A Big Data Analytics Approach for the Development of Advanced Cardiology Applications
<p>An anterior view of the heart [courses.lumenlearning.com/contemporaryhealthissues].</p> "> Figure 2
<p>The heart cycle: The mammalian heart & cardiac cycle.</p> "> Figure 3
<p>ECG outcomes.</p> "> Figure 4
<p>ECG derivative and threshold.</p> "> Figure 5
<p><span class="html-italic">collect</span> action for 500 MB file. 20 proofs average and confidence interval equal to 95%.</p> "> Figure 6
<p><span class="html-italic">collect</span> action for 2.5 GB file. 20 proofs average and confidence interval equal to 95%.</p> "> Figure 7
<p><span class="html-italic">collect</span> action for 5 GB file. 20 proofs average and confidence interval equal to 95%.</p> "> Figure 8
<p><span class="html-italic">saveAsTextFile</span> action for 500 MB file. 20 proofs average and confidence interval equal to 95%.</p> "> Figure 9
<p><span class="html-italic">saveAsTextFile</span> action for 2.5 GB file. 20 proofs average and confidence interval equal to 95%.</p> "> Figure 10
<p><span class="html-italic">saveAsTextFile</span> action for 5 GB file. 20 proofs average and confidence interval equal to 95%.</p> ">
Abstract
:1. Introduction
2. Related Work
3. Overview on Heart Cycle and ECG
3.1. The Heart Cycle
3.2. ECG
- P-Wave. Depolarization of atria in response to SinoAtrial (SA) node triggering.
- PR Interval. Delaty of AV node to allowing filling of ventricles.
- QRS Complex. Depolarization of ventricles triggering main pumping contractions.
- ST Segment. Beginning of ventricle repolarization, shoud be flat.
- T-Wave. Ventricular repolarization.
4. Application Design
5. Arrhythmia Detection Methodology
- indicates the current heartbeat index, whereas indicates the previous heartbeat index, etc.;
- indicates the current R-R interval and is calculated as . indicates the previous interval and is calculated as , etc.;
- indicates the mean interval based on 6 previous intervals coming from .
5.1. Tachycardia
5.2. Brachycardia
5.3. Asystole
5.4. Premature Ventricular Contraction (PVC)
5.5. Phenomenon
5.6. Interpolated PVC
5.7. Trigeminy
5.8. Implementation
6. Experiments
7. Discussion and Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Carnevale, L.; Celesti, A.; Fazio, M.; Bramanti, P.; Villari, M. Heart Disorder Detection with Menard Algorithm on Apache Spark. In Service-Oriented and Cloud Computing; De Paoli, F., Schulte, S., Broch Johnsen, E., Eds.; Springer: Berlin/Heidelberg, Germany, 2017; pp. 229–237. [Google Scholar]
- Ho, T.W.; Lin, F.C.; Lin, C.M.; Lai, F. Smart computing mechanism for noise detection and elimination in ECG signal. In Proceedings of the 2017 IEEE International Conference on Big Data and Smart Computing (BigComp), Jeju Island, Korea, 13–16 February 2017; pp. 28–33. [Google Scholar]
- Wang, Y.; Wang, L.; Chen, X.; Zhu, W. P Wave Detection and Delineation Based on Distances Transform. In Proceedings of the 2016 IEEE Trustcom/BigDataSE/ISPA, Tianjin, China, 23–26 August 2016. [Google Scholar]
- Alshraideh, H.; Otoom, M.; Al-Araida, A.; Bawaneh, H.; Bravo, J. A Web Based Cardiovascular Disease Detection System. J. Med. Syst. 2015, 39, 242–247. [Google Scholar] [CrossRef] [PubMed]
- Cochrane, T.; Dunlop, A. A report generator package for routine laboratory tests in a hospital cardiology department. Comput. Methods Programs Biomed. 1985, 20, 63–68. [Google Scholar] [CrossRef]
- Costa, C.; Oliveira, J.L.; Silva, A.; Ribeiro, V.G.; Ribeiro, J. Design, development, exploitation and assessment of a Cardiology Web PACS. Comput. Methods Programs Biomed. 2009, 93, 273–282. [Google Scholar] [CrossRef] [PubMed]
- Novo, J.; Hermida, A.; Ortega, M.; Barreira, N.; Penedo, M.; López, J.; Calvo, C. Hydra: A web-based system for cardiovascular analysis, diagnosis and treatment. Comput. Methods Programs Biomed. 2017, 139, 61–81. [Google Scholar] [CrossRef] [PubMed]
