Machine Learning Applications in Prediction Models for COVID-19: A Bibliometric Analysis
"> Figure 1
<p>The flowchart for publication selection in this study.</p> "> Figure 2
<p>Basic information on the bibliometric analysis included.</p> "> Figure 3
<p>Overall publication trends and citations, 2020–2023.</p> "> Figure 4
<p>Author collaboration network analysis using VOSviewer.</p> "> Figure 5
<p>Visual maps of international cooperation between the countries.</p> "> Figure 6
<p>Visual map of collaborating institutions.</p> "> Figure 7
<p>Co-occurrence analysis of keywords based on VOSviewer.</p> "> Figure 8
<p>Keyword clustering maps for 2020, 2021, 2022, and 2023 based on CiteSpace.</p> ">
Abstract
:1. Introduction
- (1)
- Investigate the output and trends of publications in the field of machine learning applications in COVID-19 prediction models.
- (2)
- Identify major contributors, including key authors, countries/regions, institutions, and journals.
- (3)
- Identify cooperation networks between countries/regions, institutions, and authors.
- (4)
- Explore key themes, hotspots, and research trends.
- (5)
- Provide insights into current research directions and suggest opportunities for future research in this field.
2. Materials and Methods
2.1. Data Sources
2.2. Data Visualization and Analysis
3. Results
3.1. The Research Status of ML in Prediction Related to COVID-19
3.2. Analysis of Top Contributing Authors
3.3. National Research Status and International Cooperation
3.4. Output and Collaboration Status of Institutions
3.5. Analysis of Funding Sources
3.6. Analysis of Journals and Co-Cited Journals
3.7. Analysis of Highly Cited References
3.8. Analysis of Co-Occurring Keywords
4. Discussion
4.1. Principal Results
4.2. Applications of COVID-19 Machine Learning
4.3. Limitations and Challenges of ML in Medicine
4.4. Related Works
4.5. Strengths and Limitations
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Wang, C.; Horby, P.W.; Hayden, F.G.; Gao, G.F. A Novel Coronavirus Outbreak of Global Health Concern. Lancet 2020, 395, 470–473. [Google Scholar] [CrossRef] [PubMed]
- Ai, T.; Yang, Z.; Hou, H.; Zhan, C.; Chen, C.; Lv, W.; Tao, Q.; Sun, Z.; Xia, L. Correlation of Chest CT and RT-PCR Testing for Coronavirus Disease 2019 (COVID-19) in China: A Report of 1014 Cases. Radiology 2020, 296, E32–E40. [Google Scholar] [CrossRef]
- IHR Emergency Committee on Novel Coronavirus (2019-nCoV). Available online: https://www.who.int/director-general/speeches/detail/who-director-general-s-statement-on-ihr-emergency-committee-on-novel-coronavirus-(2019-ncov) (accessed on 31 August 2024).
- WHO Director-General’s Opening Remarks at the Media Briefing on COVID-19—11 March 2020. Available online: https://www.who.int/director-general/speeches/detail/who-director-general-s-opening-remarks-at-the-media-briefing-on-covid-19---11-march-2020 (accessed on 1 September 2024).
- COVID-19 Cases | WHO COVID-19 Dashboard. Available online: https://data.who.int/dashboards/covid19/cases (accessed on 17 March 2024).
