The CYGNO Experiment
<p>Transverse and longitudinal diffusion coefficients for He/CF<math display="inline"><semantics> <msub> <mrow/> <mn>4</mn> </msub> </semantics></math> 60/40 (<b>left</b>) and electron drift velocity as a function of the drift field (<b>right</b>).</p> "> Figure 2
<p>Detail of an image collected with the sCMOS sensor of several tracks in cosmic rays.</p> "> Figure 3
<p>Average 3D distance between the production and absorption point for electron- and He-nucleus recoils as a function of their kinetic energy in a He/CF<math display="inline"><semantics> <msub> <mrow/> <mn>4</mn> </msub> </semantics></math> (60/40) gas mixture.</p> "> Figure 4
<p>The <span class="html-small-caps">Lemon</span> prototype [<a href="#B49-instruments-06-00006" class="html-bibr">49</a>]. The elliptical sensitive volume (<b>A</b>), the fast photo-multiplier (<b>B</b>), the optical bellow (<b>C</b>) and the sCMOS-based camera (<b>D</b>) are indicated.</p> "> Figure 5
<p>Distribution of the light content of the <math display="inline"><semantics> <mrow> <msup> <mrow/> <mn>55</mn> </msup> <mi>Fe</mi> </mrow> </semantics></math> events reconstructed from the sCMOS images (<b>left</b>), and distribution of the charge measured by the PMT signals (<b>right</b>).</p> "> Figure 6
<p>Behavior of the normalized number of <math display="inline"><semantics> <mrow> <msup> <mrow/> <mn>55</mn> </msup> <mi>Fe</mi> </mrow> </semantics></math> spots as a function of the drift electric field (<b>left</b>) and event depth in the sensitive volume (<b>right</b>).</p> "> Figure 7
<p>Dependence of <math display="inline"><semantics> <mi>η</mi> </semantics></math> on the left and <math display="inline"><semantics> <msub> <mi>η</mi> <mrow> <mi>P</mi> <mi>M</mi> <mi>T</mi> </mrow> </msub> </semantics></math> on the right as a function of the track distance from the GEM (see text for details).</p> "> Figure 8
<p>Detection efficiency for nuclear recoils (<math display="inline"><semantics> <msubsup> <mi>ϵ</mi> <mi>s</mi> <mrow> <mi>t</mi> <mi>o</mi> <mi>t</mi> <mi>a</mi> <mi>l</mi> </mrow> </msubsup> </semantics></math>) as a function of their detected energy for electron recoils efficiency of 4% (squares) and 1% (circles).</p> "> Figure 9
<p>Pictures of the LIME detector. <b>Left</b>: front view of the field cage with the copper cathode visible at the end. <b>Right</b>: field cage copper rings in the gas vessel.</p> "> Figure 10
<p>CYGNO PHASE_1 Detector Layout.</p> "> Figure 11
<p>CYGNO PHASE_2 possible setup.</p> "> Figure 12
<p>Two examples of the angular distribution of recoils due to DM in Galactic coordinates, obtained by Monte Carlo simulations. Top: helium recoils induced by 10 GeV/c<math display="inline"><semantics> <msup> <mrow/> <mn>2</mn> </msup> </semantics></math> DM. Bottom: fluorine recoils induced by 100 GeV/c<math display="inline"><semantics> <msup> <mrow/> <mn>2</mn> </msup> </semantics></math> DM.</p> "> Figure 13
<p>Relative probability of nuclear recoils being detected, given that a recoil was detected, as a function of the DM mass for the SI (<b>top</b>) and SD (<b>bottom</b>) couplings. An energy threshold of 1 keV<math display="inline"><semantics> <msub> <mrow/> <mrow> <mi>e</mi> <mi>e</mi> </mrow> </msub> </semantics></math> was used, and the quenching factor corrections are included.</p> "> Figure 14
<p>Spin-independent sensitivity for WIMP-nucleon cross-section for 30 m<math display="inline"><semantics> <msup> <mrow/> <mn>3</mn> </msup> </semantics></math> CYGNO detector for 3 years of exposure with different background level assumptions and an operative threshold of 1 keV (top plot) and 0.5 keV (bottom plot). The dashed curves correspond to a HeCF<math display="inline"><semantics> <msub> <mrow/> <mn>4</mn> </msub> </semantics></math> 60/40 detector with N<math display="inline"><semantics> <msub> <mrow/> <mrow> <mi>b</mi> <mi>k</mi> <mi>g</mi> </mrow> </msub> </semantics></math> = 100 (black), 1000 (red) and 10,000 (dark green). The dotted curves show the sensitivity for a HeCF<math display="inline"><semantics> <msub> <mrow/> <mn>4</mn> </msub> </semantics></math>:isobutane 58/40/2 mixture. Current bounds from Xenon1T (violet) [<a href="#B78-instruments-06-00006" class="html-bibr">78</a>], Xenon1T S2 analysis (blue) [<a href="#B79-instruments-06-00006" class="html-bibr">79</a>], DarkSide (cyan) [<a href="#B80-instruments-06-00006" class="html-bibr">80</a>], CRESST III (orange) [<a href="#B81-instruments-06-00006" class="html-bibr">81</a>] and CDMSLite (green) [<a href="#B82-instruments-06-00006" class="html-bibr">82</a>] are also shown. The densely dotted curves show the future expected limits of SuperCDMS Ge (green) [<a href="#B83-instruments-06-00006" class="html-bibr">83</a>] and CRESST (orange) [<a href="#B84-instruments-06-00006" class="html-bibr">84</a>]. The light gray regions denote DM hints by DAMA [<a href="#B85-instruments-06-00006" class="html-bibr">85</a>], while the different gray curves show the neutrino background levels for different targets [<a href="#B86-instruments-06-00006" class="html-bibr">86</a>].</p> "> Figure 15
<p>Spin-dependent sensitivity for WIMP–proton cross sections for 30 m<math display="inline"><semantics> <msup> <mrow/> <mn>3</mn> </msup> </semantics></math> CYGNO detector for 3 years of exposure with different background level assumptions and an operative threshold of 1 keV (<b>top</b> plot) and 0.5 keV (<b>bottom</b> plot). The dashed curves correspond to N<math display="inline"><semantics> <msub> <mrow/> <mrow> <mi>b</mi> <mi>k</mi> <mi>g</mi> </mrow> </msub> </semantics></math> = 100 (black), 1000 (red) and 10,000 (dark green). The dotted curves show the sensitivity for a HeCF<math display="inline"><semantics> <msub> <mrow/> <mn>4</mn> </msub> </semantics></math>:isobutane 58/40/2 mixture. Current bounds from PICO (purple) [<a href="#B88-instruments-06-00006" class="html-bibr">88</a>], DRIFT (orange) [<a href="#B61-instruments-06-00006" class="html-bibr">61</a>], and NEWAGE (cyan) [<a href="#B89-instruments-06-00006" class="html-bibr">89</a>] are also shown. The allowed region by DAMA is denoted by the light green band [<a href="#B90-instruments-06-00006" class="html-bibr">90</a>]. The light gray dotted line representing the neutrino floor for C<math display="inline"><semantics> <msub> <mrow/> <mn>3</mn> </msub> </semantics></math>F<math display="inline"><semantics> <msub> <mrow/> <mn>8</mn> </msub> </semantics></math> is also taken from PICO [<a href="#B88-instruments-06-00006" class="html-bibr">88</a>].</p> "> Figure 16
