A Robust Automatic Ultrasound Spectral Envelope Estimation
<p>(<b>a</b>) The data of input signal; (<b>b</b>) integrated power spectrum (IPS); (<b>c</b>) new IPS after quadratic iteration algorithm; and (<b>d</b>) the maximum and minimum velocity points of the original signal.</p> "> Figure 2
<p>Location of the maximum velocity point and the minimum velocity point in P(m).</p> "> Figure 3
<p>Location of the point of maximum velocity in the MGM.</p> "> Figure 4
<p>Location of the end of the knee center, signal region, noise start and noise end point in the MSNSI method. Steps (1)–(4) represent the procedure of MSNSI.</p> "> Figure 5
<p>True curve and results using MGM and MSNSI, QIA methods tested on steady phantom flow and pulsatile phantom flow. (<b>a</b>) the spectrogram of steady phantom flow with true curve; (<b>b</b>) the results of methods tested on the spectrogram of steady phantom flow; (<b>c</b>) the spectrogram of pulsatile phantom flow with true curve; (<b>d</b>) the results of methods tested on the spectrogram of pulsatile phantom flow.</p> "> Figure 6
<p>Comparison of the spectral estimation using MGM, MSNSI and QIA and ideal curve drawn by an experienced clinician, on a carotid artery spectrogram, in different noise conditions: (<b>a</b>) the results of methods tested on the original spectrum with no added noise; and (<b>b</b>–<b>d</b>) the results of envelope estimated when the level of noise is increasing.</p> "> Figure 7
<p>FOM of algorithms QIA, MGM, and MSNSI by varying variance of Gaussian white noise. No added noise is defined as Noise level 0, while Noise levels 1–3 represent increasing levels of Gaussian white noise.</p> "> Figure 8
<p>Envelope estimation results on: spectrum of carotid artery (<b>a</b>); finger blood (<b>b</b>); kidney blood (<b>c</b>); and heart blood (<b>d</b>).</p> ">
Abstract
:1. Introduction
2. Algorithm Description
2.1. Quadratic Iteration Algorithm
2.1.1. Step 1
2.1.2. Step 2
2.1.3. Step 3
2.1.4. Step 4
2.2. Modified Geometric Method
2.3. Modified Signal Noise Slope Intersection
3. Experiments and Results
3.1. Data Acquisition and Processing
3.2. Test Methods on Phantom Recordings
3.3. Evaluate the Robustness of QIA
3.4. Test Methods on Different In-Vivo Recordings
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Benzarti, F.; Amiri, H. Speckle Noise Reduction in Medical Ultrasound Images. Int. J. Comput. Sci. Issues 2012, 9, 126–131. [Google Scholar]
- Grant, E.G.; Benson, C.B.; Moneta, G.L.; Alexandrov, A.V.; Baker, J.D.; Bluth, E.I. Carotid artery stenosis: Gray-scale and Doppler US diagnosis—Society of radiologists in ultrasound consensus conference. Radiology 2003, 229, 340–346. [Google Scholar] [CrossRef] [PubMed]
- Kathpalia, A.; Karabiyik, Y.; Eik-Nes, S.H.; Tegnander, E.; Ekroll, I.K.; Kiss, G.; Torp, H. Adaptive Spectral Envelope Estimation for Doppler Ultrasound. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 2016, 63, 1825–1838. [Google Scholar] [CrossRef] [PubMed]
- Albayrak, R.; Degırmencı, B.; Acar, M.; Haktanır, A.; Colbay, M.; Yaman, M. Doppler sonography evaluation of flow velocity and volume of the extracranial internal carotid and vertebral arteries in healthy adults. J. Clin. Ultrasound 2007, 35, 27–33. [Google Scholar] [CrossRef] [PubMed]
- Canneyt, K.V.; Swillens, A.; Lovstakken, L.; Antiga, L.; Verdonck, P.; Segers, P. The accuracy of ultrasound volume flow measurements in the complex flow setting of a forearm vascular access. J. Vasc. Access 2012, 14, 281–290. [Google Scholar] [CrossRef] [PubMed]
- Lee, J.-H.; Kim, J.T.; Yoon, S.Z.; Lim, Y.J.; Jeon, Y.; Bahk, J.H.; Kim, C.S. Evaluation of corrected flow time in oesophageal Doppler as a predictor of fluid responsiveness. Br. J. Anaesth. 2007, 99, 343–348. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gardiner, H.; Brodszki, J.; Eriksson, A.; Mar, K. Volume blood flow estimation in the normal and growth-restricted fetus. Ultrasound Med. Biol. 2002, 28, 1107–1113. [Google Scholar] [CrossRef]
- Chivers, R.C.; Hill, C.R. A spectral approach to ultrasonic scattering from human tissue: Methods, objectives and backscattering measurements. Phys. Med. Biol. 1975, 20, 799–815. [Google Scholar] [CrossRef] [PubMed]
- Evans, D.H.; McDicken, W.N.; Skidmore, R.; Woodcock, J.P. Doppler Ultrasound: Physics, Instrumentation, and Clinical Applications; Wiley: New York, NY, USA, 1989. [Google Scholar]