- Mantovani, A.; Morrone, M.C.; Patrono, C.; Santoro, M.G.; Schiaffino, S.; Remuzzi, G.; Bussolati, G. Long Covid: Where We Stand and Challenges Ahead. Cell Death Differ. 2022, 29, 1891–1900. [Google Scholar] [CrossRef] [PubMed]
- Teitler Regev, S.; Tavor, T. Analyzing the Varied Impact of COVID-19 on Stock Markets: A Comparative Study of Low- and High-Infection-Rate Countries. PLoS ONE 2024, 19, e0296673. [Google Scholar] [CrossRef]
- Forster, P.M.; Forster, H.I.; Evans, M.J.; Gidden, M.J.; Jones, C.D.; Keller, C.A.; Lamboll, R.D.; Quéré, C.L.; Rogelj, J.; Rosen, D.; et al. Current and Future Global Climate Impacts Resulting from COVID-19. Nat. Clim. Change 2020, 10, 913–919. [Google Scholar] [CrossRef]
- Pata, U.K. How Is COVID-19 Affecting Environmental Pollution in US Cities? Evidence from Asymmetric Fourier Causality Test. Air Qual. Atmos. Health 2020, 13, 1149–1155. [Google Scholar] [CrossRef] [PubMed]
- Martín-Sánchez, M.; Cáceres-Muñoz, J.; Flores-Rodríguez, C. The Effects of the COVID-19 Pandemic on Educational Communities: Evidence of Early Childhood Education Students. Int. J. Env. Res. Public Health 2022, 19, 4707. [Google Scholar] [CrossRef] [PubMed]
- Tracking SARS-CoV-2 Variants. Available online: https://www.who.int/activities/tracking-SARS-CoV-2-variants/ (accessed on 28 February 2024).
- Tamura, T.; Irie, T.; Deguchi, S.; Yajima, H.; Tsuda, M.; Nasser, H.; Mizuma, K.; Plianchaisuk, A.; Suzuki, S.; Uriu, K.; et al. Virological Characteristics of the SARS-CoV-2 Omicron XBB.1.5 Variant. Nat. Commun. 2024, 15, 1176. [Google Scholar] [CrossRef]
- Pan, L.; Liu, G.; Lin, F.; Zhong, S.; Xia, H.; Sun, X.; Liang, H. Machine Learning Applications for Prediction of Relapse in Childhood Acute Lymphoblastic Leukemia. Sci. Rep. 2017, 7, 7402. [Google Scholar] [CrossRef]
- Kourou, K.; Exarchos, T.P.; Exarchos, K.P.; Karamouzis, M.V.; Fotiadis, D.I. Machine Learning Applications in Cancer Prognosis and Prediction. Comput. Struct. Biotechnol. J. 2015, 13, 8–17. [Google Scholar] [CrossRef]
- Daghistani, T.A.; Elshawi, R.; Sakr, S.; Ahmed, A.M.; Al-Thwayee, A.; Al-Mallah, M.H. Predictors of In-Hospital Length of Stay among Cardiac Patients: A Machine Learning Approach. Int. J. Cardiol. 2019, 288, 140–147. [Google Scholar] [CrossRef]
- Junaid, M.; Ali, S.; Eid, F.; El-Sappagh, S.; Abuhmed, T. Explainable Machine Learning Models Based on Multimodal Time-Series Data for the Early Detection of Parkinson’s Disease. Comput. Methods Programs Biomed. 2023, 234, 107495. [Google Scholar] [CrossRef]
- Tahmassebi, A.; Wengert, G.J.; Helbich, T.H.; Bago-Horvath, Z.; Alaei, S.; Bartsch, R.; Dubsky, P.; Baltzer, P.; Clauser, P.; Kapetas, P.; et al. Impact of Machine Learning With Multiparametric Magnetic Resonance Imaging of the Breast for Early Prediction of Response to Neoadjuvant Chemotherapy and Survival Outcomes in Breast Cancer Patients. Investig. Radiol. 2019, 54, 110–117. [Google Scholar] [CrossRef] [PubMed]
- Wynants, L.; Calster, B.V.; Collins, G.S.; Riley, R.D.; Heinze, G.; Schuit, E.; Albu, E.; Arshi, B.; Bellou, V.; Bonten, M.M.J.; et al. Prediction Models for Diagnosis and Prognosis of COVID-19: Systematic Review and Critical Appraisal. BMJ 2020, 369, m1328. [Google Scholar] [CrossRef] [PubMed]