<p>Angular distribution for electron recoils induced by solar neutrinos for 20 keV and 100 keV energy thresholds with a 30<math display="inline"><semantics> <msup> <mrow/> <mo>∘</mo> </msup> </semantics></math>× 30<math display="inline"><semantics> <msup> <mrow/> <mo>∘</mo> </msup> </semantics></math> angular resolution, shown on the right in log scale.</p> ">
Abstract
:1. Introduction
2. The Experimental Approach
- TPCs usually comprise a sensitive volume, filled with gas or liquid, enclosed between an anode and a cathode generating a suitable electric field in it [22,23,24]. The passage of an ionising particle produces free electrons and ions that start to drift towards the above-mentioned electrodes. These are usually segmented and read out to provide granular information about the charge collection point on the plane. The third coordinate can be evaluated from the drift time measurement. Therefore, TPCs are inherently 3D detectors capable of acquiring large sensitive volumes with a lower amount of readout channels with respect to other high-precision 3D tracking systems;
- Gaseous detectors can feature very low-energy detection thresholds. A single electron cluster can be produced with energy releases of the order of few tens of eV and, in gases, this has a very good chance of reaching the multiplication region to produce a detectable signal;
- A measurement of the total ionisation indicates the energy released by the recoil, and (depending on the readout plane granularity) the profile of the energy deposit along the track can be measured with high precision, providing excellent background discrimination;
- Depending on the energy and mass of the recoiling particle and on the gas density, the track itself indicates the axis of the recoil, and the charge profile along it encodes the track orientation (head-tail), providing an additional powerful observable for DM searches;
- A large choice of gasses can be employed in TPCs, including light nuclei with an odd number of nucleons (such as fluorine), which are also sensitive to both SI and SD interactions in the O(GeV) mass region;
- A room-temperature and atmospheric-pressure detector results in operational and economical advantages, with no need for cooling or vacuum sealing. These choices allow for a simpler technology and experiment realization and more straightforward scaling when compared to cryogenic solutions currently dominating the DM direct search scene;
2.1. The Optical Readout
- Highly performing optical sensors are being developed for commercial applications and can be easily procured;
- Light sensors can be installed outside the sensitive volume, reducing the interference with high-voltage operation and gas contamination;
- The use of suitable lenses allows the possibility of imaging large O(1) m areas with a single sensor while maintaining an O(100) μm effective pixels transverse size.
2.2. The Gas Mixture
- He-nuclei recoils have a sub-millimetre range up to energies of 100 and are thus expected to produce bright spots with sizes mainly dominated by diffusion effects;
- Low-energy (less than 10) electron recoils are, in general, larger then He-nuclei recoils with the same energy and are expected to produce less intense spot-like signals. For a kinetic energy of 10, the electron range becomes longer than 1, and for a few tens of , tracks of a few centimetres are expected.
3. Experimental Results with Lemon Prototype
- A gas sensitive volume of 7 litres contained in a 20 cm long cylindrical field cage (FC) with an elliptical base with 24 cm and 20 cm axes [A];
- A 24 × 20 cm stack of 3 GEMs as the amplification stage facing the sCMOS camera [D], optically coupled through a 50 cm long (see Equation (2)) black bellow [C] to protect the optics from external light, with the bottom electrode of the last GEM used as the anode;
- A mesh-based semitransparent cathode closing the volume on the opposite side, behind which a PMT [B] is placed.
- An He/CF (60/40) gas mixture flux of 200 cc/min;
- An electric drift field within the sensitive volume E = 0.5 kV/cm;
- An electric transfer field in the 2 mm gaps between the GEMs E = 2.5 kV/cm;
- A voltage difference across the two sides of each GEM V = 460 V;
3.1. Operation Stability
- Hot-spots appearing on the GEM surface. While in some cases these would fade out with time, sometimes they started to slowly grow up to tens of nA (on a time scale of minutes). These are very likely due to self-sustaining micro-discharges happening in one or a few GEM holes;
- High charge density due to very high ionizing particles or charge accumulation on electrode imperfections can suddenly discharge across GEM holes. In these events, a sudden increase in the drawn current is recorded with a voltage restoring on the electrodes through protection resistors on a time basis of a few seconds. Even if these events are less frequent than hot spots, they can be dangerous for the GEM structure and the energy released in the discharge can, in principle, damage it.
3.2. Light Yield and Energy Resolution
3.3. Detection Efficiency
3.4. Track Absolute Distance along the Drift Direction
3.5. Detection and Identification of Nuclear and Electron Recoils
4. The CYGNO Experiment Roadmap and Synergies
- PHASE_0: the installation, in 2022, of a large prototype (50 litres of sensitive volume) underground at the INFN-Laboratori Nazionali del Gran Sasso (LNGS) to study its performance in a low background environment and validate MC simulation;
- PHASE_1: testing, in 2024–2026, of the scalability of the experimental approach on a O(1) m detector while studying and minimising the radioactivity background due to apparatus material;
- PHASE_2: depending on the results of the previous phases, a larger scale experiment (30–100 m) will be proposed to explore the 1–10 GeV WIMP mass region with high sensitivity for both SI and SD couplings and the possibility of performing the first measurement of low-energy solar neutrinos. In both cases the directionality capabilities of the CYGNO approach will allow not only detection of the interactions, but will also provide useful information for astrophysical studies of incoming particles.