- Ma’sum, M.A.; Jatmiko, W.; Suhartanto, H. Enhanced tele ECG system using Hadoop framework to deal with big data processing. In Proceedings of the 2016 International Workshop on Big Data and Information Security (IWBIS), Jakarta, Indonesia, 18–19 October 2016; pp. 121–136. [Google Scholar]
- Bergeron, B.P.; Greenes, R.A. Clinical skill-building simulations in cardiology: HeartLab and EkgLab. Comput. Methods Programs Biomed. 1989, 30, 111–126. [Google Scholar] [CrossRef]
- Carnevale, L.; Celesti, A.; Fazio, M.; Bramanti, P.; Villari, M. How to Enable Clinical Workflows to Integrate Big Healthcare Data. In Proceedings of the 2017 IEEE Symposium on Computers and Communications (ISCC 2017), Heraklion, Greece, 3–6 July 2017; pp. 1–6. [Google Scholar]
- Chen, X.; Ji, J.; Loparo, K.; Li, P. Real-time personalized cardiac arrhythmia detection and diagnosis: A cloud computing architecture. In Proceedings of the 2017 IEEE EMBS International Conference on Biomedical and Health Informatics (BHI 2017), Orlando, FL, USA, 16–19 February 2017; pp. 201–204. [Google Scholar]
- Sahoo, S.S.; Jayapandian, C.; Garg, G.; Kaffashi, F.; Chung, S.; Bozorgi, A.; Chen, C.H.; Loparo, K.; Lhatoo, S.D.; Zhang, G.Q. Heart beats in the cloud: Distributed analysis of electrophysiological ‘Big Data’ using cloud computing for epilepsy clinical research. J. Am. Med. Inform. Assoc. 2014, 21, 263–271. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Apandi, Z.F.M.; Ikeura, R.; Hayakawa, S. Arrhythmia Detection Using MIT-BIH Dataset: A Review. In Proceedings of the 2018 International Conference on Computational Approach in Smart Systems Design and Applications (ICASSDA), Kuching, Malaysia, 15–17 August 2018; pp. 1–5. [Google Scholar]
- Lillo-Castellano, J.; Mora-Jiménez, I.; Santiago-Mozos, R.; Chavarría-Asso, F.; Cano-González, A.; García-Alberola, A.; Rojo-Álvarez, J. Symmetrical Compression Distance for Arrhythmia Discrimination in Cloud-Based Big-Data Services. IEEE J. Biomed. Health Inform. 2015, 19, 1253–1263. [Google Scholar] [CrossRef] [PubMed]
- Behadada, O.; Trovati, M.; Chikh, M.A.; Bessis, N.; Korkontzelos, Y. Logistic Regression Multinomial for Arrhythmia Detection. In Proceedings of the 2016 IEEE 1st International Workshops on Foundations and Applications of Self* Systems (FAS*W), Augsburg, Germany, 12–16 September 2016; pp. 133–137. [Google Scholar]
- Wang, H.; Shi, H.; Lin, K.; Zhao, L.; Liu, C. A High-Precise Arrhythmia Detection Method Based on Biorthogonal Wavelet and Fully Connected Neural Network. In Proceedings of the 2019 IEEE Fifth International Conference on Big Data Computing Service and Applications (BigDataService), San Francisco East Bay, CA, USA, 4–9 April 2019; pp. 316–321. [Google Scholar]
- Celesti, A.; Fazio, M.; Galletta, A.; Carnevale, L.; Wan, J.; Villari, M. An approach for the secure management of hybrid cloud–edge environments. Future Gener. Comput. Syst. 2019, 90, 1–19. [Google Scholar] [CrossRef]
- Celesti, A.; Galletta, A.; Fazio, M.; Villari, M. Towards Hybrid Multi-Cloud Storage Systems: Understanding How to Perform Data Transfer. Big Data Res. 2019, 16, 1–17. [Google Scholar] [CrossRef]
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Carnevale, L.; Celesti, A.; Fazio, M.; Villari, M. A Big Data Analytics Approach for the Development of Advanced Cardiology Applications. Information 2020, 11, 60. https://doi.org/10.3390/info11020060
Carnevale L, Celesti A, Fazio M, Villari M. A Big Data Analytics Approach for the Development of Advanced Cardiology Applications. Information. 2020; 11(2):60. https://doi.org/10.3390/info11020060
Chicago/Turabian StyleCarnevale, Lorenzo, Antonio Celesti, Maria Fazio, and Massimo Villari. 2020. "A Big Data Analytics Approach for the Development of Advanced Cardiology Applications" Information 11, no. 2: 60. https://doi.org/10.3390/info11020060