Evaluating the Impact of Climate Change on the Asia Habitat Suitability of Troides helena Using the MaxEnt Model
<p>Evaluation of the modeling results for <span class="html-italic">T. helena</span> using the ROC curve and AUC.</p> "> Figure 2
<p>Variable importance, as determined via the folding jackknife test, for <span class="html-italic">T. helena</span>.</p> "> Figure 3
<p>Potential distribution and occurrence records of <span class="html-italic">T. helena</span> under current climate conditions. The red triangles represent the occurrence records of <span class="html-italic">T. helena</span>.</p> "> Figure 4
<p>Potential distribution of <span class="html-italic">T. helena</span> in future periods (2050s, 2090s) under the SSP1-2.6, SSP2-4.5, and SSP5-8.5 climate change scenarios. (<b>A</b>) represents the potential suitable habitat under the SSP1-2.6 scenario in the 2050s, (<b>B</b>) represents the potential suitable habitat under the SSP2-4.5 scenario in the 2050s, (<b>C</b>) represents the potential suitable habitat under the SSP5-8.5 scenario in the 2050s, (<b>D</b>) represents the potential suitable habitat under the SSP1-2.6 scenario in the 2090s, (<b>E</b>) represents the potential suitable habitat under the SSP2-4.5 scenario in the 2090s, and (<b>F</b>) represents the potential suitable habitat under the SSP5-8.5 scenario in the 2090s.</p> "> Figure 5
<p>Changes in the High Suitability Habitat of <span class="html-italic">T. helena</span> from the Present to the Future; “Gain” indicates areas where high suitability habitats have increased, “Lost” indicates areas where high suitability habitats have decreased, “Abs” indicates the area where non-high suitability habitats (unsuitable, low, and medium suitability) remain unchanged, and “Pres” indicates the area where high suitability habitats remain unchanged. (<b>A</b>) represents the changes in potential suitable habitat from the current scenario to the SSP1-2.6 scenario in the 2050s, (<b>B</b>) represents the changes in potential suitable habitat from the current scenario to the SSP2-4.5 scenario in the 2050s, (<b>C</b>) represents the changes in potential suitable habitat from the current scenario to the SSP5-8.5 scenario in the 2050s, (<b>D</b>) represents the changes in potential suitable habitat from the current scenario to the SSP1-2.6 scenario in the 2090s, (<b>E</b>) represents the changes in potential suitable habitat from the current scenario to the SSP2-4.5 scenario in the 2090s, and (<b>F</b>) represents the changes in potential suitable habitat from the current scenario to the SSP5-8.5 scenario in the 2090s.</p> "> Figure 6
<p>Response curves of <span class="html-italic">T. helena</span> to the five dominant environmental variables. The blue area represents the range of occurrence probability, while the red curve represents the average occurrence probability.</p> ">
1. Introduction
2. Materials and Methods
2.1. Species Distribution Data
2.2. Selection of Environmental Variables
2.3. Model Optimization