4.1. CYGNO PHASE_0: The LIME Prototype
- The detector performance in low radioactivity and a low pile-up configuration to be tested;
- The real radioactive background present in the site to be characterized, and then the GEANT4 simulation to be validated.
4.2. CYGNO PHASE_1: The O(1) m Demonstrator
- Camera exposure from 0.2 to 1 second (1 to 5 Hz frame rate);
- 10 MB of data per picture (5 MP, 16 bits/pixel);
- 12-bit digitization of photodetector waveforms at MS/s in s windows.
PHASE_1 Shielding Scheme and Material Budget
4.3. CYGNO PHASE_2
- The development of custom sCMOS sensors, with features focused on CYGNO requirements: low noise, high sensitivity and reduced intrinsic radioactivity together with a lower production cost;
- The design and realisation of low-radioactivity lenses with fixed focus and large aperture;
- The reduction of the intrinsic detector material radioactivity, with the lesson learned after the results obtained with PHASE_1;
- The development of innovative gas mixtures for optical readout (illustrated in the following sub-sections) to boost the tracking performances and improve sensitivity for low energy releases.
4.4. Hydrogen Rich Gas Mixtures
- Momentum transfer is more efficient, as shown in Equation (1);
- Longer lengths of light nuclear recoils in gas produces tracks which are more easy to detect and with a clearer direction.
4.5. INITIUM: An Innovative Negative Ion Time Projection Chamber for Underground Dark Matter Searches
5. CYGNO Scientific Goals and Expected Physics Performances
5.1. WIMP-like DM Searches at Low Masses through Nuclear Recoil Signature
5.2. Directional Searches for MeV Dark Matter Produced by Supernovae through Nuclear Recoil
5.3. Solar Neutrino Detection through Both Nuclear and Electron Recoil Signature
6. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A. Statistical Analysis for the Sensitivity Limit Evaluation
- —posterior probability function for the paramenter , given ;
- —prior probability of a parameter. This includes the expectations of the parameters as well as constraints and knowledge previously obtained from other experiments;
- —free and of interest parameter representing the expected events due to WIMP-induced recoil () or background (), given a certain WIMP mass (the analysis performs a raster scan);
- —vector of nuisance parameters, necessary to describe theoretical assumptions and experimental conditions that can affect the results. They can be not completely known and may depend on prior probability distributions. For example, when , , the events expected from the background becomes a nuisance parameter;
- —data set. Can be made of actual experimental data or simulated data;
- H—hypothesis under test. It can be the hypothesis of pure background, , or the one where both background and signal are present, ;
- —nuisance parameters space.
- —total number of events of the data sample;
- i—index representing the bin of the histogram in the 2D angular galactic coordinates;
- —number of events occurring in the i-th bin;
- —the expected events due to WIMP-induced recoil () or background (), given a certain WIMP mass;
- —the probability of single event to end up in the i-th bin, according to x model (background or signal).
References
- Bertone, G.; Hooper, D.; Silk, J. Particle dark matter: Evidence, candidates and constraints. Phys. Rept. 2005, 405, 279–390. [Google Scholar] [CrossRef] [Green Version]
- Mayet, F.; Green, A.M.; Battat, J.B.R.; Billard, J.; Bozorgnia, N.; Gelmini, G.B.; Gondolo, P.; Kavanagh, B.J.; Lee, S.K.; Loomba, D.; et al. A review of the discovery reach of directional Dark Matter detection. Phys. Rept. 2016, 627, 1–49. [Google Scholar] [CrossRef] [Green Version]
- Zurek, K.M. Asymmetric Dark Matter: Theories, Signatures, and Constraints. Phys. Rept. 2014, 537, 91–121. [Google Scholar] [CrossRef] [Green Version]
- Petraki, K.; Volkas, R.R. Review of asymmetric dark matter. Int. J. Mod. Phys. A 2013, 28, 1330028. [Google Scholar] [CrossRef] [Green Version]
- Hochberg, Y.; Kuflik, E.; Murayama, H.; Volansky, T.; Wacker, J.G. Model for Thermal Relic Dark Matter of Strongly Interacting Massive Particles. Phys. Rev. Lett. 2015, 115, 021301. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Essig, R.; Mardon, J.; Volansky, T. Direct Detection of Sub-GeV Dark Matter. Phys. Rev. D 2012, 85, 076007. [Google Scholar] [CrossRef] [Green Version]
- Essig, R.; Manalaysay, A.; Mardon, J.; Sorensen, P.; Volansky, T. First Direct Detection Limits on sub-GeV Dark Matter from XENON10. Phys. Rev. Lett. 2012, 109, 021301. [Google Scholar] [CrossRef] [Green Version]
- Agnes, P.; Albuquerque, I.F.M.; Alexander, T.; Alton, A.K.; Araujo, G.R.; Asner, D.M.; Ave, M.; Back, H.O.; Baldin, B.; Batignani, G.; et al. Constraints on Sub-GeV Dark-Matter–Electron Scattering from the DarkSide-50 Experiment. Phys. Rev. Lett. 2018, 121, 111303. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Crisler, M.; Essig, R.; Estrada, J.; Fernandez, G.; Tiffenberg, J.; Sofo haro, M.; Volansky, T.; Yu, T.T. SENSEI: First Direct-Detection Constraints on sub-GeV Dark Matter from a Surface Run. Phys. Rev. Lett. 2018, 121, 061803. [Google Scholar] [CrossRef] [Green Version]
