Building a Persuasive Virtual Dietitian
<p>The schema of the Multimedia Application for Diet Management (MADiMan) architecture. NLG, natural language generation.</p> "> Figure 2
<p>Graphical representation of the simple temporal problem (STP) constraints modelling a diet. For the sake of simplicity, in the figure, we do not represent the macronutrients, nor the single meals, but only the total energy in a day. In the top part, we represent the STP corresponding to the dietary constraints at the beginning of a week. In the middle part, we have the STP after the first three days, where John ate 2690 kcal on each day; notice that also imprecision in the measurement is supported [<a href="#B12-informatics-07-00027" class="html-bibr">12</a>]. In the bottom part, we represent the STP resulting from the constraint propagation where—as a result of food eaten in the first three days—John has to eat between 2205 kcal and 2465 kcal each day for the rest of the week and a total in the remaining four days of <math display="inline"><semantics> <mrow> <mn>2270</mn> <mo>·</mo> <mn>4</mn> </mrow> </semantics></math> kcal.</p> "> Figure 3
<p>Classification of an inconsistent/consistent value of a meal’s energy supply given the minimum and maximum value of an STP constraint. The figure represents the range <math display="inline"><semantics> <mrow> <mo>[</mo> <mi>m</mi> <mi>i</mi> <mi>n</mi> <mo>,</mo> <mi>m</mi> <mi>a</mi> <mi>x</mi> <mo>]</mo> </mrow> </semantics></math> admitted by an STP constraint (represented as an edge as in <a href="#informatics-07-00027-f002" class="html-fig">Figure 2</a>).</p> "> Figure 4
<p>The sentence generated by the quasi-tree (<b>a</b>) expresses the overall evaluation on the selected menu, and the sentence generated by the quasi-tree (<b>b</b>) expresses the specific appropriateness of the macronutrient. NP, noun phrase; VP, verbal phrase; ADJP, adjectival phrase; PP, prepositional phrase.</p> "> Figure 5
<p>Two quasi-trees corresponding to specific messages on (<b>a</b>) proteins and (<b>b</b>) carbohydrates and the corresponding realized sentences.</p> "> Figure 6
<p>The quasi-tree obtained by using VP-aggregation on the quasi-trees in <a href="#informatics-07-00027-f005" class="html-fig">Figure 5</a>.</p> "> Figure 7
<p>The quasi-tree obtained by using set-aggregation on the quasi-trees in <a href="#informatics-07-00027-f005" class="html-fig">Figure 5</a>.</p> "> Figure 8
<p>Three screenshots of the <span class="html-italic">CheckYourMeal!</span> app. The user interface is structured into three sections: the Home Section (left), where the users are provided with general information on the weekly diet; the Menu Section (centre), where the users can see the suggestions for the next meal and where they can input the chosen meals; and the Recommendation Section (right), where the users visualize both a textual message and a pie chart containing information about the macronutrient values of a specific menu.</p> "> Figure 9
<p>A graphical representation of the distribution of the answers to the questions GU and TU in Experiment 1.</p> "> Figure 10
<p>A graphical representation of the distribution of the answers to QB, QE and QU in Experiment 1.</p> "> Figure 11
<p>A graphical representation of the distribution of the answers to QP in Experiment 1.</p> "> Figure 12
<p>A plot showing the distribution of the answers for the question QVin Experiment 1.</p> ">
Abstract
:1. Introduction
2. Related Work
3. Reasoning and Generating Messages in the Diet Domain
3.1. The MADiMan Architecture
3.2. STP Reasoning for Diets
Algorithm 1 Minimal network enforcing algorithm. |
function FloydWarshall() |
let V be the vertices of |
let E be the edges of |
let be the labels of the edges E of |
n ← |
for do |
for do |
if then |
if has a negative cycle then |
return |
else |
return |
3.3. From Numeric Reasoning toward Textual Messages: An NLG Architecture
3.3.1. Data Interpretation: Converting Numbers into Categories
3.3.2. Document/Sentence Planning and Realization
- not good (in Italian, non buono) or not OK (non va bene) when there is at least one macronutrient classified as or , respectively.
- good (buono) or very good (molto buono) when there is at least one macronutrient classified as or , respectively.
- great choice (ottima scelta) when all macronutrients are classified as (see Table 1).
3.3.3. Aggregation Strategies
Selection
- There is at least a permanent inconsistency on a macronutrient:.
- There is at least a provisional inconsistency on a macronutrient:.
- All the macronutrients are consistent:.
