Clustering Optimization of LoRa Networks for Perturbed Ultra-Dense IoT Networks
<p>LoRaWAN (Long Range Wide Area Network) stack.</p> "> Figure 2
<p>LoRaWAN network architecture.</p> "> Figure 3
<p>Dependence of (<b>a</b>) the average number of packets C that is successfully transmitted and (<b>b</b>) the probability of losses from collisions P from the intensity λ.</p> "> Figure 4
<p>Considered cluster model.</p> "> Figure 5
<p>The dependence between the data transmission rate and distance.</p> "> Figure 6
<p>Probability of throughput distribution function F(t) (<b>a</b>) and throughput probability density function f(t) (<b>b</b>) for uniform distribution of nodes.</p> "> Figure 7
<p>Probability distribution function F(t) (<b>a</b>) and probability density function f(t) (<b>b</b>) of the throughput (normal distribution of users).</p> "> Figure 8
<p>Simulation results for (<b>a</b>) FOREL and (<b>b</b>) K-means clustering methods.</p> "> Figure 9
<p>Relative distribution of nodes in the clusters for (<b>a</b>) FOREL clustering method and (<b>b</b>) K-mean clustering method.</p> "> Figure 10
<p>The average number of nodes in different SF zones (in percent, %) for (<b>a</b>) K-mean clustering method and (<b>b</b>) FOREL clustering method.</p> "> Figure 11
<p>The average number of nodes in different SF zones for FOREL and K-means clustering methods (in percent, %).</p> ">
Abstract
:1. Introduction
- The channel capacity analysis between the CM and the CH showed its dependence on the distribution of end devices. Remarkably, the results have shown that a larger average throughput is achieved with a normal distribution than with a uniform distribution;
- A cluster throughput model has been developed to estimate the throughput capacity’s expected value when forming the cluster of end devices, which allows using it in the end devices’ clustering problems;
- Clustering methods have been developed to make a rational choice of the algorithm depending on the distribution of end nodes, which allows obtaining a cluster throughput capacity value close to the maximum.
2. Related Work and Motivation
3. LoRa Technology Overview
3.1. LoRa Physical Layer
3.2. LoRaWAN MAC Layer
3.3. Calculation of Packet Arrival Rate
3.4. Calculation Gateway Capacity
4. Problem Statement
5. System Description
5.1. Uniform Distribution
5.2. Normal Distribution
6. Clustering Method Selection
Algorithm 1. K-means |
Require: The k is a number of clusters, C1, C2,….CK points that corresponds to the devices, CMJ j = 1,...,k—centers of clusters (mass centers). Input: Set K random points Output: Centers (C1, ….CK) Clist List of Clusters. Procedure: Mode selection and K-Means clustering Algorithm. Choose K initial centers CM J =. For: CJ < = CMJ do Set new centers of mass /*using Equations (39) or (40) */ If = Then Set m1 is new centers of mass /*using Equations (39) or (40) */ Each object Xi is assigned to the nearest Ci; for the resulting groups, the centers of mass are calculated. Transition CM (CI = CM). End for fix Cj as the centers of the masses of the clusters, and Xi as the elements of the J cluster End procedure. |
Algorithm 2. FOREL |
Require: The R is a communication rage (radius of the service area), the cluster number i = 1. C1, C2,….CK points that corresponds to the devices, CMJ j = 1, ..., k—centers of clusters (mass centers). Input: Set K random points . Output: Centers (C1, … CK) Clist List of Clusters. Procedure: Mode selection and FOREL clustering Algorithm. Choose K initial centers CM J = . For: True do for all Xi points at a distance of CI < = R calculate the center of mass (CM)/*using equations (39) or (40) */ while: Ci = CM Transition CM (CI = CM). End while fix Cj as the centers of the masses of the clusters, and Xi as the elements of the J cluster End for End procedure |
7. Evaluation Results
8. Discussion
9. Conclusions and Future Work
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Rghioui, A.; Oumnad, A. Internet of things: Surveys for measuring human activities from everywhere. Int. J. Electr. Comput. Eng. 2017, 7, 2474–2482. [Google Scholar] [CrossRef]
- Semtech, “Smart cities transformed using semtech’s LoRa technology,” July 2017, White Paper. Available online: https://info.semtech.com/smart_city_white_paper_download (accessed on 22 December 2020).