- Agnese, R.; Aralis, T.; Aramaki, T.; Arnquist, I.J.; Azadbakht, E.; Baker, W.; Banik, S.; Barker, D.; Bauer, D.A.; Binder, T.; et al. First Dark Matter Constraints from a SuperCDMS Single-Charge Sensitive Detector. Phys. Rev. Lett. 2018, 121, 051301, [Erratum: Phys.Rev. Lett. 2019, 122, 069901]. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Aprile, E.; Aalbers, J.; Agostini, F.; Alfonsi, M.; Althueser, L.; Amaro, F.D.; Antochi, V.C.; Angelino, E.; Angevaare, J.R.; Arneodo, F.; et al. Excess electronic recoil events in XENON1T. Phys. Rev. D 2020, 102, 072004. [Google Scholar] [CrossRef]
- Bernabei, R.; Belli, P.; Montecchia, F.; Nozzoli, F.; Cappella, F.; Incicchitti, A.; Prosperi, D.; Cerulli, R.; Dai, C.J.; He, H.L.; et al. On electromagnetic contributions in WIMP quests. Int. J. Mod. Phys. A 2007, 22, 3155–3168. [Google Scholar] [CrossRef] [Green Version]
- Ibe, M.; Nakano, W.; Shoji, Y.; Suzuki, K. Migdal Effect in Dark Matter Direct Detection Experiments. J. High Energy Phys. 2018, 2018, 194. [Google Scholar] [CrossRef]
- Bell, N.F.; Dent, J.B.; Newstead, J.L.; Sabharwal, S.; Weiler, T.J. Migdal effect and photon bremsstrahlung in effective field theories of dark matter direct detection and coherent elastic neutrino-nucleus scattering. Phys. Rev. D 2020, 101, 015012. [Google Scholar] [CrossRef] [Green Version]
- Dolan, M.J.; Kahlhoefer, F.; McCabe, C. Directly detecting sub-GeV dark matter with electrons from nuclear scattering. Phys. Rev. Lett. 2018, 121, 101801. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Grilli di Cortona, G.; Messina, A.; Piacentini, S. Migdal effect and photon Bremsstrahlung: Improving the sensitivity to light dark matter of liquid argon experiments. J. High Energy Phys. 2020, 11, 034. [Google Scholar] [CrossRef]
- Cavoto, G.; Luchetta, F.; Polosa, A.D. Sub-GeV Dark Matter Detection with Electron Recoils in Carbon Nanotubes. Phys. Lett. 2018, B776, 338–344. [Google Scholar] [CrossRef]
- Baracchini, E.; Derocco, W.; Dho, G. Discovering supernova-produced dark matter with directional detectors. Phys. Rev. D 2020, 102, 075036. [Google Scholar] [CrossRef]
- Seguinot, J.; Ypsilantis, T.; Zichichi, A. A High rate solar neutrino detector with energy determination. Conf. Proc. C 1992, 920310, 289–313. [Google Scholar]
- Arpesella, C.; Broggini, C.; Cattadori, C. A possible gas for solar neutrino spectroscopy. Astropart. Phys. 1996, 4, 333–341. [Google Scholar] [CrossRef]
- Vahsen, S.E.; O’Hare, C.A.J.; Lynch, W.A.; Spooner, N.J.C.; Baracchini, E.; Barbeau, P.; Battat, J.B.R.; Crow, B.; Deaconu, C.; Eldridge, C.; et al. CYGNUS: Feasibility of a nuclear recoil observatory with directional sensitivity to dark matter and neutrinos. arXiv 2020, arXiv:2008.12587. [Google Scholar]
- Marx, J.N.; Nygren, D.R. The Time Projection Chamber. Phys. Today 1978, 31N10, 46–53. [Google Scholar] [CrossRef]
- Nygren, D.R. The Time Projection Chamber: A New 4 pi Detector for Charged Particles. eConf 1974, C740805, 58. [Google Scholar]
- Atwood, W.B.; Barczewski, T.; Bauerdickd, L.A.T.; Bellantoni, L.; Blucher, E.; Blum, W.; Boudreau, J.; Boyle, O.; Cinabro, D.; Conway, J.; et al. Performance of the ALEPH time projection chamber. Nucl. Instrum. Meth. A 1991, 306, 446–458. [Google Scholar] [CrossRef] [Green Version]
- Alme, J.; Andres, Y.; Appelshauser, H.; Bablok, S.; Bialas, N.; Bolgen, R.; Bonnes, U.; Bramm, R.; Braun-Munzinger, P.; Campagnolo, R.; et al. The ALICE TPC, a large 3-dimensional tracking device with fast readout for ultra-high multiplicity events. Nucl. Instrum. Meth. A 2010, 622, 316–367. [Google Scholar] [CrossRef] [Green Version]
- Lippmann, C. Upgrade of the ALICE Time Projection Chamber. Nucl. Instrum. Methods Phys. Res. Sect. Accel. Spectrometers Detect. Assoc. Equip. 2014, 958, 162058. [Google Scholar]
- Fraga, M.M.F.R.; Fraga, F.A.F.; Fetal, S.T.G.; Margato, L.M.S.; Ferreira-Marques, R.; Policarpo, A.J.P.L. The GEM scintillation in He CF4, Ar CF4, Ar TEA and Xe TEA mixtures. Nucl. Instrum. Meth. 2003, A504, 88–92. [Google Scholar] [CrossRef]
- Margato, L.M.S.; Morozov, A.; Fraga, M.M.F.R.; Pereira, L.; Fraga, F.A.F. Effective decay time of CF4 secondary scintillation. J. Instrum. 2013, 8, P07008. [Google Scholar] [CrossRef]
- Baracchini, E.; Benussi, L.; Bianco, S.; Capoccia, C.; Caponero, M.; Cavoto, G.; Cortez, A.; Costa, I.A.; Marco, E.D.; D’Imperio, G.; et al. First evidence of luminescence in a He/CF4 gas mixture induced by non-ionizing electrons. J. Instrum. 2020, 15, P08018. [Google Scholar] [CrossRef]
- Monteiro, C.M.B.; Fernandes, L.M.P.; Veloso, J.F.C.A.; Oliveira, C.A.B.; dos Santos, J.M.F. Secondary scintillation yield from GEM and THGEM gaseous electron multipliers for direct dark matter search. Phys. Lett. B 2012, 714, 18–23. [Google Scholar] [CrossRef] [Green Version]
- Dominik, W.; Zaganidis, N.; Astier, P.; Charpak, G.; Santiard, J.C.; Sauli, F.; Tribollet, E.; Geissbuhler, A.; Townsend, D. A gaseous detector for high accuracy autoradiography of radioactive compounds with optical readout of avalanche positions. Nucl. Instrum. Meth. A 1989, 278, 779. [Google Scholar] [CrossRef] [Green Version]