Merging
- Set-aggregate all the shape-equivalent sentences,
- VP-aggregate the sentence resulting from the first step with the remaining sentences (if any).
3.3.4. Choosing Words
4. Experimentation
- ingredients: 320 grams of spaghetti, 100 grams of bacon, 1 egg, 4 tablespoons of Parmesan cheese, 1 tablespoon of extra virgin olive oil, 4 teaspoons of salt;
- macronutrients: 17.9 grams of proteins, 26.6 grams of lipids, 66.6 grams of carbohydrates;
- cooking methods: frying, cooking in boiling water.
4.1. Experiment 1
4.1.1. Hypotheses
4.1.2. Materials and Methods
- GU:
- (Graphics’ usefulness) The graphics on macronutrients are useful to make the right choice.
- TU:
- (Messages’ usefulness) The text messages on macronutrients are useful to make the right choice.
- QB:
- Perceived boringness: The text messages in the blue version are more boring than the text messages in the violet version.
- QE:
- Perceived easiness: The text messages in the blue version are easier to understand than the text messages in the violet version.
- QU:
- Perceived usefulness: The text messages in the blue version are more useful than the text messages in the violet version in order to make the best choice.
- QP:
- Perceived persuasiveness: The text messages in the blue version are more persuasive than the text messages in the violet version.
4.1.3. Results
4.2. Experiment 2
4.2.1. Hypotheses
4.2.2. Materials and Methods
- (i)
- , the fraction of times that the users, after a positive feedback message (e.g., “This menu is a great choice...”), did choose the menu and
- (ii)
- , the fraction of times that the users, after a negative feedback message (e.g., “This menu is not good ...”), did not choose the menu.
4.2.3. Results
4.3. Discussion
5. Conclusions and Future Work
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Appendix A
Question | Category | Version | Message (in Italian) | English Translation |
---|---|---|---|---|
Blue | Questo menù è un’ottima scelta. Il menù è perfetto in carboidrati, è perfetto in lipidi ed è perfetto in proteine. | This menu is a great choice. The menu is perfect in carbohydrates, perfect in lipids and perfect in proteins. | ||
Violet | Questo menù è un’ottima scelta. Il menù è perfetto in carboidrati, lipidi e proteine. | This menu is a great choice. The menu is perfect in carbohydrates, lipids and proteins. | ||
Blue | Questo menù è buono. Il menù è perfetto in proteine ed è povero in carboidrati e lipidi. | This menu is good. The menu is perfect in proteins and is low in carbohydrates and lipids. | ||
Violet | Questo menù è buono. Il menù è perfetto in proteine, è povero in carboidrati ed è povero in lipidi. | This menu is good. The menu is perfect in proteins, low in carbohydrates and low in lipids. | ||
Blue | Questo menù non va bene. Il menù è povero in carboidrati, è povero in lipidi ed è povero in proteine. | This menu is not good. The menu is low in carbohydrates, low in lipids and low in protein. | ||
Violet | Questo menù non va bene. Il menù è povero in carboidrati, lipidi e proteine. | This menu is not good. The menu is poor in carbohydrates, lipids and proteins. |
References
- Heer, J.; Bostock, M.; Ogievetsky, V. A tour through the visualization zoo. Commun. ACM 2010, 53, 59–67. [Google Scholar] [CrossRef]
- DeSanctis, G. Computer Graphics as Decision Aids: Directions for Research. Decis. Sci. 1984, 15, 463–487. [Google Scholar] [CrossRef]
- van der Meulen, M.; Logie, R.H.; Freer, Y.; Sykes, C.; McIntosh, N.; Hunter, J. When a graph is poorer than 100 words: A comparison of computerised natural language generation, human generated descriptions and graphical displays in neonatal intensive care. Appl. Cogn. Psychol. 2010, 24, 77–89. [Google Scholar] [CrossRef]
