A Systematic Review of the Current State of Numerical Groundwater Modeling in American Countries: Challenges and Future Research
<p>Process flowchart for the selection of articles using the methodology adapted of De León Pérez et al. [<a href="#B25-hydrology-11-00179" class="html-bibr">25</a>].</p> "> Figure 2
<p>Trends in publication on numerical modeling of groundwater flow over time.</p> "> Figure 3
<p>Tree map with top ten journals with highest numbers of records observed.</p> "> Figure 4
<p>Geographic distribution of the 166 articles published per country.</p> "> Figure 5
<p>VOSviewer authors’ keyword co-occurrence.</p> "> Figure 6
<p>Performance metrics employed for calibrating and validating hydrogeological models. (<b>A</b>) Combination of PMs used and (<b>B</b>) pie chart of the PMs used. Performance metrics: root mean square error (RMSE), coefficient of determination (R<sup>2</sup>), Nash–Sutcliffe efficiency (NSE), mean absolute error (MAE), correlation coefficient (R), normalized root mean square error (NRMSE), percentage of bias (PBIAS), mean error (ME), Kling–Gupta efficiency (KGE), modified Nash–Sutcliffe efficiency (mNSE), standard deviation of measured data (RSR), and normalized objective function (NOF).</p> "> Figure 7
<p>Study units in the reviewed articles. (<b>A</b>) Fundamental units for hydrogeological numerical modeling of groundwater. (<b>B</b>) Aquifer types conceptualized in the studies.</p> ">
Abstract
:1. Introduction
2. Materials and Methods
2.1. Methodology
2.2. Selection of Literature
- (1)
- Study topic: the research article should focus on a case study, such as a basin, aquifer, or river–aquifer interaction.
- (2)
- The application of groundwater flow modeling software: the article should use software to assess and manage groundwater resources (e.g., MODFLOW and FEFLOW).
- (3)
- Model calibration and validation: numerical model fitting should be performed with performance metrics (e.g., R2, RMSE, MAE, and NSE).
- (4)
- Scenario evaluation and forecasting: the simulation of future scenarios for a period of time (e.g., climate change, pumping rate, recharge–discharge, population growth, water demand, and pollution).
3. Results and Discussion
3.1. Trends in Publication
3.1.1. Published Journal
3.1.2. Geographic Location
3.1.3. Co-Occurrence of Keywords
3.2. Groundwater Models
Numerical Method | Software | Codes |
---|---|---|
Finite Difference | MODELMUSE, VISUAL MODFLOW, GMS, GROUNDWATER VISTAS, SEAWAT, PMWIN, SUTRA, FLOWPATH II, TOUGH3, MARTHE. | MODFLOW, FTWORK, HST2D/3D, INVFD, PLASM, HST3D, MICROFEM, MODFLOWT, MODPATH, MODTECH, MT3DMS, PATH3D, SWANFLOW, SWIFT, TARGET, TRACR3D, MODHMS-SURFACT, SWI2, BIOPLUMEIII, MOCDENS3D, FRACFLOW, HSSM, SWACROP, VIRTUS, VS2DT. |
Finite Element | FEFLOW, GMS, SUTRA, NAPL Simulator, OpenGeoSys, AQÜIMPE, 3DFEMFAT, CODESA-3D, AQUA3D, SEEP/W, ChemFlux. | ABCFEM, AQUIFEM-N, FEMWATER, MicroFEM, MODFE, MULAT, PTC, HYDRUS-2D/3D, TRANSIN, MOTRANS, SvFlux, SWICHA, IWFM, CANVAS, TRAFRAP-WT, FLONET/TR2, VS2DI/VS2TI, HYDRUS-1D, VAM2D, WinTran, SWICHA. |
