. Res. 2013, 785, 1384–1387. [Google Scholar] [CrossRef]
- Cao, X.; Roy, G.; Hurley, W.J.; Andrews, W.S. Dispersion coefficients for Gaussian puff models. Bound. Layer Meteorol. 2011, 139, 487–500. [Google Scholar] [CrossRef]
- Poulsen, T.G.; Christophersen, M.; Moldrup, P.; Kjeldsen, P. Relating landfill gas emissions to atmospheric pressure using numerical modelling and state-space analysis. Waste Manag. Res. J. Int. Solid Wastes Public Clean. Assoc. Iswa 2003, 21, 356–366. [Google Scholar] [CrossRef]
- Farrell, J.A.; Pang, S.; Li, W. Plume mapping via hidden Markov methods. IEEE Trans. Syst. Manand Cybern. Part B 2003, 33, 850–863. [Google Scholar] [CrossRef] [Green Version]
- Wikle, C.K.; Zammit-Mangion, A.; Cressie, N. Spatio-Temporal Statistics with R; CRC Press: Boca Raton, FL, USA, 2019. [Google Scholar]
- Hefley, T.J.; Hooten, M.B.; Hanks, E.M.; Russell, R.E.; Walsh, D.P. Dynamic spatio-temporal models for spatial data. Spat. Stat. 2017, 20, 206–220. [Google Scholar] [CrossRef]
- Cressie, N.; Wikle, C.K. Statistics for Spatio-Temporal Data; John Wiley & Sons: Hoboken, NJ, USA, 2011. [Google Scholar]
- Mateu, J.; Giraldo, R. Geostatistical Functional Data Analysis: Theory and Methods; John Wiley & Sons: Hoboken, NJ, USA, 2019. [Google Scholar]
- Ramsay, J.O.; Silverman, B.W. Applied Functional Data Analysis: Methods and Case Studies; Springer: New York, NY, USA, 2007. [Google Scholar]
- Baba, K.; Shibata, R.; Sibuya, M. Partial correlation and conditional correlation as measures of conditional independence. Aust. N. Z. J. Stat. 2004, 46, 657–664. [Google Scholar] [CrossRef]
- Wold, S.; Esbensen, K.; Geladi, P. Principal Component analysis. Chemom. Intell. Lab. Syst. 1987, 2, 37–52. [Google Scholar] [CrossRef]
- Kuo, Y.; Yang, T.; Huang, G. The use of grey relational analysis in solving multiple attribute decision-making problems. Comput. Ind. Eng. 2008, 55, 80–93. [Google Scholar] [CrossRef]
- Brusca, S.; Famoso, F.; Lanzafame, R.; Mauro, S.; Garrano, A.M.C.; Monforte, P. Theoretical and experimental study of gaussian plume model in small scale system. Energy Procedia 2016, 101, 58–65. [Google Scholar] [CrossRef]
- Hosseini, B.; Stockie, J.M. Bayesian estimation of airborne fugitive emissions using a Gaussian plume model. Atmos. Environ. 2016, 141, 122–138. [Google Scholar] [CrossRef] [Green Version]
- Guo, D.; Yu, J.; Ban, M. Security-constrained unit commitment considering differentiated regional air pollutant intensity. Sustainability 2018, 10, 1433. [Google Scholar] [CrossRef] [Green Version]
- Ramsay, J.; Hooker, G. Dynamic Data Analysis—Springer Series in Statistics; Springer: New York, NY, USA, 2017. [Google Scholar]
- Bohorquez, M.; Giraldo, R.; Mateu, J. Optimal sampling for spatial prediction of functional data. Stat. Methods Appl. 2016, 25, 39–54. [Google Scholar] [CrossRef]
- Giraldo, R.; Delicado, P.; Mateu, J. Ordinary kriging for function-valued spatial data. Environ. Ecol. Stat. 2011, 18, 411–426. [Google Scholar] [CrossRef] [Green Version]
- Li, X.; Qiu, T.; Chen, G.; Zhong, L.X.; Wu, X.R. Market impact and structure dynamics of the Chinese stock market based on partial correlation analysis. Phys. A Stat. Mech. Its Appl. 2016, 471, 106–113. [Google Scholar] [CrossRef]
- Rahmani, M.; Atia, G. Coherence pursuit: Fast, simple, and robust principal component analysis. IEEE Trans. Signal Process. 2016, 65, 6260–6275. [Google Scholar] [CrossRef]
- Tang, J.; Zhu, H.; Liu, Z.; Jia, F.; Zheng, X.X. Urban sustainability evaluation under the modified TOPSIS based on grey relational analysis. Int. J. Environ. Res. Public Health 2019, 16, 256. [Google Scholar] [CrossRef] [Green Version]
- Porth, I.; White, R.; Jaquish, B.; Ritland, K. Partial correlation analysis of transcriptomes helps detangle the growth and defense network in spruce. New Phytol. 2018, 218, 1349–1359. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Olszewski, A.; Broniowski, W. Partial correlation analysis method in ultrarelativistic heavy-ion collisions. Phys. Rev. C 2017, 96, 054903. [Google Scholar] [CrossRef] [Green Version]
