The Spatiotemporal Estimation of the Chupaderos Aquifer Groundwater Recharge for 2020 Based on the Soil Moisture Approach and Remote Sensing
<p>(<b>a</b>) The study area showing the location of Mexico, (<b>b</b>) the Mexican state of Zacatecas, and (<b>c</b>) the map showing the extent of the Chupaderos aquifer.</p> "> Figure 2
<p>(<b>a</b>) <math display="inline"><semantics> <mrow> <msub> <mrow> <mi mathvariant="normal">C</mi> <mi mathvariant="normal">f</mi> </mrow> <mrow> <mi mathvariant="normal">o</mi> </mrow> </msub> </mrow> </semantics></math> is defined as the foliage retention coefficient. It is the percentage of monthly rain that is retained by foliage, which ranges from 0% for bodies of water and urban areas to 20% for the forest and its different vegetative species, which include grassland, scrubland, beans in rain-fed agriculture, and chili peppers in irrigation agriculture (<a href="#hydrology-11-00218-t001" class="html-table">Table 1</a>). (<b>b</b>) Infiltration by vegetation cover (<math display="inline"><semantics> <mrow> <msub> <mrow> <mi mathvariant="normal">K</mi> </mrow> <mrow> <mi mathvariant="normal">v</mi> </mrow> </msub> </mrow> </semantics></math>), is the fraction of rain that infiltrates due to the effect of vegetation cover, with a range of values from 0.1 to 0.2. (<b>c</b>) Infiltration by texture (<math display="inline"><semantics> <mrow> <msub> <mrow> <mi mathvariant="normal">K</mi> </mrow> <mrow> <mi mathvariant="normal">f</mi> <mi mathvariant="normal">c</mi> </mrow> </msub> </mrow> </semantics></math>), is defined as a fraction of rain that infiltrates due to the effect of soil texture, which allows for obtaining monthly infiltrated rain using that concept. It is within the range of a minimum of 0.40 and a maximum value of 0.93.</p> "> Figure 3
<p>(<b>a</b>) Base infiltration (Fc), defined as the fluctuation of the basic infiltration rate according to the soil texture, in millimeters per day; (<b>b</b>) the second is by slope, which is defined as <math display="inline"><semantics> <mrow> <msub> <mrow> <mi mathvariant="normal">K</mi> </mrow> <mrow> <mi mathvariant="normal">p</mi> </mrow> </msub> </mrow> </semantics></math>. It is the fraction that infiltrates due to the slope effect. The lower the slope of the land and the greater the vegetation cover, the lower is speed of runoff, generating greater infiltration. The study area is mostly flat, and (<b>c</b>) infiltration coefficient (<math display="inline"><semantics> <mrow> <msub> <mrow> <mi mathvariant="normal">C</mi> </mrow> <mrow> <mi mathvariant="normal">i</mi> </mrow> </msub> </mrow> </semantics></math>), is the factor by which the monthly precipitation must be multiplied to obtain the monthly water infiltration into the soil, the value of which must not be greater than 1.</p> "> Figure 4
<p>(<b>a</b>) DA: It allows us to see the ease of penetration of the roots into the soil, as well as the transmission of water. The change in soil porosity is responsible for the rapid drainage of excess water. It is a good indicator of soil quality. Its values range from 1.25 g/cm<sup>3</sup> for areas where clay predominates to 1.68 g/cm<sup>3</sup> for sandy soils. (<b>b</b>) <math display="inline"><semantics> <mrow> <msub> <mrow> <mi mathvariant="normal">P</mi> </mrow> <mrow> <mi mathvariant="normal">r</mi> </mrow> </msub> </mrow> </semantics></math>: It shows the root depth of the study area. The value 0 represents the areas where there are bodies of water and urban areas, while the deepest root is that of the scrub with 5.1 m depth. (<b>c</b>) CC: It is the maximum moisture that a soil can have without being saturated; it is when the plant has the maximum transpiration capacity, defined as the available water layer. The values range from 0 for bodies of water and urban areas to 2231.25 mm for soil where clay predominates. (<b>d</b>) PMP: When soil moisture reaches the PMP, the plant does not transpire and dies; just as CC is represented by the water layer, this results in a value of 0 mm for water bodies and urban areas up to 1083.75 mm, in relation to the soil texture.</p> "> Figure 5