- Casiraghi, E.; Malchiodi, D.; Trucco, G.; Frasca, M.; Cappelletti, L.; Fontana, T.; Esposito, A.A.; Avola, E.; Jachetti, A.; Reese, J.; et al. Explainable Machine Learning for Early Assessment of COVID-19 Risk Prediction in Emergency Departments. IEEE Access 2020, 8, 196299–196325. [Google Scholar] [CrossRef] [PubMed]
- Mohadab, M.E.; Bouikhalene, B.; Safi, S. Bibliometric Method for Mapping the State of the Art of Scientific Production in COVID-19. Chaos Solitons Fractals 2020, 139, 110052. [Google Scholar] [CrossRef]
- Chiroma, H.; Ezugwu, A.E.; Jauro, F.; Al-Garadi, M.A.; Abdullahi, I.N.; Shuib, L. Early Survey with Bibliometric Analysis on Machine Learning Approaches in Controlling COVID-19 Outbreaks. Peerj Comput. Sci. 2020, 6, e313. [Google Scholar] [CrossRef]
- Steiner, M.; Franco, D.; Steiner Nieto, P. Machine Learning Techniques Applied to the Coronavirus Pandemic: A Systematic and Bibliometric Analysis from January 2020 to June 2021. RIMNI 2022, 38, 1–14. [Google Scholar] [CrossRef]
- Baygül Eden, A.; Bakir Kayi, A.; Erdem, M.G.; Demirci, M. COVID-19 Studies Involving Machine Learning Methods: A Bibliometric Study. Medicine 2023, 102, e35564. [Google Scholar] [CrossRef]
- Ballaz, S.; Pulgar-Sánchez, M.; Chamorro, K.; Fernández-Moreira, E. Scientific Pertinence of Developing Machine Learning Technologies for the Triage of COVID-19 Patients: A Bibliometric Analysis via Scopus. Inform. Med. Unlocked 2023, 41, 101312. [Google Scholar] [CrossRef]
- Aria, M.; Cuccurullo, C. Bibliometrix: An R-Tool for Comprehensive Science Mapping Analysis. J. Informetr. 2017, 11, 959–975. [Google Scholar] [CrossRef]
- Garfield, E. From the Science of Science to Scientometrics Visualizing the History of Science with HistCite Software. J. Informetr. 2009, 3, 173–179. [Google Scholar] [CrossRef]
- van Eck, N.J.; Waltman, L. Software Survey: VOSviewer, a Computer Program for Bibliometric Mapping. Scientometrics 2010, 84, 523–538. [Google Scholar] [CrossRef]
- Chen, C. Searching for Intellectual Turning Points: Progressive Knowledge Domain Visualization. Proc. Natl. Acad. Sci. USA 2004, 101, 5303–5310. [Google Scholar] [CrossRef] [PubMed]
- Chen, C. Science Mapping: A Systematic Review of the Literature. J. Data Inf. Sci. 2017, 2, 1–40. [Google Scholar] [CrossRef]
- Li, S.; Wang, Y.; Xue, J.; Zhao, N.; Zhu, T. The Impact of COVID-19 Epidemic Declaration on Psychological Consequences: A Study on Active Weibo Users. Int. J. Environ. Res. Public Health 2020, 17, 2032. [Google Scholar] [CrossRef]
- Yang, Z.; Zeng, Z.; Wang, K.; Wong, S.-S.; Liang, W.; Zanin, M.; Liu, P.; Cao, X.; Gao, Z.; Mai, Z.; et al. Modified SEIR and AI Prediction of the Epidemics Trend of COVID-19 in China under Public Health Interventions. J. Thorac. Dis. 2020, 12, 165. [Google Scholar] [CrossRef]
- Yan, L.; Zhang, H.-T.; Goncalves, J.; Xiao, Y.; Wang, M.; Guo, Y.; Sun, C.; Tang, X.; Jing, L.; Zhang, M.; et al. An Interpretable Mortality Prediction Model for COVID-19 Patients. Nat. Mach. Intell. 2020, 2, 283–288. [Google Scholar] [CrossRef]
- Chimmula, V.K.R.; Zhang, L. Time Series Forecasting of COVID-19 Transmission in Canada Using LSTM Networks. Chaos Solitons Fractals 2020, 135, 109864. [Google Scholar] [CrossRef]
- Shrock, E.; Fujimura, E.; Kula, T.; Timms, R.T.; Lee, I.-H.; Leng, Y.; Robinson, M.L.; Sie, B.M.; Li, M.Z.; Chen, Y.; et al. Viral Epitope Profiling of COVID-19 Patients Reveals Cross-Reactivity and Correlates of Severity. Science 2020, 370, eabd4250. [Google Scholar] [CrossRef]