- Khan, P.W.; Byun, Y.C.; Park, N. IoT-Blockchain Enabled Optimized Provenance System for Food Industry 4.0 Using Advanced Deep Learning. Sensors 2020, 20, 2990. [Google Scholar] [CrossRef] [PubMed]
- Khan, P.W.; Byun, Y.A. Blockchain-Based Secure Image Encryption Scheme for the Industrial Internet of Things. Entropy 2020, 22, 175. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Muthanna, M.S.A.; Lyachek, Y.T.; Musaeed, A.M.O.; Esmail, Y.A.H.; Adam, A.B.M. Smart system of a real-time pedestrian detection for smart city. In Proceedings of the IEEE Conference of Russian Young Researchers in Electrical and Electronic Engineering, Saint Petersburg and Moscow, Russia, 27–30 January 2020; pp. 45–50. [Google Scholar]
- Semtech, LoRa Modulation Basics, AN1200.22 Revision 2. Semtech. 17 May 2015. Available online: https://www.semtech.com/uploads/documents/an1200.22.pdf (accessed on 22 December 2020).
- Wydra, M.; Kubaczynski, P.; Mazur, K.; Ksiezopolski, B. Time-Aware Monitoring of Overhead Transmission Line Sag and Temperature with LoRa Communication. Energies 2019, 12, 505. [Google Scholar] [CrossRef] [Green Version]
- Adil, N.; Khan, P.W.; Byun, Y.C. Performance Enhancement through Communication Offloading for Energy Efficiency on Mobile Cloud Computation. Int. J. Sci. Technol.Res. 2020, 9, 186–194. [Google Scholar]
- Muthanna, M.S.A.; Wang, P.; Wei, M.; Abuarqoubet, A.; Alzu’bi, A.; Gull, H. Cognitive control models of multiple access IoT networks using LoRa technology. Cognitive Syst. Res. 2021, 65, 62–73. [Google Scholar] [CrossRef]
- Adelantado, F.; Vilajosana, X.; Tuset-Peiro, P.; Martinez, B.; MeliaSegui, J.; Watteyne, T. Understanding the Limits of LoRaWAN. IEEE Commun. Mag. 2017, 55, 34–40. [Google Scholar] [CrossRef] [Green Version]
- Bor, M.C.; Roedig, U.; Voigt, T.; Alonso, J.M. Do LoRa Low-Power Wide-Area Networks Scale? In Proceedings of the 19th ACM International Conference on Modeling, Analysis and Simulation of Wireless and Mobile Systems, New York, NY, USA, 13–17 November 2016; pp. 59–67. [Google Scholar]
- Augustin, A.; Yi, J.; Clausen, T.; Townsley, W.M. A Study of LoRa: Long Range: Low Power Networks for the Internet of Things. Sensors 2016, 16, 1466. [Google Scholar] [CrossRef] [PubMed]
- Liando, J.C.; Gamage, A.; Tengourtius, A.W.; Li, M. Known and unknown facts of lora: Experiences from a large-scale measurement study. ACM Transactions Sens. Netw. (TOSN) 2019, 15, 16. [Google Scholar] [CrossRef]
- Muthanna, M.S.A.; Wang, P.; Wei, M.; Ateya, A.A.; Muthanna, A. Toward an Ultra-Low Latency and Energy Efficient LoRaWAN; Galinina, O., Andreev, S., Balandin, S., Koucheryavy, Y., Eds.; NEW2AN/ruSMART-2019. LNCS; Springer: Cham, Switzerland, 2019; Volume 11660, pp. 233–242. [Google Scholar] [CrossRef]
- Luvisotto, M.; Tramarin, F.; Vangelista, L.; Vitturi, S. On the Use of LoRaWAN for Indoor Industrial IoT Applications. Wirel. Commun. Mob. Comput. 2018, 2018, 1–11. [Google Scholar] [CrossRef] [Green Version]
- Bor, M.; Roedig, U. LoRa Transmission Parameter Selection. In Proceedings of the 2017 13th International Conference on Distributed Computing in Sensor Systems (DCOSS), Ottawa, ON, Canada, 5–7 June 2017; pp. 27–34. [Google Scholar]
- Lavric, A. LoRa (Long-Range) High-Density Sensors for Internet of Things. Sensors 2019. [Google Scholar] [CrossRef]
- Sanchez-Iborra, R.; Liaño, I.G.; Simões, C.; Couñago, E.; Skarmeta, A. Tracking and Monitoring System Based on LoRa Technology for Lightweight Boats. Electronics 2018, 8, 15. [Google Scholar] [CrossRef] [Green Version]
- Hauser, V.; Hégr, T. Proposal of Adaptive Data Rate Algorithm for LoRaWAN-Based Infrastructure. In Proceedings of the 2017 IEEE 5th International Conference on Future Internet of Things and Cloud (FiCloud), Prague, Czech Republic, 21–23 August 2017; pp. 85–90. [Google Scholar] [CrossRef]
- Martinez-Sandoval, R.; García-Sánchez, A.; García-Haro, J. Performance optimization of LoRa nodes for the future smart city/industry. EURASIP J. Wirel. Commun. Netw. 2019, 1–13. Available online: https://doi.org/10.1186/s13638-019-1522-1 (accessed on 22 December 2020).