- Hunter, J.; Freer, Y.; Gatt, A.; Reiter, E.; Sripada, S.; Sykes, C. Automatic generation of natural language nursing shift summaries in neonatal intensive care: BT-Nurse. Artif. Intell. Med. 2012, 56, 157–172. [Google Scholar] [CrossRef] [Green Version]
- Goldstein, A.; Shahar, Y.; Orenbuch, E.; Cohen, M.J. Evaluation of an automated knowledge-based textual summarization system for longitudinal clinical data, in the intensive care domain. Artif. Intell. Med. 2017, 82, 20–33. [Google Scholar] [CrossRef]
- Gkatzia, D.; Lemon, O.; Rieser, V. Data-to-Text Generation Improves Decision-Making Under Uncertainty. IEEE Comput. Int. Mag. 2017, 12, 10–17. [Google Scholar] [CrossRef]
- Fogg, B. Persuasive Technology. Using Computers to Change What We Think and Do; Morgan Kaufmann Publishers, Elsevier: Burlington, MA, USA, 2002. [Google Scholar]
- Abdel-Hamid, T.; Ankel, F.; Battle-Fisher, M.; Gibson, B.; Gonzalez-Parra, G.; Jalali, M.; Kaipainen, K.; Kalupahana, N.; Karanfil, O.; Marathe, A.; et al. Public and health professionals’ misconceptions about the dynamics of body weight gain/loss. Syst. Dyn. Rev. 2014, 30, 58–74. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Orji, R.; Moffatt, K. Persuasive technology for health and wellness: State-of-the-art and emerging trends. Health Inform. J. 2018, 24, 66–91. [Google Scholar] [CrossRef]
- Anselma, L.; Mazzei, A. Towards Diet Management with Automatic Reasoning and Persuasive Natural Language Generation. In Progress in Artificial Intelligence, Proceedings of the 17th Portuguese Conference on Artificial Intelligence (EPIA 2015), Coimbra, Portugal, 8–11 September 2015; Springer: Berlin, Germany, 2015; pp. 79–90. [Google Scholar]
- Mazzei, A.; Anselma, L.; De Michieli, F.; Bolioli, A.; Casu, M.; Gerbrandy, J.; Lunardi, I. Mobile computing and artificial intelligence for diet management. Lect. Notes Comput. Sci. 2015, 9281, 342–349. [Google Scholar]
- Anselma, L.; Mazzei, A.; De Michieli, F. An artificial intelligence framework for compensating transgressions and its application to diet management. J. Biomed. Inform. 2017, 68, 58–70. [Google Scholar] [CrossRef]
- Anselma, L.; Mazzei, A.; Pirone, A. Automatic Reasoning Evaluation in Diet Management Based on an Italian Cookbook. In Proceedings of the Joint Workshop on Multimedia for Cooking and Eating Activities and Multimedia Assisted Dietary Management (CEA/MADiMa’18), Stockholm, Sweden, July 2018; ACM: New York, NY, USA, 2018; pp. 59–62. [Google Scholar] [CrossRef]
- Anselma, L.; Lascio, M.D.; Lieto, A.; Mazzei, A. Adopting the Mediterranean Diet Score in a Diet Management System. In Proceedings of the 13th International Joint Conference on Biomedical Engineering Systems and Technologies (BIOSTEC 2020)—Volume 5: HEALTHINF, Valletta, Malta, 24–26 February 2020; Cabitza, F., Fred, A.L.N., Gamboa, H., Eds.; SCITEPRESS: Setúbal, Portugal, 2020; pp. 670–676. [Google Scholar]
- Anselma, L.; Mazzei, A. An Approach for Explaining Reasoning on the Diet Domain. In Proceedings of the 1st Workshop on Natural Language for Artificial Intelligence Co-Located with AI*IA 2017, Bari, Italy, 16–17 November 2017; Basile, P., Croce, D., Guerini, M., Eds.; CEUR-WS.org: Aachen, Germany, 2017; Volume 1983, pp. 4–17. [Google Scholar]
- Anselma, L.; Mazzei, A. Designing and testing the messages produced by a virtual dietitian. In Proceedings of the 11th International Conference on Natural Language Generation, Tilburg, The Netherlands, 5–8 November 2018; Krahmer, E., Gatt, A., Goudbeek, M., Eds.; Association for Computational Linguistics: Stroudsburg, PA, USA, 2018; pp. 244–253. [Google Scholar]
- Reiter, E.; Robertson, R.; Osman, L. Lessons from a Failure: Generating Tailored Smoking Cessation Letters. Artif. Intell. 2003, 144, 41–58. [Google Scholar] [CrossRef] [Green Version]