- Sauli, F. GEM: A new concept for electron amplification in gas detectors. Nucl. Instrum. Meth. A 1997, 386, 531–534. [Google Scholar] [CrossRef]
- Margato, L.M.S.; Fraga, F.A.F.; Fetal, S.T.G.; Fraga, M.M.F.R.; Balau, E.F.S.; Blanco, A.; Ferreira-Marques, R.; Policarpo, A.J.P.L. Performance of an optical readout GEM-based TPC. Nucl. Instrum. Meth. 2004, A535, 231–235. [Google Scholar] [CrossRef]
- Marafini, M.; Patera, V.; Pinci, D.; Sarti, A.; Sciubba, A.; Spiriti, E. High granularity tracker based on a Triple-GEM optically read by a CMOS-based camera. J. Instrum. 2015, 10, P12010. [Google Scholar] [CrossRef] [Green Version]
- Phan, N.S.; Lee, E.R.; Loomba, D. Imaging 55Fe Electron Tracks in a GEM-based TPC Using a CCD Readout. arXiv 2017, arXiv:1703.09883. [Google Scholar] [CrossRef]
- Fraga, F.A.F.; Margato, L.M.S.; Fetal, S.T.; Fraga, M.M.F.R.; Ferreira-Marques, R.; Policarpo, A.J.P.L.; Guerard, B.; Oed, A.; Manzini, G.; van Vuure, T. CCD readout of GEM-based neutron detectors. Nucl. Instrum. Meth. A 2002, 478, 357–361. [Google Scholar] [CrossRef] [Green Version]
- Mavrokoridis, K.; Ball, F.; Carroll, J.; Lazos, M.; McCormick, K.J.; Smith, N.A.; Touramanis, C.; Walker, J. Optical Readout of a Two Phase Liquid Argon TPC using CCD Camera and THGEMs. J. Instrum. 2014, 9, P02006. [Google Scholar] [CrossRef] [Green Version]
- Marafini, M.; Patera, V.; Pinci, D.; Sarti, A.; Sciubba, A.; Spiriti, E. ORANGE: A high sensitivity particle tracker based on optically read out GEM. Nucl. Instrum. Meth. 2017, A845, 285–288. [Google Scholar] [CrossRef]
- Antochi, V.C.; Baracchini, E.; Cavoto, G.; Marco, E.D.; Marafini, M.; Mazzitelli, G.; Pinci, D.; Renga, F.; Tomassini, S.; Voena, C. Combined readout of a triple-GEM detector. J. Instrum. 2018, 13, P05001. [Google Scholar] [CrossRef] [Green Version]
- Marafini, M.; Patera, V.; Pinci, D.; Sarti, A.; Sciubba, A.; Torchia, N.M. Study of the Performance of an Optically Readout Triple-GEM. IEEE Trans. Nucl. Sci. 2018, 65, 604–608. [Google Scholar] [CrossRef]
- Pinci, D.; Baracchini, E.; Cavoto, G.; Marco, E.D.; Marafini, M.; Mazzitelli, G.; Renga, F.; Tomassini, S.; Voena, C. High resolution TPC based on optically readout GEM. Nucl. Instrum. Methods Phys. Res. Sect. Accel. Spectrometers Detect. Assoc. Equip. 2018, 936, 453–455. [Google Scholar] [CrossRef]
- Antochi, V.C.; Cavoto, G.; Costa, I.A.; Marco, E.D.; D’Imperio, G.; Iacoangeli, F.; Marafini, M.; Messina, A.; Pinci, D.; Renga, F.; et al. A GEM-based Optically Readout Time Projection Chamber for charged particle tracking. arXiv 2020, arXiv:physics.ins-det/2005.12272. [Google Scholar]
- Baracchini, E.; Benussi, L.; Bianco, S.; Capoccia, C.; Caponero, M.; Cavoto, G.; Cortez, A.; Costa, I.A.; Di Marco, E.; D’Imperio, G.; et al. Stability and detection performance of a GEM-based Optical Readout TPC with He/CF4 gas mixtures. J. Instrum. 2020, 15, P10001. [Google Scholar] [CrossRef]
- Campagnola, R. Study and Optimization of the Light-Yield of a Triple-GEM Detector. Ph.D. Thesis, Sapienza University of Rome, Roma, Italy, 2018. [Google Scholar]
- Veenhof, R. Garfield, a drift chamber simulation program. Conf. Proc. C 1993, 9306149, 66–71. [Google Scholar]
- Veenhof, R. GARFIELD, recent developments. Nucl. Instrum. Meth. A 1998, 419, 726–730. [Google Scholar] [CrossRef]
- Agostinelli, S.; Allison, J.; Amako, K.; Apostolakis, J.; Araujo, H.; Arce, P.; Asa, M.; Axen, D.; Banerjee, S.; Barrand, G.; et al. GEANT4: A Simulation toolkit. Nucl. Instrum. Meth. A 2003, 506, 250–303. [Google Scholar] [CrossRef] [Green Version]
- Costa, I.A.; Baracchini, E.; Bellini, F.; Benussi, L.; Bianco, S.; Caponero, M.; Cavoto, G.; D’Imperio, G.; Marco, E.D.; Maccarrone, G.; et al. Performance of optically readout GEM-based TPC with a 55Fe source. J. Instrum. 2019, 14, P07011. [Google Scholar] [CrossRef] [Green Version]
- Antochi, V.; Baracchini, E.; Benussi, L.; Bianco, S.; Capoccia, C.; Caponero, M.; Cavoto, G.; Cortez, A.; Costa, I.; Di Marco, E.; et al. Performance of an optically read out time projection chamber with ultra-relativistic electrons. Nucl. Instrum. Methods Phys. Res. Sect. A Accel. Spectrometers Detect. Assoc. Equip. 2021, 999, 165209. [Google Scholar] [CrossRef]
- Buonomo, B.; Di Giulio, C.; Foggetta, L.G.; Valente, P. A Hardware and Software Overview on the New BTF Transverse Profile Monitor. In Proceedings of the 2016 International Beam Instrumentation Conference, (IBIC’16), Barcelona, Spain, 11–15 September 2016; pp. 818–821. [Google Scholar] [CrossRef]
- Valente, P.; Buonomo, B.; Di Giulio, C.; Foggetta, L.G. Frascati Beam-Test Facility (BTF) High Resolution Beam Spot Diagnostics. In Proceedings of the 5th International Beam Instrumentation Conference (IBIC 2016), Barcelona, Spain, 11–15 September 2016; pp. 222–225. [Google Scholar] [CrossRef]
- Blum, W.; Rolandi, L.; Riegler, W. Particle Detection with Drift Chambers; Particle Acceleration and Detection; Springer: Berlin/Heidelberg, Germany, 2008; ISBN 9783540766834. [Google Scholar] [CrossRef] [Green Version]
- Pinci, D. A triple-GEM Detector for the Muon System of the LHCb Experiment. Ph.D. Thesis, Cagliari University, Cagliari, Italy, 2006. Available online: http://cds.cern.ch/record/1005178 (accessed on 18 November 2021).