- AN1200.22 LoRaTM Modulation Basics, Revision 2, Semtech Corporation. May 2015. Available online: http://www.semtech.com/images/datasheet/an1200.22.pdf (accessed on 15 August 2020).
- LoRa Alliance. LoRaWAN Specification, V. 1.1; LoRa Alliance: Fremont, CA, USA, 2017; Available online: https://lora-alliance.org/resource-hub/lorawanr-specification-v11 (accessed on 15 September 2019).
- Vangelista, L. Frequency Shift Chirp Modulation: The LoRa Modulation. IEEE Signal Process. Let. 2017, 24, 1818–1821. [Google Scholar] [CrossRef]
- Semtech, SX1272/73 Low Power Long Range Transceive. Available online: https://www.semtech.com/uploads/documents/sx1272.pdf (accessed on 22 December 2020).
- Baccelli, F.; Blaszczyszyn, B.; Muhlethaler, P. An Aloha protocol for multihop mobile wireless networks. IEEE Trans. Inf. Theory 2006, 52, 421–436. [Google Scholar] [CrossRef] [Green Version]
- Yasmin, R.; Petäjäjärvi, J.; Mikhaylov, K.; Pouttu, A. On the integration of LoRaWAN with the 5G test network. In Proceedings of the 2017 IEEE 28th Annual International Symposium on Personal, Indoor, and Mobile Radio Communications (PIMRC), Montreal, QC, Canada, 8–13 October 2017; pp. 1–6. [Google Scholar]
- Blaszczyszyn, B.; Muhlethaler, P. Stochastic analysis of nonslotted Aloha in wireless ad-hoc networks. In Proceedings of the IEEE INFOCOM, San Diego, CA, USA, 14–19 March 2010; pp. 1–9. [Google Scholar]
- ITU-R Recommendations. Propagation Data and Prediction Methods for the Planning of Indoor Radio Communication Systems and Radio Local Area Networks in the Frequency Range 900MHz to 100GHz, ITU-R P.1238-5; International Telecommunication Union: Geneva, Switzerland, 2007. [Google Scholar]
- Weisstein, E.W. Gaussian Function. Available online: https://mathworld.wolfram.com/ (accessed on 27 November 2002).