2.4. Model Evaluation and Habitat Suitability Classification
3. Results
3.1. Modeling Results and Key Environmental Factors Affecting T. helena
3.2. Analysis of the Potential Suitable Habitat of T. helena Under Current Climate Conditions
3.3. Prediction of Suitable Habitats for T. helena Under Future Climate Conditions
3.4. Changes in the High Suitable Habitats of T. helena from Present to Future
3.5. Response Analysis of Dominant Environmental Variables
4. Discussion
4.1. Evaluation and Prediction Results of the MaxEnt Model
4.2. Key Environmental Variables and Ecological Characteristics
4.3. Limitations of the Model and Species Conservation
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- França, F.M.; Benkwitt, C.E.; Peralta, G.; Robinson, J.P.W.; Graham, N.A.J.; Tylianakis, J.M.; Berenguer, E.; Lees, A.C.; Ferreira, J.; Louzada, J.; et al. Climatic and Local Stressor Interactions Threaten Tropical Forests and Coral Reefs. Philos. Trans. R. Soc. B Biol. Sci. 2020, 375, 20190116. [Google Scholar] [CrossRef] [PubMed]
- Aubry-Kientz, M.; Rossi, V.; Cornu, G.; Wagner, F.; Hérault, B. Temperature Rising Would Slow down Tropical Forest Dynamic in the Guiana Shield. Sci. Rep. 2019, 9, 10235. [Google Scholar] [CrossRef] [PubMed]
- Pecl, G.T.; Araújo, M.B.; Bell, J.D.; Blanchard, J.; Bonebrake, T.C.; Chen, I.-C.; Clark, T.D.; Colwell, R.K.; Danielsen, F.; Evengård, B.; et al. Biodiversity Redistribution under Climate Change: Impacts on Ecosystems and Human Well-Being. Science 2017, 355, eaai9214. [Google Scholar] [CrossRef] [PubMed]
- Menzel, F.; Feldmeyer, B. How Does Climate Change Affect Social Insects? Curr. Opin. Insect Sci. 2021, 46, 10–15. [Google Scholar] [CrossRef]
- Löffler, F.; Grüneberg, C.; Drung, M.; Freienstein, F.M.; Helbing, F.; Holtmann, L.; Kämpfer, S.; Kettermann, M.; Münsch, T.; Poniatowski, D.; et al. Different Environmental Conditions in Lowlands and Uplands Highlight Challenges for Butterfly Conservation in Central Europe. Biol. Conserv. 2023, 281, 110034. [Google Scholar] [CrossRef]
- Halsch, C.A.; Shapiro, A.M.; Fordyce, J.A.; Nice, C.C.; Thorne, J.H.; Waetjen, D.P.; Forister, M.L. Insects and Recent Climate Change. Proc. Natl. Acad. Sci. USA 2021, 118, e2002543117. [Google Scholar] [CrossRef]
- Goulson, D. The Insect Apocalypse, and Why It Matters. Curr. Biol. 2019, 29, R967–R971. [Google Scholar] [CrossRef]
- Harvey, J.A.; Heinen, R.; Gols, R.; Thakur, M.P. Climate Change-mediated Temperature Extremes and Insects: From Outbreaks to Breakdowns. Glob. Change Biol. 2020, 26, 6685–6701. [Google Scholar] [CrossRef] [PubMed]
- Raven, P.H.; Wagner, D.L. Agricultural Intensification and Climate Change Are Rapidly Decreasing Insect Biodiversity. Proc. Natl. Acad. Sci. USA 2021, 118, e2002548117. [Google Scholar] [CrossRef]
- van Dijk, L.J.A.; Fisher, B.L.; Miraldo, A.; Goodsell, R.M.; Iwaszkiewicz-Eggebrecht, E.; Raharinjanahary, D.; Rajoelison, E.T.; Łukasik, P.; Andersson, A.F.; Ronquist, F.; et al. Temperature and Water Availability Drive Insect Seasonality Across a Temperate and a Tropical Region. Proc. R. Soc. B Biol. Sci. 2024, 291, 20240090. [Google Scholar] [CrossRef]
