Super Resolution with Kernel Estimation and Dual Attention Mechanism
<p>Self-learning architecture.</p> "> Figure 2
<p>The structure of our proposed network.</p> "> Figure 3
<p>Architecture of the dual attention network.</p> "> Figure 4
<p>SR results (<math display="inline"><semantics> <mrow> <mo>×</mo> <mn>3</mn> </mrow> </semantics></math>) of real world images (old movie image, phone image) by different methods.</p> "> Figure 5
<p>SR visual result comparison of different methods with SR factor 4 and kernel width 1.6 on image “<math display="inline"><semantics> <mrow> <msub> <mo form="prefix">Img</mo> <mo>−</mo> </msub> <mn>97</mn> </mrow> </semantics></math>” from Urban100.</p> "> Figure 6
<p>SR results (<math display="inline"><semantics> <mrow> <mo>×</mo> <mn>3</mn> </mrow> </semantics></math>) of BICUBIC blur kernel images by different methods.</p> "> Figure 7
<p>SR results (<math display="inline"><semantics> <mrow> <mo>×</mo> <mn>3</mn> </mrow> </semantics></math>) of different attention.</p> ">
Abstract
:1. Introduction
- We propose a new SR method based on blur kernels estimation and attention mechanism to improve the performance for Super-Resolution. Our method is more suitable for solving the problem of SR reconstruction in real life.
- We propose a new dual attention module to consider the interdependence between features both in channels and spatial.
- We test the performance on real world images, isotropic Gaussian blur kernels, and specific blur kernels images. The experimental results show that our method achieves better SR performance than most existing methods.
2. Related Work
3. Proposed Method
3.1. ZSSR Method Introduction
3.2. Proposed Network
3.2.1. Kernel Estimation Network
3.2.2. Feature Extraction Network
3.2.3. Attention Network
4. Experiments and Discussion
4.1. Implementation Details
4.2. Real World Cases
4.3. KASR with Complex SR Kernel
4.4. KASR with Bicubic Blur SR Kernel
4.5. Ablation Study for Attention
4.6. Runtime
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Freeman, T.; Pasztor, C.; Carmichael, T. Learning Low-Level Vision. Int. J. Comput. Vis. 2000, 40, 25–47. [Google Scholar] [CrossRef]
- Wilman, W.; Zou, P.W.; Yuen, C. Very Low Resolution Face Recognition Problem. IEEE Trans. Image Process. 2002, 21, 327–340. [Google Scholar]
- Shi, W.; Jose, C.; Christian, L.; Zhuang, X.; Bai, W.; Bhatia, K.; Simoes, A.; Dawes, T.; Declan, P.; Cardiac, D. Image Super-Resolution with Global Correspondence Using Multi-Atlas PatchMatch. In Proceedings of the Medical Image Computing and Computer-Assisted Intervention, Nagoya, Japan, 22–26 September 2013; pp. 9–16. [Google Scholar]
- Sajjadi, S.; Scholkopf, B.; Hirsch, M. EnhanceNet: Single Image Super-Resolution Through Automated Texture Synthesis. In Proceedings of the International Conference on Computer Vision, Venice, Italy, 22–29 October 2017; pp. 4501–4510. [Google Scholar]
- Dong, C.; Loy, C.; He, K.M.; Tang, X.O. Learning a Deep Convolutional Network for Image Super-Resolution. Eur. Conf. Comput. Vis. 2014, 8692, 184–199. [Google Scholar]
- He, K.M.; Zhang, X.; Ren, S.; Sun, J. Deep Residual Learning for Image Recognition. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, NV, USA, 27–30 June 2016; pp. 770–778. [Google Scholar]
- Lim, B.; Son, S.; Kim, H.; Nah, S.; Lee, M.K. Enhanced Deep Residual Networks for Single Image Super-Resolution. In Proceedings of the Conference on Computer Vision and Pattern Recognition Workshops, Honolulu, HI, USA, 21–26 July 2017; pp. 1132–1140. [Google Scholar]