- Wang, X.; Deng, X.; Fu, Q.; Zhou, Q.; Feng, J.; Ma, H.; Liu, W.; Zheng, C. A Weakly-Supervised Framework for COVID-19 Classification and Lesion Localization From Chest CT. IEEE Trans. Med. Imaging 2020, 39, 2615–2625. [Google Scholar] [CrossRef] [PubMed]
- Chen, J.; Wang, R.; Wang, M.; Wei, G.-W. Mutations Strengthened SARS-CoV-2 Infectivity. J. Mol. Biol. 2020, 432, 5212–5226. [Google Scholar] [CrossRef] [PubMed]
- Nikolopoulos, K.; Punia, S.; Schäfers, A.; Tsinopoulos, C.; Vasilakis, C. Forecasting and Planning during a Pandemic: COVID-19 Growth Rates, Supply Chain Disruptions, and Governmental decisions. Eur. J. Oper. Res. 2021, 290, 99–115. [Google Scholar] [CrossRef] [PubMed]
- Ribeiro, M.H.D.M.; da Silva, R.G.; Mariani, V.C.; Coelho, L.d.S. Short-Term Forecasting COVID-19 Cumulative Confirmed Cases: Perspectives for Brazil. Chaos Solitons Fractals 2020, 135, 109853. [Google Scholar] [CrossRef] [PubMed]
- Overmyer, K.A.; Shishkova, E.; Miller, I.J.; Balnis, J.; Bernstein, M.N.; Peters-Clarke, T.M.; Meyer, J.G.; Quan, Q.; Muehlbauer, L.K.; Trujillo, E.A.; et al. Large-Scale Multi-Omic Analysis of COVID-19 Severity. Cels 2021, 12, 23–40.e7. [Google Scholar] [CrossRef]
- The State of, U.S. Science and Engineering 2022 | NSF—National Science Foundation. Available online: https://ncses.nsf.gov/pubs/nsb20221 (accessed on 25 January 2024).
- Fancourt, D.; Steptoe, A.; Bu, F. Trajectories of Anxiety and Depressive Symptoms during Enforced Isolation Due to COVID-19 in England: A Longitudinal Observational Study. Lancet Psychiatry 2021, 8, 141–149. [Google Scholar] [CrossRef]
- Maran, P.L.; Klokgieters, S.S.; Giltay, E.J.; van Oppen, P.; Jörg, F.; Eikelenboom, M.; Ottenheim, N.R.; Penninx, B.W.J.H.; Kok, A.A.L. The Impact of COVID-19-Pandemic-Related Adversity on Mental Health: Longitudinal Study in Dutch Populations with and without Mental Health Disorders. BJPsych Open 2023, 9, e181. [Google Scholar] [CrossRef]
- Hoogendijk, E.O.; Schuster, N.A.; van Tilburg, T.G.; Schaap, L.A.; Suanet, B.; De Breij, S.; Kok, A.A.; Van Schoor, N.M.; Timmermans, E.J.; de Jongh, R.T.; et al. Longitudinal Aging Study Amsterdam COVID-19 Exposure Index: A Cross-Sectional Analysis of the Impact of the Pandemic on Daily Functioning of Older Adults. BMJ Open 2022, 12, e061745. [Google Scholar] [CrossRef]
- Accarino, G.; Lorenzetti, S.; Aloisio, G. Assessing Correlations between Short-Term Exposure to Atmospheric Pollutants and COVID-19 Spread in All Italian Territorial Areas. Environ. Pollut. 2021, 268, 115714. [Google Scholar] [CrossRef]
- Sheridan, C.; Klompmaker, J.; Cummins, S.; James, P.; Fecht, D.; Roscoe, C. Associations of Air Pollution with COVID-19 Positivity, Hospitalisations, and Mortality: Observational Evidence from UK Biobank. Environ. Pollut. 2022, 308, 119686. [Google Scholar] [CrossRef]
- Nobile, F.; Michelozzi, P.; Ancona, C.; Cappai, G.; Cesaroni, G.; Davoli, M.; Di Martino, M.; Nicastri, E.; Girardi, E.; Beccacece, A.; et al. Air Pollution, SARS-CoV-2 Incidence and COVID-19 Mortality in Rome—A Longitudinal Study. Eur. Respir. J. 2022, 60, 2200589. [Google Scholar] [CrossRef] [PubMed]