- Comay, O.; Ben Yehuda, O.; Schwartz-Tzachor, R.; Benyamini, D.; Pe’er, I.; Ktalav, I.; Pe’er, G. Environmental Controls on Butterfly Occurrence and Species Richness in Israel: The Importance of Temperature over Rainfall. Ecol. Evol. 2021, 11, 12035–12050. [Google Scholar] [CrossRef] [PubMed]
- Wilson, R.J.; Fox, R. Insect Responses to Global Change Offer Signposts for Biodiversity and Conservation. Ecol. Entomol. 2021, 46, 699–717. [Google Scholar] [CrossRef]
- Hill, G.M.; Kawahara, A.Y.; Daniels, J.C.; Bateman, C.C.; Scheffers, B.R. Climate Change Effects on Animal Ecology: Butterflies and Moths as a Case Study. Biol. Rev. 2021, 96, 2113–2126. [Google Scholar] [CrossRef] [PubMed]
- Bonebrake, T.C.; Boggs, C.L.; Stamberger, J.A.; Deutsch, C.A.; Ehrlich, P.R. From Global Change to a Butterfly Flapping: Biophysics and Behaviour Affect Tropical Climate Change Impacts. Proc. R. Soc. B Biol. Sci. 2014, 281, 20141264. [Google Scholar] [CrossRef] [PubMed]
- Jain, A.; Zeng, Y.; Webb, E.L. Critical Dependence of Butterflies on a Non-Native Host Plant in the Urban Tropics. Front. Ecol. Evol. 2021, 9, 655012. [Google Scholar] [CrossRef]
- Rollin, O.; Benelli, G.; Benvenuti, S.; Decourtye, A.; Wratten, S.D.; Canale, A.; Desneux, N. Weed-Insect Pollinator Networks as Bio-Indicators of Ecological Sustainability in Agriculture. A Review. Agron. Sustain. Dev. 2016, 36, 1–22. [Google Scholar] [CrossRef]
- Burgio, G.; Sommaggio, D.; Marini, M.; Puppi, G.; Chiarucci, A.; Landi, S.; Fabbri, R.; Pesarini, F.; Genghini, M.; Ferrari, R.; et al. The Influence of Vegetation and Landscape Structural Connectivity on Butterflies (Lepidoptera: Papilionoidea and Hesperiidae), Carabids (Coleoptera: Carabidae), Syrphids (Diptera: Syrphidae), and Sawflies (Hymenoptera: Symphyta) in Northern Italy Farmland. Environ. Entomol. 2015, 44, 1299–1307. [Google Scholar] [CrossRef] [PubMed]
- Stuhldreher, G.; Fartmann, T. Threatened Grassland Butterflies as Indicators of Microclimatic Niches along an Elevational Gradient–Implications for Conservation in Times of Climate Change. Ecol. Indic. 2018, 94, 83–98. [Google Scholar] [CrossRef]
- Penjor, U.; Kaszta, Ż.; Macdonald, D.W.; Cushman, S.A. Prioritizing Areas for Conservation Outside the Existing Protected Area Network in Bhutan: The Use of Multi-Species, Multi-Scale Habitat Suitability Models. Landsc. Ecol. 2021, 36, 1281–1309. [Google Scholar] [CrossRef]
- Melo-Merino, S.M.; Reyes-Bonilla, H.; Lira-Noriega, A. Ecological Niche Models and Species Distribution Models in Marine Environments: A Literature Review and Spatial Analysis of Evidence. Ecol. Model. 2020, 415, 108837. [Google Scholar] [CrossRef]
- Naimi, B.; Araújo, M.B. Sdm: A Reproducible and Extensible R Platform for Species Distribution Modelling. Ecography 2016, 39, 368–375. [Google Scholar] [CrossRef]
- Hayat, U.; Shi, J.; Wu, Z.; Rizwan, M.; Haider, M.S. Which SDM Model, CLIMEX vs. MaxEnt, Best Forecasts Aeolesthes Sarta Distribution at a Global Scale under Climate Change Scenarios? Insects 2024, 15, 324. [Google Scholar] [CrossRef]