- Kaptein, M.; de Ruyter, B.E.R.; Markopoulos, P.; Aarts, E.H.L. Adaptive Persuasive Systems: A Study of Tailored Persuasive Text Messages to Reduce Snacking. TiiS 2012, 2, 10. [Google Scholar] [CrossRef]
- Braun, D.; Reiter, E.; Siddharthan, A. Creating Textual Driver Feedback from Telemetric Data. In Proceedings of the 15th European Workshop on Natural Language Generation (ENLG 2015), Brighton, UK, 10–11 September 2015; pp. 156–165. [Google Scholar]
- Braun, D.; Reiter, E.; Siddharthan, A. SaferDrive: An NLG-based behaviour change support system for drivers. Nat. Lang. Eng. 2018, 24, 551–588. [Google Scholar] [CrossRef] [Green Version]
- Conde-Clemente, P.; Alonso, J.M.; Trivino, G. Toward automatic generation of linguistic advice for saving energy at home. Soft Comput. 2018, 22, 345–359. [Google Scholar] [CrossRef]
- Weiner, J.L. BLAH, A System Which Explains its Reasoning. Artif. Intell. 1980, 15, 19–48. [Google Scholar] [CrossRef]
- Barzilay, R.; Mccullough, D.; Rambow, O.; Decristofaro, J.; Korelsky, T.; Lavoie, B.; Inc, C. A New Approach to Expert System Explanations. In Proceedings of the 9th International Workshop on Natural Language Generation, Niagara-on-the-Lake, ON, Canada, 5–7 August 1998; pp. 78–87. [Google Scholar]
- Lacave, C.; Diez, F.J. A review of explanation methods for heuristic expert systems. Knowl. Eng. Rev. 2004, 19, 133–146. [Google Scholar] [CrossRef]
- Cialdini, R.B. Influence: Science and Practice; Pearson Education: London, UK, 2009. [Google Scholar]
- Hovy, E.H. Generating Natural Language Under Pragmatic Constraints; Lawrence Erlbaum: Hillsdale, NJ, USA, 1988. [Google Scholar]
- de Rosis, F.; Grasso, F. Affective Interactions. In Affective Interactions; Paiva, A., Ed.; Springer: New York, NY, USA, 2000; pp. 204–218. [Google Scholar]
- Guerini, M.; Stock, O.; Zancanaro, M. A Taxonomy of Strategies for Multimodal Persuasive Message Generation. Appl. Artif. Intell. 2007, 21, 99–136. [Google Scholar] [CrossRef]
- Oinas-Kukkonen, H.; Harjumaa, M. Persuasive systems design: Key issues, process model, and system features. Commun. Assoc. Inf. Syst. 2009, 24, 28. [Google Scholar] [CrossRef]
- Reiter, E. An Architecture for Data-to-text Systems. In Proceedings of the 11th European Workshop on Natural Language Generation (ENLG’07), Saarbrücken, Germany, June 2007; Association for Computational Linguistics: Stroudsburg, PA, USA, 2007; pp. 97–104. [Google Scholar]
- Pauws, S.; Gatt, A.; Krahmer, E.; Reiter, E. Making effective use of healthcare data using data-to-text technology. In Data Science for Healthcare; Springer: Berlin, Germany, 2019; pp. 119–145. [Google Scholar]
- Maimone, R.; Guerini, M.; Dragoni, M.; Bailoni, T.; Eccher, C. PerKApp: A general purpose persuasion architecture for healthy lifestyles. J. Biomed. Inform. 2018, 82, 70–87. [Google Scholar] [CrossRef]
- Tintarev, N.; Reiter, E.; Black, R.; Waller, A.; Reddington, J. Personal storytelling: Using Natural Language Generation for children with complex communication needs, in the wild…. Int. J. Hum.-Comput. Stud. 2016, 92–93, 1–16. [Google Scholar] [CrossRef] [Green Version]
- Dechter, R.; Meiri, I.; Pearl, J. Temporal Constraint Networks. Artif. Intell. 1991, 49, 61–95. [Google Scholar] [CrossRef]
- LARN. LARN—Livelli di Assunzione di Riferimento di Nutrienti ed Energia per la Popolazione Italiana—IV Revisione; SICS Editore: Rome, Italy, 2014. [Google Scholar]
- Anselma, L.; Mazzei, A.; Piovesan, L.; De Michieli, F. Adopting STP for diet management. Proceedings of 2014 IEEE International Conference on Healthcare Informatics (ICHI 2014), Verona, Italy, 15–17 September 2014; p. 371. [Google Scholar]