- Tai, Y.; Yang, J.; Liu, X. Image Super-Resolution via Deep Recursive Residual Network. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, HI, USA, 21–26 July 2017; pp. 2790–2798. [Google Scholar]
- Tai, Y.; Yang, J.; Liu, X.; Xu, C. MemNet: A Persistent Memory Network for Image Restoration. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, HI, USA, 21–26 July 2017; pp. 4549–4557. [Google Scholar]
- Zhang, Y.; Li, K.; Wang, L.; Zhong, B.; Fu, Y. Image Super-Resolution Using Very Deep Residual Channel Attention Networks. In Proceedings of the ECCV, Munich, Germany, 8–14 September 2018; pp. 294–310. [Google Scholar]
- Wang, Z.; Bovik, A.C.; Sheikh, H.R.; Simoncelli, E.P. Image quality assessment: From error visibility to structural similarity. IEEE Trans. Image Process. 2014, 13, 600–612. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chen, C.; Xiong, Z.; Tian, X.; Zha, Z.-J.; Wu, F. Camera Lens Super-Resolution. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Long Beach, CA, USA, 16–20 June 2019; pp. 1652–1660. [Google Scholar]
- Cai, J.; Zeng, H.; Yong, H.; Cao, Z.; Zhang, L. Toward Real-World Single Image Super-Resolution: A New Benchmark and a New Model. In Proceedings of the International Conference on Computer Vision, Thessaloniki, Greece, 23–25 September 2019; pp. 3086–3095. [Google Scholar]
- Riegler, G.; Schulter, S.; Ruther, M.; Bischof, H. Conditioned regression models for non-blind single image super-resolution. In Proceedings of the IEEE International Conference on Computer Vision, Santiago, Chile, 11–18 December 2015; pp. 522–530. [Google Scholar]
- Shocher, A.; Cohen, N.; Irani, M. “Zero-Shot” Super-Resolution Using Deep Internal Learning. In Proceedings of the Neural Information Processing Systems, Montreal, QC, Canada, 3–8 December 2018; pp. 3118–3126. [Google Scholar]
- Kim, J.; Lee, J.K.; Lee, K.M. Accurate Image Super-Resolution Using Very Deep Convolutional Networks. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, NV, USA, 27–30 June 2016; pp. 1646–1654. [Google Scholar]
- Kim, J.; Lee, J.k.; Lee, K.M. Deeply-Recursive Convolutional Network for Image Super-Resolution. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, NV, USA, 27–30 June 2016; pp. 1637–1645. [Google Scholar]
- Zhang, K.; Zuo, W.; Zhang, L. Learning a Single Convolutional Super-Resolution Network for Multiple Degradations. In Proceedings of the Neural Information Processing Systems, Montreal, QC, Canada, 3–8 December 2018; pp. 3262–3271. [Google Scholar]
- Zhang, Y.; Tian, Y.; Kong, Y.; Zhong, B.V.; Fu, Y. Residual Dense Network for Image Super-Resolution. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Salt Lake City, UT, USA, 18–22 June 2018; pp. 2472–2481. [Google Scholar]
- Itti, L.; Koch, C.; Niebur, E. A Model of Saliency-Based Visual Attention for Rapid Scene Analysis. IEEE Trans. Pattern Anal. Mach. Intell. 1998, 20, 1254–1259. [Google Scholar] [CrossRef] [Green Version]
- Liu, D.; Wen, B.; Fan, Y.; Change, C.; Huang, S. Non-Local Recurrent Network for Image Restoration. In Proceedings of the Neural Information Processing Systems, Montreal, QC, Canada, 3–8 December 2018; pp. 1680–1689. [Google Scholar]
- Hu, J.; Shen, L.; Sun, G. Squeeze-and-Excitation Networks. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Salt Lake City, UT, USA, 18–22 June 2018; pp. 7132–7141. [Google Scholar]