- Anderson, W.S.; Armitage, J.C.; Dunn, E.; Heinrich, J.G.; Lu, C.; McDonald, K.T.; Weckel, J.; Zhu, Y. Electron attachment, effective ionization coefficient, and electron drift velocity for CF-4 gas mixtures. Nucl. Instrum. Meth. A 1992, 323, 273–279. [Google Scholar] [CrossRef]
- Baracchini, E.; Benussi, L.; Bianco, S.; Capoccia, C.; Caponero, M.; Cavoto, G.; Cortez, A.; Costa, I.A.; Di Marco, E.; D’Imperio, G.; et al. A density-based clustering algorithm for the CYGNO data analysis. J. Instrum. 2020, 15, T12003. [Google Scholar] [CrossRef]
- Ester, M.; Kriegel, H.P.; Sander, J.; Xu, X. A Density-based Algorithm for Discovering Clusters a Density-based Algorithm for Discovering Clusters in Large Spatial Databases with Noise. In Proceedings of the Second International Conference on Knowledge Discovery and Data Mining (KDD’96), Ortland, OR, USA, 2–4 August 1996; pp. 226–231. [Google Scholar]
- Caselles, V.; Kimmel, R.; Sapiro, G. Geodesic Active Contours. Int. J. Comput. Vis. 1997, 22, 61–79. [Google Scholar] [CrossRef]
- Marquez-Neila, P.; Baumela, L.; Alvarez, L. A Morphological Approach to Curvature-Based Evolution of Curves and Surfaces. IEEE Trans. Pattern Anal. Mach. Intell. 2014, 36, 2–17. [Google Scholar] [CrossRef] [PubMed]
- Baracchini, E.; Benussi, L.; Bianco, S.; Capoccia, C.; Caponero, M.; Cavoto, G.; Cortez, A.; Costa, I.A.; Di Marco, E.; D’Imperio, G.; et al. Identification of low energy nuclear recoils in a gas TPC with optical readout. Meas. Sci. Technol. 2020, 32, 025902. [Google Scholar] [CrossRef]
- Daw, E.; Dorofeev, A.; Fox, J.R.; Gauvreau, J.-L.; Ghag, C.; Harmon, L.J.; Harton, J.L.; Gold, M.; Lee, E.R.; Loomba, D.; et al. The DRIFT Directional Dark Matter Experiments. EAS Publ. Ser. 2012, 53, 11–18. [Google Scholar] [CrossRef]
- Battat, J.; Ezeribe, A.; Gauvreau, J.L.; Harton, J.; Lafler, R.; Law, E.; Lee, E.; Loomba, D.; Lumnah, A.; Miller, E.; et al. Low Threshold Results and Limits from the DRIFT Directional Dark Matter Detector. Astropart. Phys. 2017, 91, 65–74. [Google Scholar] [CrossRef] [Green Version]
- Battat, J.B.R.; Daw, E.; Dorofeev, A.; Ezeribe, A.C.; Fox, J.R.; Gauvreau, J.-L.; Gold, M.; Harmon, L.; Harton, J.; Lafler, R.; et al. Reducing DRIFT Backgrounds with a Submicron Aluminized-Mylar Cathode. Nucl. Instrum. Meth. A 2015, 794, 33–46. [Google Scholar] [CrossRef] [Green Version]
- Colaleo, A.; Safonov, A.; Sharma, A.; Tytgat, M. CMS Technical Design Report for the Muon Endcap GEM Upgrade; CERN-LHCC-2015-012, CMS-TDR-013; CERN: Geneva, Switzerland, 2015. [Google Scholar]
- Riffard, Q.; Santos, D.; Guillaudin, O.; Bosson, G.; Bourrion, O.; Bouvier, J.; Descombes, T.; Muraz, J.-F.; Lebreton, L.; Maire, D.; et al. MIMAC low energy electron-recoil discrimination measured with fast neutrons. J. Instrum. 2016, 11, P08011. [Google Scholar] [CrossRef] [Green Version]
- Phan, N.S.; Lauer, R.J.; Lee, E.R.; Loomba, D.; Matthews, J.A.J.; Miller, E.H. GEM-based TPC with CCD Imaging for Directional Dark Matter Detection. Astropart. Phys. 2016, 84, 82–96. [Google Scholar] [CrossRef] [Green Version]
- Castel, J.; Cebrian, S.; Coarasa, I.; Dafni, T.; Galan, J.; Iguaz, F.J.; Irastorza, I.G.; Luzon, G.; Mirallas, H.; Ortiz de Solorzano, A.; et al. Background assessment for the TREX Dark Matter experiment. Eur. Phys. J. C 2019, 79, 782. [Google Scholar] [CrossRef] [Green Version]
- Martoff, C.J.; Snowden-Ifft, D.P.; Ohnuki, T.; Spooner, N.; Lehner, M. Suppressing drift chamber diffusion without magnetic field. Nucl. Instrum. Meth. A 2000, 440, 355–359. [Google Scholar] [CrossRef]
- Ohnuki, T.; Snowden-Ifft, D.P.; Martoff, C.J. Measurement of carbon disulfide anion diffusion in a TPC. Nucl. Instrum. Meth. A 2001, 463, 142–148. [Google Scholar] [CrossRef] [Green Version]
- Phan, N.S.; Lafler, R.; Lauer, R.J.; Lee, E.R.; Loomba, D.; Matthews, J.A.J.; Miller, E.H. The novel properties of SF6 for directional dark matter experiments. J. Instrum. 2017, 12, P02012. [Google Scholar] [CrossRef] [Green Version]
- Ikeda, T.; Shimada, T.; Ishiura, H.; Nakamura, K.D.; Nakamura, T.; Miuchi, K. Development of a negative ion micro TPC detector with SF6 gas for the directional dark matter search. J. Instrum. 2020, 15, P07015. [Google Scholar] [CrossRef]