<p>(<b>a</b>) Water recharge in January varies between −56.90 mm to 1.86 mm, with an average of −6.29 mm. The green color represents the lowest value, spreading out in some central areas, while blue predominates in the northern part, representing the highest values. In January, the recharge is somewhat scarce due to the presence of low rainfall. (<b>b</b>) February has low rainfall, so the balance shows an average recharge of 1.09 mm. It can be seen that there is a minimum recharge of −5.38 mm and that the green color, the same that represents the lower levels, predominates in the whole area, while the blue one is found only in some central portions. This difference in distribution is due to the fact that precipitation is not uniform and is considered as a maximum recharge of 49.22 mm. (<b>c</b>) In March, the recharge already begins to stabilize, and the balance obtained has a minimum of −50.61 mm and the maximum of 10.32 mm, with an average of 4.38 m. In March, the negative values are no longer predominant in the raster image because the sum of actual evapotranspiration and final soil moisture does not exceed the sum of initial soil precipitation and moisture. (<b>d</b>) The maximum recharge obtained can be observed in some areas south of the aquifer (76.53 mm) and the minimum of −19.88 mm is present in the central part to the north (these negative values are translated as a deficit of the recharge), with an average of 1.12 mm throughout the area.</p> "> Figure 6
<p>(<b>a</b>) In May, although the maximum recharge is not very high, the aquifer predominates in most of the area, specifically in the north with 2.74 mm and the minimum of −58.80 in the south, and the average of −11.63 mm becomes present in the central zone of the aquifer. (<b>b</b>) In June when the rains begin to be abundant, the temperature increases considerably, causing the actual evapotranspiration and moisture of the final soil to exceed the values of precipitation and moisture of the initial soil. The average recharge is −8.25 mm, the same as observed throughout the study area; the minimum of −47.88 is in the center, and the maximum of 79.62 mm occurs in minimal portions to the southeast of the aquifer. (<b>c</b>) July is the month when rainfall exceeds average precipitation levels. It is confirmed that despite high evapotranspiration rates, there are no negative values or deficit of recharge, an average of 12.64 mm, a minimum of 0.01 mm, and a maximum of 65.12 mm. (<b>d</b>) For the month of August, as in July, there are no deficit rates. The image shows the spatial distribution of recharge in different aquifer areas. The values obtained through the methodology show that the recharge is between 3.19 mm as the minimum and 77.31 mm as the maximum and an average of 31.55 mm.</p> "> Figure 7
<p>(<b>a</b>) in September, the recharge rate has already fallen to −75.41 mm, with a minimum of −16.02 mm, although negative values are already present. In the distribution, it can be seen that the maximum predominates in much of the aquifer. (<b>b</b>) in October, precipitation rates decrease considerably; however, temperature decreases are observed, which is attributed to low evapotranspiration and a high predominance of soil moisture. The balance shows that the average is 15.82 mm, the maximum is 70.98 mm, and the minimum is 5.33. We can conclude that throughout the month, the infiltration of rain is constant. (<b>c</b>) In November, the balance shows that the average is 1.87 mm, the maximum is 7.16 mm, and the minimum is -58.80 mm. The initial moisture and the precipitation decrease allowing to the increase of evapotranspiration. The minimum values are present in the aquifer center area, whereas the average and maximum values are present in the rest of the aquifer.(<b>d</b>) In December, the minimum recharge is −9.35 and the average is 0.99 mm, with both values predominating throughout the rea; whereas, the 57.81 mm maximum is only present in small portions of the center and to the south of the aquifer.</p> "> Figure 8
<p>Finally, the annual natural recharge was obtained by adding all previous months, with the value for the average recharge being 27.27 mm, the minimum of −34.20 mm, and the maximum of 137.76 mm. The mean and maximum values are observed in the center, north, and southwest of the Chupaderos aquifer. The deficit or negative values are present in the southeast.</p> ">
Abstract
:1. Introduction
2. Materials and Methods
2.1. The Study Site
2.2. Schosinsky Method
2.3. A Fraction of Rain That Is Intercepted by Foliage (Retention)
- = Retention (mm/month);
- = Foliage interception coefficient (dimensionless);
- P = Precipitation or rain (mm/month).