3.2.1. Model Calibration and Validation: Performance Metrics (PMs)
3.2.2. Modeling at Different Scales: Study Unit
3.2.3. Modeling Limitations: Data Collection
3.3. Studied Regions: Challenges and Future Research
3.3.1. Studied Regions
3.3.2. Evaluating and Forecasting Future Scenarios
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ricka, A.; Kuchovsky, T.; Damdindorj, B.; Fürych, V.; Kopriva, A.; Puntsag, K. Identifying the Flow Pattern and Natural Recharge at a Strategic Groundwater Resource in the Dornogobi Province, Mongolia. Hydrol. Sci. J. 2018, 63, 1408–1423. [Google Scholar] [CrossRef]
- Taye, M.T.; Ebrahim, G.Y.; Nigussie, L.; Hagos, F.; Uhlenbrook, S.; Schmitter, P. Integrated Water Availability Modelling to Assess Sustainable Agricultural Intensification Options in the Meki Catchment, Central Rift Valley, Ethiopia. Hydrol. Sci. J. 2022, 67, 2271–2293. [Google Scholar] [CrossRef]
- Nasri, N.; Souissi, F.; Ben Attia, T.; Ismailia, A.; Smida, O.; Tangour, D.; López Maldonado, E.A.; Souissi, R. Hydro Geochemical Characteristics and Mineralization Process of Groundwater in the Phosphatic Basin of Gafsa, Southwestern Tunisia. Hydrology 2024, 11, 142. [Google Scholar] [CrossRef]
- Rajeevan, U.; Mishra, B.K. Sustainable Management of the Groundwater Resource of Jaffna, Sri Lanka with the Participation of Households: Insights from a Study on Household Water Consumption and Management. Groundw. Sustain. Dev. 2020, 10, 100280. [Google Scholar] [CrossRef]
- Davamani, V.; John, J.E.; Poornachandhra, C.; Gopalakrishnan, B.; Arulmani, S.; Parameswari, E.; Santhosh, A.; Srinivasulu, A.; Lal, A.; Naidu, R. A Critical Review of Climate Change Impacts on Groundwater Resources: A Focus on the Current Status, Future Possibilities, and Role of Simulation Models. Atmosphere 2024, 15, 122. [Google Scholar] [CrossRef]
- Wada, Y.; De Graaf, I.E.M.; Van Beek, L.P.H. High-Resolution Modeling of Human and Climate Impacts on Global Water Resources. J. Adv. Model. Earth Syst. 2016, 8, 735–763. [Google Scholar] [CrossRef]
- De Graaf, I.E.M.; Sutanudjaja, E.H.; Van Beek, L.P.H.; Bierkens, M.F.P. A High-Resolution Global-Scale Groundwater Model. Hydrol. Earth Syst. Sci. 2015, 19, 823–837. [Google Scholar] [CrossRef]
- Boretti, A.; Rosa, L. Reassessing the Projections of the World Water Development Report. Npj Clean Water 2019, 2, 15. [Google Scholar] [CrossRef]
- Jiménez-Cisneros, B.; Galizia-Tundisi, J. Diagnosis of Water in the Americas; Academia Mexicana de Ciencias: Mexico City, Mexico, 2013. [Google Scholar]
- Rodríguez, C.; García, B.; Pinto, C.; Sánchez, R.; Serrano, J.; Leiva, E. Water Context in Latin America and the Caribbean: Distribution, Regulations and Prospects for Water Reuse and Reclamation. Water 2022, 14, 3589. [Google Scholar] [CrossRef]
- Rojas Scheffer, V. Review: Application of Hydrogeological Models Coupled with Agent-Based Models to Address Sustainable Groundwater Management in Latin America. Hydrogeol. J. 2024, 32, 935–949. [Google Scholar] [CrossRef]