- Franklin, J. Species Distribution Models in Conservation Biogeography: Developments and Challenges. Divers. Distrib. 2013, 19, 1217–1223. [Google Scholar] [CrossRef]
- Phillips, S.J.; Schapire, R.E. A Maximum Entropy Approach to Species Distribution Modeling. In Proceedings of the Twenty-First International Conference on Machine Learning, Banff, AB, Canada, 4–8 July 2004. [Google Scholar]
- Phillips, S.J.; Anderson, R.P.; Schapire, R.E. Maximum Entropy Modeling of Species Geographic Distributions. Ecol. Model. 2006, 190, 231–259. [Google Scholar] [CrossRef]
- Phillips, S.J.; Dudík, M. Modeling of Species Distributions with Maxent: New Extensions and a Comprehensive Evaluation. Ecography 2008, 31, 161–175. [Google Scholar] [CrossRef]
- Merow, C.; Smith, M.J.; Silander, J.A. A Practical Guide to MaxEnt for Modeling Species’ Distributions: What It Does, and Why Inputs and Settings Matter. Ecography 2013, 36, 1058–1069. [Google Scholar] [CrossRef]
- Hernández-Baz, F.; Romo, H.; González, J.M.; de Hernández, M.J.M.; Pastrana, R.G. Maximum Entropy Niche-Based Modeling (Maxent) of Potential Geographical Distribution of Coreura Albicosta (Lepidoptera: Erebidae: Ctenuchina) in Mexico. Fla. Entomol. 2016, 99, 376–380. [Google Scholar] [CrossRef]
- Fernández, P.; Jordano, D.; Haeger, J.F. Living on the Edge in Species Distribution Models: The Unexpected Presence of Three Species of Butterflies in a Protected Area in Southern Spain. Ecol. Model. 2015, 312, 335–346. [Google Scholar] [CrossRef]
- Fang, J.; Song, G.; Liu, Q.; Zhang, W.; Gu, J.; Su, Y.; Su, H.; Guo, C.; Zhang, D. Enhanced Photocatalytic Hydrogen Production on Three-Dimensional Gold Butterfly Wing Scales/CdS Nanoparticles. Appl. Surf. Sci. 2018, 427, 807–812. [Google Scholar] [CrossRef]
- Tian, J.; Zhang, W.; Zhang, Y.; Xue, R.; Wang, Y.; Zhang, Z.; Zhang, D. Hydrothermal Synthesis Au-Bi2Te3 Nanocomposite Thermoelectric Film with a Hierarchical Sub-Micron Antireflection Quasi-Periodic Structure. Int. J. Mol. Sci. 2015, 16, 12547–12559. [Google Scholar] [CrossRef]
- Bai, J.; Hou, P.; Jin, D.; Zhai, J.; Ma, Y.; Zhao, J. Habitat Suitability Assessment of Black-Necked Crane (Grus Nigricollis) in the Zoige Grassland Wetland Ecological Function Zone on the Eastern Tibetan Plateau. Diversity 2022, 14, 579. [Google Scholar] [CrossRef]
- HamadAmin, B.A.; Khwarahm, N.R. Mapping Impacts of Climate Change on the Distributions of Two Endemic Tree Species under Socioeconomic Pathway Scenarios (SSP). Sustainability 2023, 15, 5469. [Google Scholar] [CrossRef]
- Bohl, C.L.; Kass, J.M.; Anderson, R.P. A New Null Model Approach to Quantify Performance and Significance for Ecological Niche Models of Species Distributions. J. Biogeogr. 2019, 46, 1101–1111. [Google Scholar] [CrossRef]
- Zeng, Y.; Low, B.W.; Yeo, D.C.J. Novel Methods to Select Environmental Variables in MaxEnt: A Case Study Using Invasive Crayfish. Ecol. Model. 2016, 341, 5–13. [Google Scholar] [CrossRef]