- Rohrbach, A.; Hendricks, L.A.; Burns, K.; Darrell, T.; Saenko, K. Object Hallucination in Image Captioning. In Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing, Brussels, Belgium, October–November 2018; Association for Computational Linguistics: Brussels, Belgium, 2018; pp. 4035–4045. [Google Scholar]
- Gatt, A.; Reiter, E. SimpleNLG: A Realisation Engine for Practical Applications. In Proceedings of the 12th European Workshop on Natural Language Generation (ENLG’09), Athens, Greece, March 2009; Association for Computational Linguistics: Stroudsburg, PA, USA, 2009; pp. 90–93. [Google Scholar]
- Mazzei, A.; Battaglino, C.; Bosco, C. SimpleNLG-IT: Adapting SimpleNLG to Italian. In Proceedings of the 9th International Natural Language Generation Conference, Edinburgh, UK, 5–8 September 2016; Association for Computational Linguistics: Edinburgh, UK, 2016; pp. 184–192. [Google Scholar]
- Miller, G.A. WordNet: A lexical database for English. Commun. ACM 1995, 38, 39–41. [Google Scholar] [CrossRef]
- Navigli, R.; Ponzetto, S.P. BabelNet: The Automatic Construction, Evaluation and Application of a Wide-Coverage Multilingual Semantic Network. Artif. Intell. 2012, 193, 217–250. [Google Scholar] [CrossRef]
- van Deemter, K.; Krahmer, E.; Theune, M. Real versus template-based Natural Language Generation: A false opposition? Comput. Linguist. 2005, 31, 15–23. [Google Scholar] [CrossRef]
- Reiter, E.; Dale, R. Building Natural Language Generation Systems; Cambridge University Press: New York, NY, USA, 2000. [Google Scholar]
- Gatt, A.; Krahmer, E. Survey of the State of the Art in Natural Language Generation: Core tasks, applications and evaluation. J. Artif. Intell. Res. 2018, 61, 65–170. [Google Scholar] [CrossRef]
- McKeown, K.R.; Pan, S.; Shaw, J.; Jordan, D.A.; Allen, B.A. Language Generation for Multimedia Healthcare Briefings. In Proceedings of the Fifth Conference on Applied Natural Language Processing (ANLC’97), Stroudsburg, PA, USA, March 1997; Association for Computational Linguistics: Stroudsburg, PA, USA, 1997; pp. 277–282. [Google Scholar] [CrossRef] [Green Version]
- Eugenio, B.D.; Fossati, D.; Yu, D.; Haller, S.M.; Glass, M. Aggregation Improves Learning: Experiments in Natural Language Generation for Intelligent Tutoring Systems. In Proceedings of the 43rd Annual Meeting of the Association for Computational Linguistics (ACL 2005), Ann Arbor, MI, USA, 25–30 June 2005; pp. 50–57. [Google Scholar]
- Reape, M.; Mellish, C. Just what is aggregation anyway? In Proceedings of the European Workshop on Natural Language Generation (ENLG 1998), Brighton, UK, September 2015; Omnipress, Inc.: Madison, WI, USA, 1998; pp. 20–29. [Google Scholar]
- Steelman, L.A.; Rutkowski, K.A. Moderators of employee reactions to negative feedback. J. Manag. Psychol. 2004, 19, 6–18. [Google Scholar] [CrossRef]
- Dohrenwend, A. Serving up the feedback sandwich. Fam. Pract. Manag. 2002, 9, 43–50. [Google Scholar]
- Stede, M. Lexicalization in natural language generation: A survey. Artif. Intell. Rev. 1994, 8, 309–336. [Google Scholar] [CrossRef]
- Reiter, E.; Sripada, S.; Hunter, J.; Davy, I. Choosing words in computer-generated weather forecasts. Artif. Intell. 2005, 167, 137–169. [Google Scholar] [CrossRef] [Green Version]
- Elhadad, M.; Robin, J.; McKeown, K. Floating constraints in lexical choice. Comput. Linguist. 1997, 23, 195–239. [Google Scholar]
- Mazzei, A. Building a Computational Lexicon by using SQL. Proceedings of Third Italian Conference on Computational Linguistics (CLiC-it 2016) & Fifth Evaluation Campaign of Natural Language Processing and Speech Tools for Italian. Final Workshop (EVALITA 2016), Napoli, Italy, 5–7 December 2016; Basile, P., Corazza, A., Cutugno, F., Montemagni, S., Nissim, M., Patti, V., Semeraro, G., Sprugnoli, R., Eds.; CEUR-WS.org: Aachen, Germany, 2016; Volume 1749, pp. 1–5. [Google Scholar]