- Rama, F.; Busico, G.; Arumi, J.L.; Kazakis, N.; Colombani, N.; Marfella, L.; Hirata, R.; Kruse, E.E.; Sweeney, P.; Mastrocicco, M. Assessment of Intrinsic Aquifer Vulnerability at Continental Scale through a Critical Application of the Drastic Framework: The Case of South America. Sci. Total Environ. 2022, 823, 153748. [Google Scholar] [CrossRef] [PubMed]
- Naeem, K.; Zghibi, A.; Elomri, A.; Mazzoni, A.; Triki, C. A Literature Review on System Dynamics Modeling for Sustainable Management of Water Supply and Demand. Sustainability 2023, 15, 6826. [Google Scholar] [CrossRef]
- Faquseh, H.; Shadeed, S.; Grossi, G. Impacts of Climate Change on Groundwater in the Al-Badan Sub-Catchment, Palestine: Analyzing Historical Data and Future Scenarios. Hydrology 2024, 11, 169. [Google Scholar] [CrossRef]
- Uc Castillo, J.L.; Martínez Cruz, D.A.; Ramos Leal, J.A.; Tuxpan Vargas, J.; Rodríguez Tapia, S.A.; Marín Celestino, A.E. Delineation of Groundwater Potential Zones (GWPZs) in a Semi-Arid Basin through Remote Sensing, GIS, and AHP Approaches. Water 2022, 14, 2138. [Google Scholar] [CrossRef]
- Ahmadi, A.; Olyaei, M.; Heydari, Z.; Emami, M.; Zeynolabedin, A.; Ghomlaghi, A.; Daccache, A.; Fogg, G.E.; Sadegh, M. Groundwater Level Modeling with Machine Learning: A Systematic Review and Meta-Analysis. Water 2022, 14, 949. [Google Scholar] [CrossRef]
- Kumar, C.P.; Singh, S. Concepts and Modeling of Groundwater System. Int. J. Innov. Sci. Eng. Technol. 2015, 2, 262–271. [Google Scholar]
- Kumar, C.P. An Overview of Commonly Used Groundwater Modelling Software. Int. J. Adv. Sci. Eng. Technol. 2019, 6, 7854–7865. [Google Scholar]
- Ehtiat, M.; Mousavi, S.J.; Vaghefi, S.A.; Ghaheri, A. Analysis of Recharge Conceptualization in Inverse Groundwater Modelling. Hydrol. Sci. J. 2016, 61, 2789–2801. [Google Scholar] [CrossRef]
- Norouzi Khatiri, K.; Nematollahi, B.; Hafeziyeh, S.; Niksokhan, M.H.; Nikoo, M.R.; Al-Rawas, G. Groundwater Management and Allocation Models: A Review. Water 2023, 15, 253. [Google Scholar] [CrossRef]
- Howard, K.E.N.; Griffith, A. Can the Impacts of Climate Change on Groundwater Resources Be Studied without the Use of Transient Models? Hydrol. Sci. J. 2009, 54, 754–764. [Google Scholar] [CrossRef]
- El Alfy, M. Numerical Groundwater Modelling as an Effective Tool for Management of Water Resources in Arid Areas. Hydrol. Sci. J. 2014, 59, 1259–1274. [Google Scholar] [CrossRef]
- Zhou, Y.; Li, W. A Review of Regional Groundwater Flow Modeling. Geosci. Front. 2011, 2, 205–214. [Google Scholar] [CrossRef]
- Sikdar, P.K. Groundwater Development and Management: Issues and Challenges in South Asia; Springer International Publishing: Cham, Switzerland, 2019. [Google Scholar]
- De León Pérez, D.; Acosta Vega, R.; Salazar Galán, S.; Aranda, J.Á.; Francés García, F. Toward Systematic Literature Reviews in Hydrological Sciences. Water 2024, 16, 436. [Google Scholar] [CrossRef]
- Nguyen, N.; Singh, S. A Primer on Systematic Reviews and Meta-Analyses. Semin. Liver Dis. 2018, 38, 103–111. [Google Scholar] [CrossRef]
- Kitchenham, B. Procedures for Performing Systematic Reviews; Keele University: Keele, UK, 2004; Volume 33. [Google Scholar]