- Kass, J.M.; Muscarella, R.; Galante, P.J.; Bohl, C.L.; Pinilla-Buitrago, G.E.; Boria, R.A.; Soley-Guardia, M.; Anderson, R.P. ENMeval 2.0: Redesigned for Customizable and Reproducible Modeling of Species’ Niches and Distributions. Methods Ecol. Evol. 2021, 12, 1602–1608. [Google Scholar] [CrossRef]
- Li, X.; Xu, D.; Jin, Y.; Zhuo, Z.; Yang, H.; Hu, J.; Wang, R. Predicting the Current and Future Distributions of Brontispa Longissima (Coleoptera: Chrysomelidae) under Climate Change in China. Glob. Ecol. Conserv. 2021, 25, e01444. [Google Scholar] [CrossRef]
- Liu, C.; Newell, G.; White, M. On the Selection of Thresholds for Predicting Species Occurrence with Presence-only Data. Ecol. Evol. 2016, 6, 337–348. [Google Scholar] [CrossRef] [PubMed]
- Namyatova, A.A.; Dzhelali, P.A.; Tyts, V.D.; Popkov, A.A. Climate Change Effect on the Widely Distributed Palearctic Plant Bug Species (Insecta: Heteroptera: Miridae). PeerJ 2024, 12, e18377. [Google Scholar] [CrossRef] [PubMed]
- Lee, C.M.; Lee, D.-S.; Kwon, T.-S.; Athar, M.; Park, Y.-S. Predicting the Global Distribution of Solenopsis Geminata (Hymenoptera: Formicidae) under Climate Change Using the MaxEnt Model. Insects 2021, 12, 229. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Zhao, H.; Qi, Y.; Li, M.; Yang, N.; Guo, J.; Xian, X.; Liu, W. Global Potential Geographical Distribution of the Southern Armyworm (Spodoptera Eridania) under Climate Change. Biology 2023, 12, 1040. [Google Scholar] [CrossRef]
- PAN, S.; PENG, D.; LI, Y.; CHEN, Z.; ZHAI, Y.; LIU, C.; HONG, B. Potential Global Distribution of the Guava Root-Knot Nematode Meloidogyne Enterolobii under Different Climate Change Scenarios Using MaxEnt Ecological Niche Modeling. J. Integr. Agric. 2023, 22, 2138–2150. [Google Scholar] [CrossRef]
- Zhang, L.; Wang, P.; Xie, G.; Wang, W. Impacts of Climate Change Conditions on the Potential Distribution of Anoplophora Glabripennis and Its Host Plants, Salix Babylonica and Salix Matsudana, in China. Ecol. Evol. 2024, 14, e70692. [Google Scholar] [CrossRef] [PubMed]
- Marino, N.A.C.; Srivastava, D.S.; MacDonald, A.A.M.; Leal, J.S.; Campos, A.B.A.; Farjalla, V.F. Rainfall and Hydrological Stability Alter the Impact of Top Predators on Food Web Structure and Function. Glob. Change Biol. 2017, 23, 673–685. [Google Scholar] [CrossRef]
- Zemp, D.C.; Schleussner, C.-F.; Barbosa, H.M.J.; Hirota, M.; Montade, V.; Sampaio, G.; Staal, A.; Wang-Erlandsson, L.; Rammig, A. Self-Amplified Amazon Forest Loss Due to Vegetation-Atmosphere Feedbacks. Nat. Commun. 2017, 8, 14681. [Google Scholar] [CrossRef] [PubMed]
- Radchuk, V.; Turlure, C.; Schtickzelle, N. Each Life Stage Matters: The Importance of Assessing the Response to Climate Change over the Complete Life Cycle in Butterflies. J. Anim. Ecol. 2013, 82, 275–285. [Google Scholar] [CrossRef]
- Jeffs, C.T.; Kennedy, P.; Griffith, P.; Gripenberg, S.; Markesteijn, L.; Lewis, O.T. Seed Predation by Insects across a Tropical Forest Precipitation Gradient. Ecol. Entomol. 2018, 43, 813–822. [Google Scholar] [CrossRef]