- Boyinbode, O.; Le, H.; Mbogho, A.; Takizawa, M.; Poliah, R. A Survey on Clustering Algorithms for Wireless Sensor Networks. In Proceedings of the 2010 13th International Conference on Network-Based Information Systems, Takayama, Japan, 14–16 September 2010; pp. 358–364. [Google Scholar] [CrossRef]
Bandwidth (kHz) | SF | Nominal Bit Rate Rb (bps) | Sensitivity (ρ)(dBm) |
---|---|---|---|
125 | 6 | 9375 | −118 |
125 | 7 | 5469 | −123 |
125 | 8 | 3125 | −126 |
125 | 9 | 1758 | −129 |
125 | 10 | 977 | −132 |
125 | 11 | 537 | −134 |
125 | 12 | 293 | −137 |
SF | bw (kHz) | Ts (ms) | npreamble | FRM (byte) | PL (byte) | H | CRC | DE | CR | Payload-SymNb | Tpreamble (ms) | Tpayload (ms) | TULframe (ms) |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
6 | 125 | 0.51 | 6 | 8 | 20 | 0 | 1 | 0 | 1 | 48 | 5.25 | 24.48 | 29.73 |
7 | 125 | 1.02 | 6 | 8 | 20 | 0 | 1 | 0 | 1 | 43 | 10.5 | 43.86 | 54.36 |
8 | 125 | 2.05 | 6 | 8 | 20 | 0 | 1 | 0 | 1 | 38 | 20.99 | 77.9 | 98.89 |
9 | 125 | 4.1 | 6 | 8 | 20 | 0 | 1 | 0 | 1 | 33 | 41.98 | 135.3 | 177.28 |
10 | 125 | 8.19 | 6 | 8 | 20 | 0 | 1 | 0 | 1 | 33 | 83.97 | 270.27 | 354.24 |
11 | 125 | 16.38 | 6 | 8 | 20 | 0 | 1 | 0 | 1 | 28 | 167.94 | 458.64 | 626.58 |
12 | 125 | 32.77 | 6 | 8 | 20 | 0 | 1 | 0 | 1 | 28 | 335.87 | 917.56 | 1253.43 |
SF | bw (kHz) | Ts (ms) | npreamble | FRM (byte) | PL (byte) | H | CRC | DE | CR | Payload-SymNb | Tpreamble (ms) | Tpay-load (ms) | TULframe(ms) |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
6 | 125 | 0.51 | 6 | 0 | 12 | 1 | 1 | 0 | 1 | 28 | 5.25 | 14.28 | 19.53 |
7 | 125 | 1.02 | 6 | 0 | 12 | 1 | 1 | 0 | 1 | 28 | 10.5 | 28.56 | 39.06 |
8 | 125 | 2.05 | 6 | 0 | 12 | 1 | 1 | 0 | 1 | 23 | 20.99 | 47.15 | 68.14 |
9 | 125 | 4.1 | 6 | 0 | 12 | 1 | 1 | 0 | 1 | 23 | 41.98 | 94.3 | 136.28 |
10 | 125 | 8.19 | 6 | 0 | 12 | 1 | 1 | 0 | 1 | 18 | 83.97 | 147.42 | 231.39 |
11 | 125 | 16.38 | 6 | 0 | 12 | 1 | 1 | 0 | 1 | 18 | 167.94 | 294.84 | 462.78 |
12 | 125 | 32.77 | 6 | 0 | 12 | 1 | 1 | 0 | 1 | 18 | 335.87 | 589.86 | 925.73 |
SF | 6 | 7 | 8 | 9 | 10 | 11 | 12 |
---|---|---|---|---|---|---|---|
RSSI (dBm) | −118 | −123 | −126 | −129 | −132 | −134 | −137 |
Bitrate (bit/s) | 9375 | 5469 | 3125 | 1758 | 977 | 537 | 293 |
Distances (m) | 270 | 333 | 410 | 506 | 623 | 716 | 824 |
Clustering Method | NENpack (Per Day) | λ2% | Throughput | Number of Connected Devices to a Gateway |
---|---|---|---|---|
FOREL | 24 | 0.01 | 79.223 | 3300 |
K-means | 24 | 0.01 | 92.292 | 3845 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Muthanna, M.S.A.; Wang, P.; Wei, M.; Rafiq, A.; Josbert, N.N. Clustering Optimization of LoRa Networks for Perturbed Ultra-Dense IoT Networks. Information 2021, 12, 76. https://doi.org/10.3390/info12020076
Muthanna MSA, Wang P, Wei M, Rafiq A, Josbert NN. Clustering Optimization of LoRa Networks for Perturbed Ultra-Dense IoT Networks. Information. 2021; 12(2):76. https://doi.org/10.3390/info12020076
Chicago/Turabian StyleMuthanna, Mohammed Saleh Ali, Ping Wang, Min Wei, Ahsan Rafiq, and Nteziriza Nkerabahizi Josbert. 2021. "Clustering Optimization of LoRa Networks for Perturbed Ultra-Dense IoT Networks" Information 12, no. 2: 76. https://doi.org/10.3390/info12020076