2.4. The Infiltration Coefficient
- = Infiltration coefficient (dimensionless);
- = Infiltration fraction by texture (dimensionless);
- = Fraction of infiltration by vegetation (dimensionless);
- = Fraction of infiltration by slope (dimensionless).
- Fc = Base infiltration (mm/day).
Type | Texture | Base Infiltration (Fc) |
---|---|---|
Cambisol | Clayey–Loam | 180 |
Kastanozem | Sandy–Loam | 600 |
Phaeozem | Clayey–Sandy | 404 |
Fluvisol | Sandy | 780 |
Leptosols (Lithosol) | Loam | 360 |
Leptosols (Rendzina) | Clayey | 72 |
Solonetz | Clayey | 72 |
Gypsisol | Clayey–Sandy | 404 |
Solonchack | Clayey | 72 |
2.5. The Calculation of the Surface Runoff
- ESC = Runoff (mm/month);
- P = Precipitation (mm/month);
- = Retention (mm/month);
- = Precipitation that infiltrates (mm/month).
2.6. Soil Balance
2.7. Potential Evapotranspiration
- ETP = Potential evapotranspiration (mm/month);
- T = Monthly average temperature (°C);
- Ps = Percentage of monthly sunlight hours (%).
Month | Jan | Feb | Mar | Apr | May | Jun | Jul | Aug | Sep | Oct | Nov | Dec |
---|---|---|---|---|---|---|---|---|---|---|---|---|
% | 7.58 | 7.17 | 8.40 | 8.60 | 9.30 | 9.20 | 9.41 | 9.05 | 8.31 | 8.09 | 7.43 | 7.46 |
- ETPR = Actual potential evapotranspiration (mm/month);
- = Moisture at the beginning of the month (mm/month);
- PMP = Permanent wilting point (mm/month);
- CC = Field capacity (mm/month);
- ETP = Potential evapotranspiration (mm/month).
2.8. Humidity Coefficients C1 and C2
- C1 = Humidity coefficient at the beginning of the month without ETP (dimensionless);
- = Moisture at the beginning of the month (mm/month);
- PMP = Permanent wilting point (mm/month);
- CC = Field capacity (mm/month);
- = Precipitation infiltrated into the soil (mm/month).
- C2 = Humidity coefficient at the end of the month without ETPR (dimensionless);
- = Moisture at the beginning of the month (mm/month);
- PMP = Permanent wilting point (mm/month);
- CC = Field capacity (mm/month);
- = Precipitation infiltrated into the soil (mm/month).
2.9. Actual Evapotranspiration and Available Moisture
- ETR = Average actual evapotranspiration of the area during the month (mm/month);
- ETP = Potential evapotranspiration (mm/month);
- C1 = Humidity coefficient at the beginning of the month without ETP (dimensionless);
- C2 = Humidity coefficient at the end of the month without ETPR (dimensionless);
- = Moisture at the beginning of the month (mm/month);
- PMP = Permanent wilting point (mm/month);
- CC = Field capacity (mm/month);
- = Precipitation infiltrated into the soil (mm/month).
2.10. Final Moisture ()
2.11. Initial Soil Moisture ()
2.12. Recharge
- R = Aquifer recharge (mm/month);
- P = Precipitation (mm/month);
- = Initial soil moisture (mm/month);
- = Final soil moisture (mm/month);
- ETR = Actual evapotranspiration (mm/month).