- Lavigne, E.; Ryti, N.; Gasparrini, A.; Sera, F.; Weichenthal, S.; Chen, H.; To, T.; Evans, G.J.; Sun, L.; Dheri, A.; et al. Short-Term Exposure to Ambient Air Pollution and Individual Emergency Department Visits for COVID-19: A Case-Crossover Study in Canada. Thorax 2023, 78, 459–466. [Google Scholar] [CrossRef] [PubMed]
- Malik, H.; Naeem, A.; Naqvi, R.A.; Loh, W.-K. DMFL_Net: A Federated Learning-Based Framework for the Classification of COVID-19 from Multiple Chest Diseases Using X-Rays. Sensors 2023, 23, 743. [Google Scholar] [CrossRef] [PubMed]
- Ozturk, T.; Talo, M.; Yildirim, E.A.; Baloglu, U.B.; Yildirim, O.; Rajendra Acharya, U. Automated Detection of COVID-19 Cases Using Deep Neural Networks with X-Ray Images. Comput. Biol. Med. 2020, 121, 103792. [Google Scholar] [CrossRef]
- Wu, X.; Hui, H.; Niu, M.; Li, L.; Wang, L.; He, B.; Yang, X.; Li, L.; Li, H.; Tian, J.; et al. Deep Learning-Based Multi-View Fusion Model for Screening 2019 Novel Coronavirus Pneumonia: A Multicentre Study. Eur. J. Radiol. 2020, 128, 109041. [Google Scholar] [CrossRef]
- Ayyoubzadeh, S.M.; Ayyoubzadeh, S.M.; Zahedi, H.; Ahmadi, M.; Kalhori, S.R.N. Predicting COVID-19 Incidence Through Analysis of Google Trends Data in Iran: Data Mining and Deep Learning Pilot Study. JMIR Public Health Surveill. 2020, 6, e18828. [Google Scholar] [CrossRef] [PubMed]
- Tiwari, S.; Kumar, S.; Guleria, K. Outbreak Trends of Coronavirus Disease–2019 in India: A Prediction. Disaster Med. Public Health Prep. 2020, 14, e33–e38. [Google Scholar] [CrossRef]
- Park, Y.; Casey, D.; Joshi, I.; Zhu, J.; Cheng, F. Emergence of New Disease: How Can Artificial Intelligence Help? Trends Mol. Med. 2020, 26, 627–629. [Google Scholar] [CrossRef]
- Ke, Y.-Y.; Peng, T.-T.; Yeh, T.-K.; Huang, W.-Z.; Chang, S.-E.; Wu, S.-H.; Hung, H.-C.; Hsu, T.-A.; Lee, S.-J.; Song, J.-S.; et al. Artificial Intelligence Approach Fighting COVID-19 with Repurposing Drugs. Biomed. J. 2020, 43, 355–362. [Google Scholar] [CrossRef]
- Tammam, S.N.; El Safy, S.; Ramadan, S.; Arjune, S.; Krakor, E.; Mathur, S. Repurpose but Also (Nano)-Reformulate! The Potential Role of Nanomedicine in the Battle against SARS-CoV2. J. Control Release 2021, 337, 258–284. [Google Scholar] [CrossRef]
- Ahuja, A.S.; Reddy, V.P.; Marques, O. Artificial Intelligence and COVID-19: A Multidisciplinary Approach. Integr. Med. Res. 2020, 9, 100434. [Google Scholar] [CrossRef] [PubMed]
- Gonzalez-Dias, P.; Lee, E.K.; Sorgi, S.; de Lima, D.S.; Urbanski, A.H.; Silveira, E.L.; Nakaya, H.I. Methods for Predicting Vaccine Immunogenicity and Reactogenicity. Hum. Vaccines Immunother. 2020, 16, 269–276. [Google Scholar] [CrossRef] [PubMed]
- Starke, G.; Schmidt, B.; De Clercq, E.; Elger, B.S. Explainability as Fig Leaf? An Exploration of Experts’ Ethical Expectations towards Machine Learning in Psychiatry. AI Ethics 2023, 3, 303–314. [Google Scholar] [CrossRef]
- Roberts, M.; Driggs, D.; Thorpe, M.; Gilbey, J.; Yeung, M.; Ursprung, S.; Aviles-Rivero, A.I.; Etmann, C.; McCague, C.; Beer, L.; et al. Common Pitfalls and Recommendations for Using Machine Learning to Detect and Prognosticate for COVID-19 Using Chest Radiographs and CT Scans. Nat. Mach. Intell. 2021, 3, 199–217. [Google Scholar] [CrossRef]
Author Name | Total Documents | Citations |
---|---|---|
Ashraf, I. | 9 | 35 |
Chen, H. | 8 | 157 |
Wu, P. | 7 | 152 |
Heidari, A. | 7 | 154 |
Moni, M. | 6 | 208 |
Clifton, D. | 6 | 76 |
Chowdhury, M. | 6 | 97 |