- Dai, T.; Cai, J.; Zhang, Y.; Xia, S.; Zhang, L. Second-Order Attention Network for Single Image Super-Resolution. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Long Beach, CA, USA, 16–20 June 2019; pp. 11065–11074. [Google Scholar]
- Huang, J.; Singh, A.; Ahuja, N. Single image super-resolution from transformed self-exemplars. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Boston, MA, USA, 7–12 June 2015; pp. 5197–5206. [Google Scholar]
Method | Kernel | Set5 | Set14 | B100 | ||||||
---|---|---|---|---|---|---|---|---|---|---|
CAB [14] | 33.27 | 31.03 | 29.31 | 30.29 | 28.29 | 26.91 | 28.98 | 27.65 | 25.51 | |
ZSSR [15] | 0.2 | 36.13 | 33.70 | 31.27 | 32.91 | 29.95 | 27.88 | 31.06 | 27.98 | 26.82 |
KASR (ours) | 36.27 | 33.81 | 31.30 | 32.93 | 29.98 | 27.95 | 31.23 | 28.12 | 26.93 | |
CAB [14] | 33.42 | 31.14 | 29.50 | 30.51 | 28.34 | 27.02 | 29.02 | 27.91 | 25.66 | |
ZSSR [15] | 1.3 | 36.01 | 33.28 | 31.14 | 32.56 | 29.43 | 27.25 | 30.87 | 28.05 | 26.30 |
KASR (ours) | 36.17 | 33.40 | 31.26 | 32.71 | 29.52 | 27.34 | 30.92 | 28.13 | 26.37 | |
CAB [14] | 32.21 | 30.82 | 28.81 | 29.74 | 27.83 | 26.15 | 28.35 | 26.63 | 25.13 | |
ZSSR [15] | 2.6 | 32.97 | 31.62 | 30.21 | 29.96 | 27.83 | 26.47 | 28.69 | 27.50 | 26.48 |
KASR (ours) | 33.01 | 31.63 | 30.25 | 29.97 | 27.88 | 26.46 | 28.71 | 27.53 | 26.50 |
Method | Scale | Set5 | Set14 | B100 | |||
---|---|---|---|---|---|---|---|
PSNR | SSIM | PSNR | SSIM | PSNR | SSIM | ||
SRCNN [5] | ×2 | 36.66 | 0.9542 | 32.42 | 0.9063 | 31.36 | 0.8879 |
VDSR [16] | ×2 | 37.53 | 0.9587 | 33.03 | 0.9124 | 31.90 | 0.8960 |
SelfExSR [24] | ×2 | 36.49 | 0.9537 | 32.22 | 0.9034 | 31.18 | 0.8855 |
ZSSR [15] | ×2 | 37.37 | 0.9570 | 33.00 | 0.9108 | 31.65 | 0.8920 |
KASR (ours) | ×2 | 37.54 | 0.9586 | 33.09 | 0.9135 | 31.78 | 0.8951 |
SRCNN [5] | ×3 | 32.75 | 0.9090 | 29.28 | 0.8209 | 28.41 | 0.7863 |
VDSR [16] | ×3 | 33.66 | 0.9213 | 29.77 | 0.8314 | 28.82 | 0.7976 |
SelfExSR [24] | ×3 | 32.58 | 0.9093 | 29.16 | 0.8196 | 28.29 | 0.7840 |
ZSSR [15] | ×3 | 33.42 | 0.9188 | 29.80 | 0.8304 | 28.67 | 0.7945 |
KASR (ours) | ×3 | 33.61 | 0.9214 | 29.89 | 0.8316 | 28.83 | 0.7961 |
SRCNN [5] | ×4 | 30.48 | 0.8628 | 27.49 | 0.7503 | 26.90 | 0.7101 |
VDSR [16] | ×4 | 31.35 | 0.8838 | 28.01 | 0.7674 | 27.29 | 0.7251 |
SelfExSR [24] | ×4 | 30.31 | 0.8619 | 27.40 | 0.7518 | 26.84 | 0.7106 |
ZSSR [15] | ×4 | 31.13 | 0.8796 | 28.01 | 0.7651 | 27.12 | 0.7211 |
KASR (ours) | ×4 | 31.19 | 0.8805 | 28.03 | 0.7675 | 27.26 | 0.7220 |
CA Block | ✗ | ✗ | ✓ | ✓ |
SA Block | ✗ | ✓ | ✗ | ✓ |
PSNR on Urban100 (2×) | 31.12 | 31.14 | 31.19 | 31.22 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liang, H.; Ding, Y.; Wang, F.; Gao, Y.; Qiu, X. Super Resolution with Kernel Estimation and Dual Attention Mechanism. Information 2020, 11, 508. https://doi.org/10.3390/info11110508
Liang H, Ding Y, Wang F, Gao Y, Qiu X. Super Resolution with Kernel Estimation and Dual Attention Mechanism. Information. 2020; 11(11):508. https://doi.org/10.3390/info11110508
Chicago/Turabian StyleLiang, Huan, Youdong Ding, Fei Wang, Yuzhen Gao, and Xiaofeng Qiu. 2020. "Super Resolution with Kernel Estimation and Dual Attention Mechanism" Information 11, no. 11: 508. https://doi.org/10.3390/info11110508
APA StyleLiang, H., Ding, Y., Wang, F., Gao, Y., & Qiu, X. (2020). Super Resolution with Kernel Estimation and Dual Attention Mechanism. Information, 11(11), 508. https://doi.org/10.3390/info11110508