3. Results
3.1. Coefficients of Soil Physical Properties
3.2. Monthly Water Recharge Areas
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Ali Rahmani, S.E.; Chibane, B.; Boucefiène, A. Groundwater Recharge Estimation in Semi-Arid Zone: A Study Case from the Region of Djelfa (Algeria). Appl. Water Sci. 2017, 7, 2255–2265. [Google Scholar] [CrossRef]
- Cavalcante Júnior, R.G.; Vasconcelos Freitas, M.A.; Da Silva, N.F.; De Azevedo Filho, F.R. Sustainable Groundwater Exploitation Aiming at the Reduction of Water Vulnerability in the Brazilian Semi-Arid Region. Energies 2019, 12, 904. [Google Scholar] [CrossRef]
- Mays, L.W. Groundwater Resources Sustainability: Past, Present, and Future. Water Resour. Manag. 2013, 27, 4409–4424. [Google Scholar] [CrossRef]
- Wheater, H.S.; Mathias, S.A.; Li, X. Groundwater Modelling in Arid and Semi-Arid Areas; Cambridge University Press: Cambridge, UK, 2010; ISBN 978-1-139-48972-0. [Google Scholar]
- Zamani, M.G.; Moridi, A.; Yazdi, J. Groundwater Management in Arid and Semi-Arid Regions. Arab. J. Geosci. 2022, 15, 362. [Google Scholar] [CrossRef]
- Coelho, V.H.R.; Montenegro, S.; Almeida, C.N.; Silva, B.B.; Oliveira, L.M.; Gusmão, A.C.V.; Freitas, E.S.; Montenegro, A.A.A. Alluvial Groundwater Recharge Estimation in Semi-Arid Environment Using Remotely Sensed Data. J. Hydrol. 2017, 548, 1–15. [Google Scholar] [CrossRef]
- González-Trinidad, J.; Pacheco-Guerrero, A.; Júnez-Ferreira, H.; Bautista-Capetillo, C.; Hernández-Antonio, A. Identifying Groundwater Recharge Sites through Environmental Stable Isotopes in an Alluvial Aquifer. Water 2017, 9, 569. [Google Scholar] [CrossRef]
- Zhou, Y.; Li, W. A Review of Regional Groundwater Flow Modeling. Geosci. Front. 2011, 2, 205–214. [Google Scholar] [CrossRef]
- Xu, W.; Kong, F.; Mao, R.; Song, J.; Sun, H.; Wu, Q.; Liang, D.; Bai, H. Identifying and Mapping Potential Groundwater-Dependent Ecosystems for a Semi-Arid and Semi-Humid Area in the Weihe River, China. J. Hydrol. 2022, 609, 127789. [Google Scholar] [CrossRef]
- Senay, G.B.; Leake, S.; Nagler, P.L.; Artan, G.; Dickinson, J.; Cordova, J.T.; Glenn, E.P. Estimating Basin Scale Evapotranspiration (ET) by Water Balance and Remote Sensing Methods. Hydrol. Process. 2011, 25, 4037–4049. [Google Scholar] [CrossRef]
- Szilagyi, J.; Harvey, F.E.; Ayers, J.F. Regional Estimation of Base Recharge to Ground Water Using Water Balance and a Base-flow Index. Groundwater 2003, 41, 504–513. [Google Scholar] [CrossRef]
- Brocca, L.; Ciabatta, L.; Massari, C.; Camici, S.; Tarpanelli, A. Soil Moisture for Hydrological Applications: Open Questions and New Opportunities. Water 2017, 9, 140. [Google Scholar] [CrossRef]
- Mohammadi, Z.; Salimi, M.; Faghih, A. Assessment of Groundwater Recharge in a Semi-Arid Groundwater System Using Water Balance Equation, Southern Iran. J. Afr. Earth Sci. 2014, 95, 1–8. [Google Scholar] [CrossRef]
- Touhami, I.; Andreu, J.M.; Chirino, E.; Sánchez, J.R.; Pulido-Bosch, A.; Martínez-Santos, P.; Moutahir, H.; Bellot, J. Comparative Performance of Soil Water Balance Models in Computing Semi-Arid Aquifer Recharge. Hydrol. Sci. J. 2014, 59, 193–203. [Google Scholar] [CrossRef]
- Beyene, T.D.; Zimale, F.A.; Gebrekristos, S.T. A Review on Sources of Uncertainties for Groundwater Recharge Estimates: Insight into Data Scarce Tropical, Arid, and Semiarid Regions. Hydrol. Res. 2023, 55, 51–66. [Google Scholar] [CrossRef]
- Walker, D.; Parkin, G.; Schmitter, P.; Gowing, J.; Tilahun, S.A.; Haile, A.T.; Yimam, A.Y. Insights from a Multi-method Recharge Estimation Comparison Study. Groundwater 2019, 57, 245–258. [Google Scholar] [CrossRef]