- Santos-Neto, P.E.; Arnan, X.; Ribeiro-Neto, J.D.; Wirth, R.; Leal, I.R. Aridity, but Not Disturbance, Reduces the Specialization and Modularity of Plant–Insect Herbivore Interaction Networks in Caatinga Dry Forest. J. Insect Conserv. 2022, 26, 175–189. [Google Scholar] [CrossRef]
- Ashe-Jepson, E.; Arizala Cobo, S.; Basset, Y.; Bladon, A.J.; Kleckova, I.; Laird-Hopkins, B.C.; Mcfarlane, A.; Sam, K.; Savage, A.F.; Zamora, A.C.; et al. Tropical Butterflies Use Thermal Buffering and Thermal Tolerance as Alternative Strategies to Cope with Temperature Increase. J. Anim. Ecol. 2023, 92, 1759–1770. [Google Scholar] [CrossRef] [PubMed]
- Bonebrake, T.C.; Deutsch, C.A. Climate Heterogeneity Modulates Impact of Warming on Tropical Insects. Ecology 2012, 93, 449–455. [Google Scholar] [CrossRef] [PubMed]
- Fisher, A.R.; Bean, W.T.; Villablanca, F.X. A Multi-Scale Species Distribution Model for Migrating and Overwintering Western Monarch Butterflies: Climate Is the Best Predictor. Diversity 2024, 16, 640. [Google Scholar] [CrossRef]
- Shirey, V.; Neupane, N.; Guralnick, R.; Ries, L. Rising Minimum Temperatures Contribute to 50 Years of Occupancy Decline among Cold-adapted Arctic and Boreal Butterflies in North America. Glob. Change Biol. 2024, 30. [Google Scholar] [CrossRef] [PubMed]
- da Fernandes, M.L.; Quintela, A.; Alves, F.L. Identifying Conservation Priority Areas to Inform Maritime Spatial Planning: A New Approach. Sci. Total Environ. 2018, 639, 1088–1098. [Google Scholar] [CrossRef]
- Zhen, J.; Wang, X.; Meng, Q.; Song, J.; Liao, Y.; Xiang, B.; Guo, H.; Liu, C.; Yang, R.; Luo, L. Fine-Scale Evaluation of Giant Panda Habitats and Countermeasures against the Future Impacts of Climate Change and Human Disturbance (2015–2050): A Case Study in Ya’an, China. Sustainability 2018, 10, 1081. [Google Scholar] [CrossRef]
- DeLucia, E.H.; Nabity, P.D.; Zavala, J.A.; Berenbaum, M.R. Climate Change: Resetting Plant-Insect Interactions. Plant Physiol. 2012, 160, 1677–1685. [Google Scholar] [CrossRef]
- Filazzola, A.; Matter, S.F.; Roland, J. Inclusion of Trophic Interactions Increases the Vulnerability of an Alpine Butterfly Species to Climate Change. Glob. Change Biol. 2020, 26, 2867–2877. [Google Scholar] [CrossRef] [PubMed]
- Lin, L.; He, J.; Xie, L.; Cui, G. Prediction of the Suitable Area of the Chinese White Pines (Pinus Subsect. Strobus) under Climate Changes and Implications for Their Conservation. Forests 2020, 11, 996. [Google Scholar] [CrossRef]
- Schwartz, K.R.; Parsons, E.C.M.; Rockwood, L.; Wood, T.C. Integrating In-Situ and Ex-Situ Data Management Processes for Biodiversity Conservation. Front. Ecol. Evol. 2017, 5, 120. [Google Scholar] [CrossRef]
- Hu, S.-J.; Xing, D.-H.; Gong, Z.-X.; Hu, J.-M. Projecting Suitability and Climate Vulnerability of Bhutanitis Thaidina (Blanchard) (Lepidoptera: Papilionidae) with Conservation Implications. Sci. Rep. 2019, 9, 15384. [Google Scholar] [CrossRef]