Rahman, T. | 6 | 97 |
Byeon, H. | 6 | 10 |
Country | Records | LCS | GCS | H-Index |
---|---|---|---|---|
USA | 638 | 356 | 9205 | 47 |
China | 424 | 399 | 7342 | 37 |
India | 301 | 152 | 3750 | 30 |
UK | 238 | 257 | 4640 | 32 |
Saudi Arabia | 200 | 124 | 2390 | 26 |
Institution | Records | LCS | GCS | H-Index |
---|---|---|---|---|
Stanford University | 40 | 13 | 537 | 14 |
Harvard Medical School | 37 | 18 | 907 | 11 |
King Abdulaziz University | 32 | 8 | 250 | 9 |
Huazhong University of Science and Technology | 31 | 180 | 1636 | 15 |
King Saud University | 30 | 28 | 450 | 12 |
Name | Number of Funded Publications | Percentage of Total Funded Publications |
---|---|---|
National Natural Science Foundation of China (NSFC) | 157 | 10.6% |
National Institutes of Health (NIH), USA | 157 | 10.6% |
National Science Foundation (NSF), USA | 100 | 4.9% |
European Union (EU) | 96 | 6.8% |
National Institutes of Health Research (NIHR), UK | 73 | 6.5% |
Items | Rank | Name | Counts | Country | IF (2023) | JCR |
---|---|---|---|---|---|---|
Journal | 1 | Scientific Reports | 121 | England | 3.8 | Q1 |
2 | IEEE Access | 70 | USA | 3.4 | Q2 | |
3 | Plos One | 67 | USA | 2.9 | Q1 | |
4 | Computers in Biology and Medicine | 57 | USA | 7.0 | Q1 | |
5 | Journal of Medical Internet Research | 43 | Canada | 5.8 | Q1 | |
6 | International Journal of Environmental Research and Public Health | 42 | Switzerland | - | - | |
7 | CMC-Computers Materials & Continua | 36 | USA | 2.0 | Q3 | |
8 | Applied Sciences-Basel | 35 | Switzerland | 2.5 | Q3 | |
9 | Frontiers in Public Health | 35 | Switzerland | 3.0 | Q1 | |
10 | Electronics | 32 | Switzerland | 2.6 | Q3 | |
Co-cited Journal | 1 | International Journal of Environmental Research and Public Health | 1500 | Switzerland | - | - |
2 | Scientific Reports | 1354 | England | 3.8 | Q1 | |
3 | Chaos Solitons & Fractals | 1334 | England | 5.3 | Q1 | |
4 | IEEE ACCESS | 1030 | USA | 3.4 | Q2 | |
5 | Nature Machine Intelligence | 969 | England | 18.8 | Q1 | |
6 | Journal of Medical Internet Research | 855 | Canada | 5.8 | Q1 | |
7 | Computers in Biology and Medicine | 785 | USA | 7.0 | Q1 | |
8 | Journal Of Thoracic Disease | 766 | China | 2.1 | Q3 | |
9 | Plos One | 680 | USA | 2.9 | Q1 | |
10 | Science | 488 | USA | 44.7 | Q1 |
Title | Authors | Journal | Citations (n) | Summary |
---|---|---|---|---|
The Impact of COVID-19 Epidemic Declaration on Psychological Consequences: A Study on Active Weibo Users | Li et al. (2020) [30] | International Journal of Environmental Research and Public Health | 917 | This study used an online ecological recognition (OER) method based on multiple machine learning prediction models to analyze social media data, examining the psychological impact of public health emergencies during the pandemic. |
Modified SEIR and AI prediction of the epidemics trend of COVID-19 in China under public health interventions | Yang et al. (2020) [31] | Journal of Thoracic Disease | 758 | A modified SEIR epidemiological model, combined with domestic migration data and COVID-19 epidemiological data, was used to predict the progression of the epidemic. Machine learning techniques were employed to validate the model predictions. |