- Edmunds, W.M.; Darling, W.G.; Kinniburgh, D.G. Solute Profile Techniques for Recharge Estimation in Semi-Arid and Arid Terrain. In Estimation of Natural Groundwater Recharge; Simmers, I., Ed.; Springer: Dordrecht, The Netherlands, 1988; pp. 139–157. ISBN 978-90-481-8444-6. [Google Scholar]
- Sharda, V.N.; Kurothe, R.S.; Sena, D.R.; Pande, V.C.; Tiwari, S.P. Estimation of Groundwater Recharge from Water Storage Structures in a Semi-Arid Climate of India. J. Hydrol. 2006, 329, 224–243. [Google Scholar] [CrossRef]
- Wang, X.; Xie, H. A Review on Applications of Remote Sensing and Geographic Information Systems (GIS) in Water Resources and Flood Risk Management. Water 2018, 10, 608. [Google Scholar] [CrossRef]
- Najmaddin, P.M.; Whelan, M.J.; Balzter, H. Application of Satellite-Based Precipitation Estimates to Rainfall-Runoff Modelling in a Data-Scarce Semi-Arid Catchment. Climate 2017, 5, 32. [Google Scholar] [CrossRef]
- Mekonen, S.S.; Boyce, S.E.; Mohammed, A.K.; Flint, L.; Flint, A.; Disse, M. Recharge Estimation Approach in a Data-Scarce Semi-Arid Region, Northern Ethiopian Rift Valley. Sustainability 2023, 15, 15887. [Google Scholar] [CrossRef]
- Khalaf, A.; Donoghue, D. Estimating Recharge Distribution Using Remote Sensing: A Case Study from the West Bank. J. Hydrol. 2012, 414–415, 354–363. [Google Scholar] [CrossRef]
- Schosinsky, N.G. Cálculo de la Recarga Potencial de Acuíferos Mediante un Balance Hídrico de Suelos. Rev. Geogr. Am. Cent. 2006, 34–35, 13–30. Available online: https://www.redalyc.org/articulo.oa?id=45437342002 (accessed on 14 November 2024). [CrossRef]
- Herrera Talavera, K.Y.; Moreno Rivas, D.K. Impact of Land Use on the Soil Water Balance Proposed by Schosinsky; Universidad Nacional Agraria Facultad de Recursos Naturales y del Ambiente: Managua, Nicaragua, 2022. [Google Scholar]
- CONAGUA CONAGUA/Acuíferos Zacatecas. Available online: https://sigagis.conagua.gob.mx/gas1/sections/Edos/zacatecas/zacatecas.html (accessed on 15 March 2024).
- Patiño-Rojas, S.M.; Jaramillo, M. Estimación Espaciotemporal de La Recarga Potencial En Un Sistema Pseudokárstico Tropical. Rev. Acad. Colomb. Cienc. Exactas Fís. Nat. 2022, 46, 261–278. [Google Scholar] [CrossRef]
- Caro, L.E.C. Estimation of the Potential Recharge of the Tunja Aquifer Using the Methodology Proposed by Schosinsky Using Python; Universidad Cátolica de Colombia Facultad de Ingeniería: Bogota, Colombia, 2023. [Google Scholar]
- Schosinsky, G.; Losilla, M. Modelo Analítico Para Determinar La Infiltración Con Base En La Lluvia Mensual. Rev. Geogr. Am. Cent. 2000, 23, 43–45. [Google Scholar] [CrossRef]
- Granados, P.R. Determinación de la Recarga Acuífera Potencial Mediante un Sistema de Información Geográfica para la Cuenca del Río Frío, Costa Rica. Rev. Geogr. Am. Cent. 2013, 2, 15–35. Available online: https://www.redalyc.org/pdf/4517/451744542001.pdf (accessed on 14 November 2024).
- Giovanni. Available online: https://giovanni.gsfc.nasa.gov/giovanni/ (accessed on 14 November 2024).
- Arsenault, K.R.; Shukla, S.; Hazra, A.; Getirana, A.; McNally, A.; Kumar, S.V.; Koster, R.D.; Peters-Lidard, C.D.; Zaitchik, B.F.; Badr, H.; et al. The NASA Hydrological Forecast System for Food and Water Security Applications. Bull. Am. Meteorol. Soc. 2020, 101, E1007–E1025. [Google Scholar] [CrossRef]
- The Tropical Rainfall Measuring Mission (TRMM) | NASA Global Precipitation Measurement Mission. Available online: https://gpm.nasa.gov/missions/trmm (accessed on 14 November 2024).