- Lightfoot, P.K.; Spooner, N.J.C.; Lawson, T.B.; Aune, S.; Giomataris, I. First operation of bulk micromegas in low pressure negative ion drift gas mixtures for dark matter searches. Astropart. Phys. 2007, 27, 490–499. [Google Scholar] [CrossRef]
- Baracchini, E.; Cavoto, G.; Mazzitelli, G.; Murtas, F.; Renga, F.; Tomassini, S. Negative Ion Time Projection Chamber operation with SF6 at nearly atmospheric pressure. J. Instrum. 2018, 13, P04022. [Google Scholar] [CrossRef]
- Lewin, J.; Smith, P. Review of mathematics, numerical factors, and corrections for dark matter experiments based on elastic nuclear recoil. Astropart. Phys. 1996, 6, 87–112. [Google Scholar] [CrossRef] [Green Version]
- Gondolo, P. Recoil momentum spectrum in directional dark matter detectors. Phys. Rev. D 2002, 66. [Google Scholar] [CrossRef] [Green Version]
- Baxter, D.; Bloch, I.M.; Bodnia, E.; Chen, X.; Conrad, J.; Gangi, P.D.; Dobson, J.E.Y.; Durnford, D.; Haselschwardt, S.J.; Kaboth, A.; et al. Recommended conventions for reporting results from direct dark matter searches. arXiv 2021, arXiv:2105.00599. [Google Scholar] [CrossRef]
- Nakamura, K.; Miuchi, K.; Iwaki, S.; Kubo, H.; Mizumoto, T.; Nishimura, H.; Parker, J.D.; Sawano, T.; Takada, A.; Tanimori, T.; et al. Low pressure gas study for a direction-sensitive dark matter search experiment with MPGD. J. Instrum. 2012, 7, C02023. [Google Scholar] [CrossRef]
- Smith, M.C.; Ruchti, G.R.; Helmi, A.; Wyse, R.F.G.; Fulbright, J.P.; Freeman, K.C.; Navarro, J.F.; Seabroke, G.M.; Steinmetz, M.; Williams, M.; et al. The RAVE survey: Constraining the local Galactic escape speed. Mon. Not. R. Astron. Soc. 2007, 379, 755–772. [Google Scholar] [CrossRef]
- Aprile, E.; Aalbers, J.; Agostini, F.; Alfonsi, M.; Althueser, L.; Amaro, F.; Anthony, M.; Arneodo, F.; Baudis, L.; Bauermeister, B.; et al. Dark Matter Search Results from a One Ton-Year Exposure of XENON1T. Phys. Rev. Lett. 2018, 121, 111302. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Aprile, E.; Aalbers, J.; Agostini, F.; Alfonsi, M.; Althueser, L.; Amaro, F.; Antochi, V.; Angelino, E.; Arneodo, F.; Barge, D.; et al. Light Dark Matter Search with Ionization Signals in XENON1T. Phys. Rev. Lett. 2019, 123, 251801. [Google Scholar] [CrossRef] [Green Version]
- Agnes, P.; Albuquerque, I.; Alexander, T.; Alton, A.; Araujo, G.; Asner, D.; Ave, M.; Back, H.; Baldin, B.; Batignani, G.; et al. Low-Mass Dark Matter Search with the DarkSide-50 Experiment. Phys. Rev. Lett. 2018, 121, 081307. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mancuso, M.; Abdelhameed, A.H.; Angloher, G.; Breier, R.; Bauer, P.; Bento, A.; Bertoldo, E.; Bucci, C.; Canonica, L.; D’Addabbo, A.; et al. Searches for Light Dark Matter with the CRESST-III Experiment. J. Low Temp. Phys. 2020, 199, 547–555. [Google Scholar] [CrossRef] [Green Version]
- Agnese, R.; Anderson, A.; Aralis, T.; Aramaki, T.; Arnquist, I.; Baker, W.; Balakishiyeva, D.; Barker, D.; Basu Thakur, R.; Bauer, D.; et al. Low-mass dark matter search with CDMSlite. Phys. Rev. D 2018, 97, 022002. [Google Scholar] [CrossRef] [Green Version]
- Agnese, R.; Anderson, A.J.; Aramaki, T.; Arnquist, I.; Baker, W.; Barker, D.; Basu Thakur, R.; Bauer, D.A.; Borgland, A.; Bowles, M.A.; et al. Projected Sensitivity of the SuperCDMS SNOLAB experiment. Phys. Rev. D 2017, 95, 082002. [Google Scholar] [CrossRef] [Green Version]
- Willers, M.; Angloher, G.; Bento, A.; Bucci, C.; Canonica, L.; Defay, X.; Erb, A.; Feilitzsch, F.V.; Iachellini, N.F.; Gütlein, A.; et al. Direct dark matter search with the CRESST-III experiment-status and perspectives. J. Phys. Conf. Ser. 2017, 888, 012209. [Google Scholar] [CrossRef] [Green Version]
- Savage, C.; Gelmini, G.; Gondolo, P.; Freese, K. Compatibility of DAMA/LIBRA dark matter detection with other searches. J. Cosmol. Astropart. Phys. 2009, 2009, 010. [Google Scholar] [CrossRef] [Green Version]
- Bœhm, C.; Cerdeño, D.G.; Machado, P.A.N.; Olivares-Del Campo, A.; Perdomo, E.; Reid, E. How high is the neutrino floor? J. Cosmol. Astropart. Phys. 2019, 2019, 043. [Google Scholar] [CrossRef] [Green Version]
- Galbiati, C. Future Dark Matter Searches with Low-Radioactivity Argon, by The Global Argon Dark Matter Collaboration. Input to the European Particle Physics Strategy Update. Available online: https://indico.cern.ch/event/765096/contributions/3295671/attachments/1785196/2906164/DarkSide-ArgoESPPDec172017.pdf (accessed on 18 November 2021).