- Calce, S.E.; Kurki, H.K.; Weston, D.A.; Gould, L. Principal Component analysis in the evaluation of osteoarthritis. Am. J. Phys. Anthropol. 2017, 162, 476–490. [Google Scholar] [CrossRef] [PubMed]
- Lionnie, R.; Alaydrus, M. Biometric Identification System Based on Principal Component Analysis. In Proceedings of the 2016 12th International Conference on Mathematics, Statistics, and Their Applications (ICMSA), Banda Aceh, Indonesia, 4–6 October 2016; pp. 59–63. [Google Scholar]
- Cai, L.; Thornhill, N.F.; Kuenzel, S.; Pal, B.C. Wide-area monitoring of power systems using principal component analysis and k-nearest neighbor analysis. IEEE Trans. Power Syst. 2018, 33, 4913–4923. [Google Scholar] [CrossRef] [Green Version]
- Fu, B.; Gao, X.; Wu, L. Grey relational analysis for the AQI of Beijing, Tianjin, and Shijiazhuang and related countermeasures. Grey Syst. Theory Appl. 2018, 8, 156–166. [Google Scholar] [CrossRef]
- Cao, X.; Deng, H.; Lan, W. Use of the grey relational analysis method to determine the important environmental factors that affect the atmospheric corrosion of Q235 carbon steel. Anti-Corros. Methods Mater. 2015, 62, 7–12. [Google Scholar] [CrossRef]
- Hashemi, S.H.; Karimi, A.; Tavana, M. An integrated green supplier selection approach with analytic network process and improved grey relational analysis. Int. J. Prod. Econ. 2015, 159, 178–191. [Google Scholar] [CrossRef]
- Malekpoor, H.; Chalvatzis, K.; Mishra, N.; Mehlawat, M.K.; Zafirakis, D.; Song, M. Integrated grey relational analysis and multi objective grey linear programming for sustainable electricity generation planning. Ann. Oper. Res. 2018, 269, 475–503. [Google Scholar] [CrossRef] [Green Version]
- Wang, H.; Guo, L.; Dou, Z.; Lin, Y. A new method of cognitive signal recognition based on hybrid information entropy and DS evidence theory. Mob. Netw. Appl. 2018, 23, 677–685. [Google Scholar] [CrossRef]
- Bai, Y.; Wang, X.; Sun, Q.; Jin, X.B.; Wang, X.K.; Su, T.L.; Kong, J.L. Spatio-Temporal prediction for the monitoring-blind area of industrial atmosphere based on the fusion network. Int. J. Environ. Res. Public Health 2019, 16, 3788. [Google Scholar] [CrossRef] [Green Version]
- Jin, X.; Yang, N.; Wang, X.; Bai, Y.; Su, T.; Kong, J. Integrated predictor based on decomposition mechanism for PM2.5 long-term prediction. Appl. Sci. 2019, 9, 4533. [Google Scholar] [CrossRef] [Green Version]
- Bai, Y.; Jin, X.; Wang, X.; Su, T.; Kong, J.; Lu, Y. Compound autoregressive network for prediction of multivariate time series. Complexity 2019, 2019, 9107167. [Google Scholar] [CrossRef]
Point No.1 | Point No.2 | ||||
---|---|---|---|---|---|
PM2.5 | SO2 | PM2.5 | CO | ||
Point No.1 | PM2.5 | ★ | |||
SO2 | ★ | ||||
Point No.2 | PM2.5 | ★ | |||
CO | ★ |
Period | FSW-GRA | ASW-PC | ASW-GRA |
---|---|---|---|
PM2.5-PM10 in July 2016 | 0.476 | 0.598 | 0.869 |
PM2.5-temperature in December 2016 | 0.511 | 0.547 | 0.763 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bai, Y.-t.; Jin, X.-b.; Wang, X.-y.; Wang, X.-k.; Xu, J.-p. Dynamic Correlation Analysis Method of Air Pollutants in Spatio-Temporal Analysis. Int. J. Environ. Res. Public Health 2020, 17, 360. https://doi.org/10.3390/ijerph17010360
Bai Y-t, Jin X-b, Wang X-y, Wang X-k, Xu J-p. Dynamic Correlation Analysis Method of Air Pollutants in Spatio-Temporal Analysis. International Journal of Environmental Research and Public Health. 2020; 17(1):360. https://doi.org/10.3390/ijerph17010360
Chicago/Turabian StyleBai, Yu-ting, Xue-bo Jin, Xiao-yi Wang, Xiao-kai Wang, and Ji-ping Xu. 2020. "Dynamic Correlation Analysis Method of Air Pollutants in Spatio-Temporal Analysis" International Journal of Environmental Research and Public Health 17, no. 1: 360. https://doi.org/10.3390/ijerph17010360
APA StyleBai, Y. -t., Jin, X. -b., Wang, X. -y., Wang, X. -k., & Xu, J. -p. (2020). Dynamic Correlation Analysis Method of Air Pollutants in Spatio-Temporal Analysis. International Journal of Environmental Research and Public Health, 17(1), 360. https://doi.org/10.3390/ijerph17010360