- Ingeniería y Gestión Hídrica S.C. Plan de Manejo Integral del Acuífero Chupaderos; Comisión Nacional del Agua Dirección Local Zacatecas, Coordinación del Área Técnica: Zacatecas, Mexico, 2010; p. 127. Available online: https://www.igh.com.mx/acc/Info/CapituloI-4.pdf (accessed on 14 November 2024).
- Aparicio Mijares, F.J. Fundamentos de Hidrología de Superficie; 8. Reimpr.; Limusa—Grupo Noriega Editores: Mexico City, Mexico, 1999; ISBN 978-968-18-3014-4. [Google Scholar]
- Vásquez-Méndez, R.; Ventura-Ramos, E.J.; Acosta-Gallegos, J.A. Ability to estimate evapotranspiration methods for a semi-arid area in central Mexico. Rev. Mex. Cienc. Agrícolas 2011, 2, 399–415. [Google Scholar]
- Reyes Jaramillo, I. Ojeada a La Clasificacion Del Suelo. ContactoS 2014, 91, 30–40. Available online: https://www.academia.edu/20338171/Ojeada_a_la_clasificacion_del_suelo (accessed on 14 November 2024).
- Delgado Dallatorre, Y. The Infiltration of Water Into the Soils and Artificial Components and Organic Matter that are Used in Them for Agriculture. Rev. Iberoam. Bioecon. Cambio Clim. 2018, 4. [Google Scholar] [CrossRef]
- Alfaro, I.A.; Chavez, J.A.; Cuestas, I.E.; Mejía, C.J.; Landaverde, M.; Campos, S. Estudio sobre infiltración y su relación con la geología del Área Metropolitana de San Salvador, El Salvador. Rev. Geol. Am. Cent. 2020, 40–57. [Google Scholar]
- Pérez, A.S.; Cháirez, F.G.E. Hydrological Characterization of a Communal Litter Excluded from Grazing in Zacatecas, Mexico. I. Soil losses. Téc. Pecu. Méx. 2002, 1, 37–53. Available online: http://zacatecas.inifap.gob.mx/publicaciones/caracterizacion_hidrologica_1.pdf (accessed on 14 November 2024).
- Echavarría-Cháirez, F.G.; Medina-García, G.; Ruiz-Corral, J.A.; Echavarría-Cháirez, F.G.; Medina-García, G.; Ruiz-Corral, J.A. Effects of Rainfall Pattern Changes Due to Global Warming on Soil Water Erosion in Grasslands and Other Vegetation Types in the State of Zacatecas, Mexico. Rev. Mex. Cienc. Pecu. 2020, 11, 63–74. [Google Scholar] [CrossRef]
- Kumar, S.; Peterslidard, C.; Tian, Y.; Houser, P.; Geiger, J.; Olden, S.; Lighty, L.; Eastman, J.; Doty, B.; Dirmeyer, P. Land Information System: An Interoperable Framework for High Resolution Land Surface Modeling. Environ. Model. Softw. 2006, 21, 1402–1415. [Google Scholar] [CrossRef]
- Mehetre, S.; Jagatap, T.; Chavan, S.; Gore, R. Impact Assessment of Watershed Approach (Change Detection in Water Bodiesrsquo; Area and LULC, NDVI, NDMI) for Reducing Vulnerability of Drinking Water and Availability of Water for Agriculture of Dahegaon Cluster Watershed in Gangapur Block of Aurangabad District-Maharashtra. J. Pharmacogn. Phytochem. 2023, 12, 147–156. [Google Scholar] [CrossRef]
- Olmos Trujillo, E.; González Trinidad, J.; Júnez Ferreira, H.; Pacheco Guerrero, A.; Bautista Capetillo, C.; Avila Sandoval, C.; Galván Tejada, E. Spatio-Temporal Response of Vegetation Indices to Rainfall and Temperature in a Semiarid Region. Sustainability 2020, 12, 1939. [Google Scholar] [CrossRef]