- Klasnja, P.; Consolvo, S.; Pratt, W. How to Evaluate Technologies for Health Behavior Change in HCI Research. In Proceedings of the SIGCHI Conference on Human Factors in Computing Systems (CHI’11), Vancouver, BC, Canada, May 2011; ACM: New York, NY, USA, 2011; pp. 3063–3072. [Google Scholar] [CrossRef]
- Hekler, E.B.; Klasnja, P.; Froehlich, J.E.; Buman, M.P. Mind the Theoretical Gap: Interpreting, Using, and Developing Behavioral Theory in HCI Research. In Proceedings of the SIGCHI Conference on Human Factors in Computing Systems (CHI’13), Paris, France, April 2013; ACM: New York, NY, USA, 2013; pp. 3307–3316. [Google Scholar] [CrossRef]
- Sterling, L.; Petot, G.; Marling, C.; Kovacic, K.; Ernst, G. The role of common sense knowledge in menu planning. Expert Syst. Appl. 1996, 11, 301–308. [Google Scholar] [CrossRef]
- Reiter, E. Task-based evaluation of nlg systems: Control vs. real-world context. In Proceedings of the UCNLG+ Eval: Language Generation and Evaluation Workshop, Edinburgh, Scotland, 31 July 2011; pp. 28–32. [Google Scholar]
- Caracciolo, C.; Stellato, A.; Morshed, A.; Johannsen, G.; Rajbhandari, S.; Jaques, Y.; Keizer, J. The AGROVOC Linked Dataset. Semant. Web 2013, 4, 341–348. [Google Scholar] [CrossRef] [Green Version]
- Moro, E. The Mediterranean Diet from Ancel Keys to the UNESCO Cultural Heritage. A Pattern of Sustainable Development between Myth and Reality. Procedia Soc. Behav. Sci. 2016, 223, 655–661. [Google Scholar] [CrossRef] [Green Version]
- Lu, Y.; Stathopoulou, T.; Vasiloglou, M.F.; Christodoulidis, S.; Stanga, Z.; Mougiakakou, S.G. An Artificial Intelligence-Based System to Assess Nutrient Intake for Hospitalised Patients. IEEE Trans. Multimed. 2020. [Google Scholar] [CrossRef]
Category | Prototypical Message (in Italian) | English Translation |
---|---|---|
Questo menù non è buono. Il menù è troppo ricco/povero in PROTEINE. | This menu is not good. The menu is really rich/poor in PROTEINS. | |
Questo menù non va bene. Il menù è rich/poor in PROTEINE. | This menu is not OK. The menu is rich/poor in PROTEINS. | |
Questo menù è buono. Il menù è rich/poor in PROTEINE. | This menu is good. The menu is rich/poor in PROTEINS. | |
Questo menù è molto buono. Il menù è leggermente rich/poor in PROTEINE. | This menu is very good. The menu is lightly rich/poor in PROTEINS. | |
Questo menù è un’ottima scelta. Il menù è perfetto in PROTEINE. | This menu is a great choice. The menu is perfect in PROTEINS. |
Q | L = 1 | L = 2 | L = 3 | L = 4 | L = 5 | Mean ± STD | p-Value |
---|---|---|---|---|---|---|---|
GU | 0 | 2 | 5 | 6 | 7 | ||
TU | 0 | 0 | 1 | 13 | 6 | ||
QB | 2 | 0 | 5 | 10 | 3 | ||
QE | 3 | 7 | 6 | 4 | 0 | ||
QU | 3 | 7 | 6 | 4 | 0 | ||
QP | 1 | 12 | 3 | 4 | 0 |
Blue Version | Violet Version | p-Value | |
---|---|---|---|
<0.0001 | |||
<0.0001 | |||
<0.0001 |
Blue Version | Violet Version | |
---|---|---|
Positive persuasive power () | * | * |
Negative persuasive power () | ||
Persuasive power () | * | ** |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Anselma, L.; Mazzei, A. Building a Persuasive Virtual Dietitian. Informatics 2020, 7, 27. https://doi.org/10.3390/informatics7030027
Anselma L, Mazzei A. Building a Persuasive Virtual Dietitian. Informatics. 2020; 7(3):27. https://doi.org/10.3390/informatics7030027
Chicago/Turabian StyleAnselma, Luca, and Alessandro Mazzei. 2020. "Building a Persuasive Virtual Dietitian" Informatics 7, no. 3: 27. https://doi.org/10.3390/informatics7030027
APA StyleAnselma, L., & Mazzei, A. (2020). Building a Persuasive Virtual Dietitian. Informatics, 7(3), 27. https://doi.org/10.3390/informatics7030027