An interpretable mortality prediction model for COVID-19 patients | Yan et al. (2020) [32] | Nature Machine Intelligence | 526 | A machine learning model based on XGBoost was developed to predict the prognosis of COVID-19 patients using three clinical indicators, enabling early intervention and potentially reducing mortality. |
Time series forecasting of COVID-19 transmission in Canada using LSTM networks | Chimmula et al. (2020) [33] | Chaos, Solitons & Fractals | 466 | A deep learning method using long short-term memory (LSTM) networks was applied to build an infectious disease propagation model to forecast future transmission trends of COVID-19 in Canada. |
Viral epitope profiling of COVID-19 patients reveals cross-reactivity and correlates of severity | Shrock et al. (2020) [34] | Science | 385 | This study developed an XGBoost-based machine learning model using VirScan data to distinguish between COVID-19 positive and negative cases with high sensitivity and specificity. SHAP analysis was used to identify key predictive features. |
A Weakly-Supervised Framework for COVID-19 Classification and Lesion Localization From Chest CT | Wang et al. (2020) [35] | IEEE Transactions on Medical Imaging | 343 | A weakly supervised deep learning model was trained using 3D chest CT images to accurately predict COVID-19 infection probability and identify lesion areas. |
Mutations Strengthened SARS-CoV-2 Infectivity | Chen et al. (2020) [36] | Journal of Molecular Biology | 321 | This study used algebraic topology-based machine learning to quantitatively assess changes in the binding free energy between SARS-CoV-2 spike protein and host ACE2 receptors following viral mutations. |
Forecasting and planning during a pandemic: COVID-19 growth rates, supply chain disruptions, and governmental decisions | Nikolopoulos et al. (2021) [37] | European Journal of Operational Research | 237 | The study evaluated 52 models, including time series, epidemiology, machine learning, and deep learning methods, introducing a hybrid forecasting method to predict COVID-19 growth rates. |
Short-term forecasting COVID-19 cumulative confirmed cases: Perspectives for Brazil | Ribeiro et al. (2020) [38] | Chaos, Solitons & Fractals | 258 | This paper analyzed various forecasting methods, including ARIMA, CUBIST, RF, RIDGE, SVR, and stacking ensemble learning, for short-term prediction of cumulative COVID-19 cases in Brazil. |
Large-Scale Multi-omic Analysis of COVID-19 Severity | Overmyer et al. (2021) [39] | Cell Systems | 203 | This cohort study used RNA-seq and high-resolution mass spectrometry to generate multi-omics data related to COVID-19 severity, which can be used for machine learning predictions. The data are freely available to the scientific community. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lv, H.; Liu, Y.; Yin, H.; Xi, J.; Wei, P. Machine Learning Applications in Prediction Models for COVID-19: A Bibliometric Analysis. Information 2024, 15, 575. https://doi.org/10.3390/info15090575
Lv H, Liu Y, Yin H, Xi J, Wei P. Machine Learning Applications in Prediction Models for COVID-19: A Bibliometric Analysis. Information. 2024; 15(9):575. https://doi.org/10.3390/info15090575
Chicago/Turabian StyleLv, Hai, Yangyang Liu, Huimin Yin, Jingzhi Xi, and Pingmin Wei. 2024. "Machine Learning Applications in Prediction Models for COVID-19: A Bibliometric Analysis" Information 15, no. 9: 575. https://doi.org/10.3390/info15090575