- Amole, C.; Ardid, M.; Arnquist, I.; Asner, D.; Baxter, D.; Behnke, E.; Bressler, M.; Broerman, B.; Cao, G.; Chen, C.; et al. Dark matter search results from the complete exposure of the PICO-60 C3F8 bubble chamber. Phys. Rev. D 2019, 100, 022001. [Google Scholar] [CrossRef] [Green Version]
- Yakabe, R.; Nakamura, K.; Ikeda, T.; Ito, H.; Yamaguchi, Y.; Taishaku, R.; Nakazawa, M.; Ishiura, H.; Nakamura, T.; Shimada, T.; et al. First limits from a 3d-vector directional dark matter search with the NEWAGE-0.3b’ detector. Prog. Theor. Exp. Phys. 2020, 2020, 113F01. [Google Scholar] [CrossRef]
- Savage, C.; Gondolo, P.; Freese, K. Can WIMP spin dependent couplings explain DAMA data, in light of null results from other experiments? Phys. Rev. D 2004, 70, 123513. [Google Scholar] [CrossRef] [Green Version]
- DeRocco, W.; Graham, P.W.; Kasen, D.; Marques-Tavares, G.; Rajendran, S. Supernova signals of light dark matter. Phys. Rev. D 2019, 100, 075018. [Google Scholar] [CrossRef] [Green Version]
- Billard, J.; Strigari, L.; Figueroa-Feliciano, E. Implication of neutrino backgrounds on the reach of next generation dark matter direct detection experiments. Phys. Rev. D 2014, 89, 023524. [Google Scholar] [CrossRef] [Green Version]
- Bertuzzo, E.; Deppisch, F.F.; Kulkarni, S.; Perez Gonzalez, Y.F.; Zukanovich Funchal, R. Dark Matter and Exotic Neutrino Interactions in Direct Detection Searches. J. High Energy Phys. 2017, 2017, 073. [Google Scholar] [CrossRef] [Green Version]
- Soffitta, P.; Muleri, F.; Fabiani, S.; Costa, E.; Bellazzini, R.; Brez, A.; Minuti, M.; Pinchera, M.; Spandre, G. Measurement of the position resolution of the Gas Pixel Detector. Nucl. Instrum. Meth. A 2013, 700, 99–105. [Google Scholar] [CrossRef] [Green Version]
- Roszkowski, L.; Ruiz de Austri, R.; Silk, J.; Trotta, R. On prospects for dark matter indirect detection in the Constrained MSSM. Phys. Lett. B 2009, 671, 10–14. [Google Scholar] [CrossRef] [Green Version]
- Trotta, R.; de Austri, R.R.; Roszkowski, L. Prospects for direct dark matter detection in the constrained MSSM. New Astron. Rev. 2007, 51, 316–320. [Google Scholar] [CrossRef] [Green Version]
- Strege, C.; Trotta, R.; Bertone, G.; Peter, A.H.G.; Scott, P. Fundamental statistical limitations of future dark matter direct detection experiments. Phys. Rev. D 2012, 86, 023507. [Google Scholar] [CrossRef] [Green Version]
- Arina, C. Bayesian analysis of multiple direct detection experiments. Phys. Dark Universe 2014, 5, 1–17. [Google Scholar] [CrossRef] [Green Version]
- Bringmann, T.; Conrad, J.; Cornell, J.M.; Dal, L.A.; Edsjö, J.; Farmer, B.; Kahlhoefer, F.; Kvellestad, A.; Putze, A.; Savage, C.; et al. DarkBit: A GAMBIT module for computing dark matter observables and likelihoods. Eur. Phys. J. C 2017, 77, 831. [Google Scholar] [CrossRef]
- Liem, S.; Bertone, G.; Calore, F.; de Austri, R.R.; Tait, T.M.P.; Trotta, R.; Weniger, C. Effective field theory of dark matter: A global analysis. J. High Energy Phys. 2016, 2016, 77. [Google Scholar] [CrossRef] [Green Version]
- Messina, A.; Nardecchia, M.; Piacentini, S. Annual modulations from secular variations: Not relaxing DAMA? J. Cosmol. Astropart. Phys. 2020, 2020, 037. [Google Scholar] [CrossRef]
Component | U(Pa) | U (Ra) | U | Th (Ra) | Th (Th) | K |
---|---|---|---|---|---|---|
Camera body [Bq/pc] | 7 | 1.8 | 0.4 | 2.1 | 2.1 | 1.9 |
Camera lens [Bq/pc] | 0.9 | 0.41 | 0.031 | 0.08 | 0.08 | 11 |
GEM foil [Bq/] | <0.104 | 0.004 | <0.002 | <0.004 | <0.002 | <0.045 |
Acrylic [Bq/kg] | 0.003 | 0.005 | 0.004 | 0.035 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Amaro, F.D.; Baracchini, E.; Benussi, L.; Bianco, S.; Capoccia, C.; Caponero, M.; Cardoso, D.S.; Cavoto, G.; Cortez, A.; Costa, I.A.; et al. The CYGNO Experiment. Instruments 2022, 6, 6. https://doi.org/10.3390/instruments6010006
Amaro FD, Baracchini E, Benussi L, Bianco S, Capoccia C, Caponero M, Cardoso DS, Cavoto G, Cortez A, Costa IA, et al. The CYGNO Experiment. Instruments. 2022; 6(1):6. https://doi.org/10.3390/instruments6010006
Chicago/Turabian StyleAmaro, Fernando Domingues, Elisabetta Baracchini, Luigi Benussi, Stefano Bianco, Cesidio Capoccia, Michele Caponero, Danilo Santos Cardoso, Gianluca Cavoto, André Cortez, Igor Abritta Costa, and et al. 2022. "The CYGNO Experiment" Instruments 6, no. 1: 6. https://doi.org/10.3390/instruments6010006