- Mo, L.Y.L.; Yun, L.C.M.; Cobbold, R.S.C. Comparison of four digital maximum frequency estimators for Doppler ultrasound. Ultrasound Med. Biol. 1988, 14, 355–363. [Google Scholar] [PubMed]
- D’Alessio, T. ‘Objective’ algorithm for maximum frequency estimation in Doppler spectral analysers. Med. Biol. Eng. Comput. 1985, 23, 63–68. [Google Scholar] [CrossRef] [PubMed]
- Marasek, K.; Nowicki, A. Comparison of the performance of three maximum Doppler frequency estimators coupled with different spectral estimation methods. Ultrasound Med. Biol. 1994, 20, 629–638. [Google Scholar] [CrossRef]
- Moraes, R.; Aydin, N.; Evans, D.H. The performance of three maximum frequency envelope detection algorithms for Doppler signals. J. Vascular Invest. 1995, 1, 126–134. [Google Scholar]
- Steinman, A.H.; Tavakkoli, J.; Myers, J.G.; Cobbold, R.S.C.; Johnston, K.W. A new approach for determining maximum frequency in clinical Doppler ultrasound spectral estimates. In Proceedings of the 22nd Annual International Conference of the IEEE Engineering in Medicine and Biology Society (Cat. No.00CH37143), Chicago, IL, USA, 23–28 July 2000; pp. 2640–2643. [Google Scholar]
- Steinman, A.H.; Tavakkoli, J.; Myers, J.G., Jr.; Cobbold, R.S.C.; Johnston, K.W. Sources of error in maximum velocity estimation using linear phased-array Doppler systems with steady flow. Ultrasound Med. Biol. 2001, 27, 655–664. [Google Scholar] [CrossRef]
- Fernando, K.L.; Mathews, V.J.; Clark, E.B. A mathematical basis for the application of the modified geometric method to maximum frequency estimation. IEEE Trans. Biomed. Eng. 2004, 51, 2085–2088. [Google Scholar] [CrossRef] [PubMed]
- Tschirren, J.; Lauer, R.M.; Sonka, M. Automated analysis of Doppler ultrasound velocity flow diagrams. IEEE Trans. Med. Imag. 2001, 20, 1422–1425. [Google Scholar] [CrossRef] [PubMed]
- Shechner, O.; Sheinovitz, M.; Feinberg, M.; Greenspan, H. Image analysis of Doppler echocardiography for patients with atrial fibrillation. In Proceedings of the 2004 2nd IEEE International Symposium on Biomedical Imaging: Nano to Macro (IEEE Cat No. 04EX821), Arlington, VA, USA, 18 April 2004; Volume 1, pp. 488–491. [Google Scholar]
- Doherty, D.A.; James, I.R.; Newnham, J.P. Estimation of the Doppler ultrasound maximal umbilical waveform envelope: I. Estimation method. Ultrasound Med. Biol. 2002, 28, 1251–1259. [Google Scholar] [CrossRef]
- Wenlong, F.; Johnston, M.; Zhang, M. Genetic programming for edge detection based on figure of merit. In Proceedings of the 14th Annual Conference Companion on Genetic and Evolutionary Computation, Philadelphia, PA, USA, 7–11 July 2012. [Google Scholar]
- Wenlong, F.; Johnston, M.; Zhang, M. Genetic Programming for Edge Detection: A Gaussian-Based Approach; Springer: Berlin/Heidelberg, Germany, 2016. [Google Scholar]
Method Type | No Added Noise (SNR = 10 dB) | Noise Level 1 (SNR = 8 dB) | Noise Level 2 (SNR = 6 dB) | Noise Level 3 (SNR = 4 dB) |
---|---|---|---|---|
QIA | –0.34% | 1.45% | 4.46% | 5.2% |
MGM | 9.83% | 9.96% | 11.05% | 14.97% |
MSNSI | –14.03% | 13.79% | –14.19% | –15.03% |
Method Type | No Added Noise (SNR = 10 dB) | Noise Level 1 (SNR = 8 dB) | Noise Level 2 (SNR = 6 dB) | Noise Level 3 (SNR = 4 dB) |
---|---|---|---|---|
QIA | 3.06% | 3.41% | 3.15% | 6.42% |
MGM | 3.61% | 3.64% | 4.10% | 7.79% |
MSNSI | 7.39% | 7.12% | 6.48% | 8.61% |
Method | Carotid Artery | Finger Blood | Kidney Blood | Heart Blood |
---|---|---|---|---|
QIA | 0.8601 | 0.6665 | 0.5851 | 0.6487 |
MGM | 0.8465 | 0.6646 | 0.0531 | 0.4180 |
MSNSI | 0.7497 | 0.3434 | 0.0258 | 0.1463 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, J.; Zhang, Y.; Liu, X.; Liu, P.; Yin, H.; Liu, D.C. A Robust Automatic Ultrasound Spectral Envelope Estimation. Information 2019, 10, 199. https://doi.org/10.3390/info10060199
Li J, Zhang Y, Liu X, Liu P, Yin H, Liu DC. A Robust Automatic Ultrasound Spectral Envelope Estimation. Information. 2019; 10(6):199. https://doi.org/10.3390/info10060199
Chicago/Turabian StyleLi, Jinkai, Yi Zhang, Xin Liu, Paul Liu, Hao Yin, and Dong C. Liu. 2019. "A Robust Automatic Ultrasound Spectral Envelope Estimation" Information 10, no. 6: 199. https://doi.org/10.3390/info10060199
APA StyleLi, J., Zhang, Y., Liu, X., Liu, P., Yin, H., & Liu, D. C. (2019). A Robust Automatic Ultrasound Spectral Envelope Estimation. Information, 10(6), 199. https://doi.org/10.3390/info10060199