- González Trinidad, J.; Junez Ferreira, H.E.; Pacheco Guerrero, A.; Olmos Trujillo, E.; Bautista Capetillo, C.F. Dynamics of Land Cover Changes and Delineation of Groundwater Recharge Potential Sites in the Aguanaval Aquifer, Zacatecas, Mexico. Appl. Ecol. Environ. Res. 2017, 15. [Google Scholar] [CrossRef]
Classification | |
---|---|
Irrigation agriculture | 0.10 |
Rain-fed agriculture | 0.09 |
Forest | 0.20 |
Scrub | 0.07 |
Grassland | 0.09 |
Type | Slope | |
---|---|---|
Somewhat flat | 1–2% | 0.15 |
Average | 2–7% | 0.10 |
Steep | Greater than 7% | 0.06 |
Vegetation cover | ||
Agriculture–Livestock–Forest | 0.10 | |
Crasicaule scrub | 0.20 | |
Desert scrub | 0.20 | |
Halophilic grassland | 0.18 | |
Induced grassland | 0.18 | |
Natural grassland | 0.18 | |
Halophilic vegetation | 0.20 |
Edaphology | Soil Texture | PMP % | CC % | DA (gr/cm3) |
---|---|---|---|---|
Fluvisol | Sandy | 2–4 | 6–12 | 1.55–1.80 |
Kastanozem | Sandy–Loam | 4–8 | 10–18 | 1.40–1.60 |
Leptosols (Lithosol) | Loam | 8–12 | 18–26 | 1.35–1.50 |
Cambisol | Clayey–Loam | 11–15 | 23–31 | 1.30–1.40 |
Phaeozem Gypsisol | Clayey–Sandy | 13–17 | 27–31 | 1.25–1.35 |
Leptosols (Rendzina) Solonetz Solonchack | Clayey | 15–19 | 31–39 | 1.20–1.30 |
Classification | Crop | Millimeters | ||
Irrigation agriculture | Chili | 1200 | ||
Rain-fed agriculture | Bean | 700 | ||
Forest | Forest | 3000 | ||
Scrub | Scrub | 5100 | ||
Grassland | Grassland | 1700 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
López-Cuevas, M.; Pacheco-Guerrero, A.; Olmos-Trujillo, E.; Ramírez-Juárez, J.E.; Badillo-Olvera, A.; Ávila-Sandoval, C.; Badillo-Almaraz, H. The Spatiotemporal Estimation of the Chupaderos Aquifer Groundwater Recharge for 2020 Based on the Soil Moisture Approach and Remote Sensing. Hydrology 2024, 11, 218. https://doi.org/10.3390/hydrology11120218
López-Cuevas M, Pacheco-Guerrero A, Olmos-Trujillo E, Ramírez-Juárez JE, Badillo-Olvera A, Ávila-Sandoval C, Badillo-Almaraz H. The Spatiotemporal Estimation of the Chupaderos Aquifer Groundwater Recharge for 2020 Based on the Soil Moisture Approach and Remote Sensing. Hydrology. 2024; 11(12):218. https://doi.org/10.3390/hydrology11120218
Chicago/Turabian StyleLópez-Cuevas, María, Anuard Pacheco-Guerrero, Edith Olmos-Trujillo, Juan Ernesto Ramírez-Juárez, Anuar Badillo-Olvera, Claudia Ávila-Sandoval, and Hiram Badillo-Almaraz. 2024. "The Spatiotemporal Estimation of the Chupaderos Aquifer Groundwater Recharge for 2020 Based on the Soil Moisture Approach and Remote Sensing" Hydrology 11, no. 12: 218. https://doi.org/10.3390/hydrology11120218
APA StyleLópez-Cuevas, M., Pacheco-Guerrero, A., Olmos-Trujillo, E., Ramírez-Juárez, J. E., Badillo-Olvera, A., Ávila-Sandoval, C., & Badillo-Almaraz, H. (2024). The Spatiotemporal Estimation of the Chupaderos Aquifer Groundwater Recharge for 2020 Based on the Soil Moisture Approach and Remote Sensing. Hydrology, 11(12), 218. https://doi.org/10.3390/hydrology11120218