- Gaigher, R.; Pryke, J.S.; Samways, M.J. Indigenous Forest Edges Increase Habitat Complexity and Refuge Opportunities for Grassland Butterflies. J. Insect Conserv. 2024, 28, 27–41. [Google Scholar] [CrossRef]
Code | Variable | Unit |
---|---|---|
Bio2 | Mean Diurnal Range | °C |
Bio6 | Min Temperature of Coldest Month | °C |
Bio12 | Annual Precipitation | mm |
Bio16 | Precipitation of Wettest Quarter | mm |
Bio17 | Precipitation of Driest Quarter | mm |
elev | elev | m |
Slope | slope | ° |
Predicted Area (×103 km2) | Comparison with Current Distribution (%) | ||||||
---|---|---|---|---|---|---|---|
Low Habitat Suitability | Medium Habitat Suitability | Highly Habitat Suitability | Medium Habitat Suitability | Low Habitat Suitability | Highly Habitat Suitability | ||
Current | 2102.08 | 1851.44 | 1514.13 | \ | \ | \ | |
2050s | SSP1-2.6 | 2103.91 | 1783.63 | 1938.35 | 0.09% | −3.66% | 28.02% |
SSP2-4.5 | 2223.87 | 1711.35 | 2093.72 | 5.79% | −7.57% | 38.28% | |
SSP5-8.5 | 2668.35 | 1760.83 | 1574.81 | 26.94% | −4.89% | 4.01% | |
2090s | SSP1-2.6 | 2269.25 | 1989.53 | 1769.24 | 7.95% | 7.46% | 16.85% |
SSP2-4.5 | 2604.64 | 2035.38 | 1655.59 | 23.91% | 9.94% | 9.34% | |
SSP5-8.5 | 2111.65 | 2282.43 | 2162.88 | 0.46% | 23.28% | 42.85% |
Gain (×103 km2) | Abs (×103 km2) | Pres (×103 km2) | Lost (×103 km2) | ||
---|---|---|---|---|---|
2050s | SSP1-2.6 | 567.97 | 57,825.73 | 1370.38 | 143.75 |
SSP2-4.5 | 670.56 | 57,723.14 | 1423.16 | 90.97 | |
SSP5-8.5 | 445.31 | 57,948.39 | 1129.50 | 384.64 | |
2090s | SSP1-2.6 | 598.13 | 57,795.57 | 1171.11 | 343.02 |
SSP2-4.5 | 532.99 | 57,860.71 | 1122.60 | 391.53 | |
SSP5-8.5 | 840.02 | 57,553.68 | 1322.86 | 191.27 |
Environmental Variables | Suitable Range | Suitable Range |
---|---|---|
Bio2 | −0.84–8.83 °C | 1.02 °C |
Bio6 | 8.29–18.52; 22.19–23.29 °C | 22.88 °C |
Bio12 | 2156.04–7355.73 mm | 6690.76 mm |
Bio16 | 636.18–2965.72 mm | 758.00 mm |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yang, F.; Liu, Q.; Yang, J.; Liu, B.; Deng, X.; Gan, T.; Liao, X.; Li, X.; Xu, D.; Zhuo, Z. Evaluating the Impact of Climate Change on the Asia Habitat Suitability of Troides helena Using the MaxEnt Model. Insects 2025, 16, 79. https://doi.org/10.3390/insects16010079
Yang F, Liu Q, Yang J, Liu B, Deng X, Gan T, Liao X, Li X, Xu D, Zhuo Z. Evaluating the Impact of Climate Change on the Asia Habitat Suitability of Troides helena Using the MaxEnt Model. Insects. 2025; 16(1):79. https://doi.org/10.3390/insects16010079
Chicago/Turabian StyleYang, Fengrong, Quanwei Liu, Junyi Yang, Biyu Liu, Xinqi Deng, Tingjiang Gan, Xue Liao, Xiushan Li, Danping Xu, and Zhihang Zhuo. 2025. "Evaluating the Impact of Climate Change on the Asia Habitat Suitability of Troides helena Using the MaxEnt Model" Insects 16, no. 1: 79. https://doi.org/10.3390/insects16010079
APA StyleYang, F., Liu, Q., Yang, J., Liu, B., Deng, X., Gan, T., Liao, X., Li, X., Xu, D., & Zhuo, Z. (2025). Evaluating the Impact of Climate Change on the Asia Habitat Suitability of Troides helena Using the MaxEnt Model. Insects, 16(1), 79. https://doi.org/10.3390/insects16010079