- Muka, T.; Glisic, M.; Milic, J.; Verhoog, S.; Bohlius, J.; Bramer, W.; Chowdhury, R.; Franco, O.H. A 24-Step Guide on How to Design, Conduct, and Successfully Publish a Systematic Review and Meta-Analysis in Medical Research. Eur. J. Epidemiol. 2020, 35, 49–60. [Google Scholar] [CrossRef]
- White, H.; Waddington, H. Why Do We Care about Evidence Synthesis? An Introduction to the Special Issue on Systematic Reviews. J. Dev. Eff. 2012, 4, 351–358. [Google Scholar] [CrossRef]
- Siddaway, A.P.; Wood, A.M.; Hedges, L.V. How to Do a Systematic Review: A Best Practice Guide for Conducting and Reporting Narrative Reviews, Meta-Analyses, and Meta-Syntheses. Annu. Rev. Psychol. 2019, 70, 747–770. [Google Scholar] [CrossRef]
- Donthu, N.; Kumar, S.; Mukherjee, D.; Pandey, N.; Lim, W.M. How to Conduct a Bibliometric Analysis: An Overview and Guidelines. J. Bus. Res. 2021, 133, 285–296. [Google Scholar] [CrossRef]
- Chadegani, A.A.; Salehi, H.; Yunus, M.M.; Farhadi, H.; Fooladi, M.; Farhadi, M.; Ebrahim, N.A. A Comparison between Two Main Academic Literature Collections: Web of Science and Scopus Databases. Asian Soc. Sci. 2013, 9, p18. [Google Scholar] [CrossRef]
- Calderón Palma, H.; Bentley, L.R. A Regional-Scale Groundwater Flow Model for the Leon-Chinandega Aquifer, Nicaragua. Hydrogeol. J. 2007, 15, 1457–1472. [Google Scholar] [CrossRef]
- Gárfias, J.; Expósito, J.L. Delimitación de las zonas de protección mediante métodos analíticos y un modelo numérico de agua subterránea, acuífero Margarita, Cuba. Boletín Geológico Min. 2008, 119, 7–20. [Google Scholar]
- Arnaud, L.; Gutierrez, A.; Zegoulli, I.; Gonomy, N. Modelling Groundwater Flow in the Plaine Du Nord–Massacre Shallow Aquifer, Haiti. Hydrogeol. J. 2022, 30, 1399–1415. [Google Scholar] [CrossRef]
- Zhang, J.; Yu, Q.; Zheng, F.; Long, C.; Lu, Z.; Duan, Z. Comparing Keywords plus of WOS and Author Keywords: A Case Study of Patient Adherence Research. Assoc. Inf. Sci. Technol. 2016, 67, 967–972. [Google Scholar] [CrossRef]
- Zhang, W.; Zhang, Q.; Yu, B.; Zhao, L. Knowledge Map of Creativity Research Based on Keywords Network and Co-Word Analysis, 1992–2011. Qual. Quant. 2015, 49, 1023–1038. [Google Scholar] [CrossRef]
- Galvez, C. Análisis de co-palabras aplicado a los artículos muy citados en Biblioteconomía y Ciencias de la Información (2007–2017). Transinformação 2018, 30, 277–286. [Google Scholar] [CrossRef]
- Van Eck, N.J.; Waltman, L. Software Survey: VOSviewer, a Computer Program for Bibliometric Mapping. Scientometrics 2010, 84, 523–538. [Google Scholar] [CrossRef]
- Anderson, M.P.; Woessner, W.W.; Hunt, R.J. Applied Groundwater Modeling: Simulation of Flow and Advective Transport, 2nd ed.; Academic Press: London, UK; San Diego, CA, USA, 2015. [Google Scholar]
- Kollet, S.J.; Maxwell, R.M. Integrated Surface–Groundwater Flow Modeling: A Free-Surface Overland Flow Boundary Condition in a Parallel Groundwater Flow Model. Adv. Water Resour. 2006, 29, 945–958. [Google Scholar] [CrossRef]
- Therrien, R.; McLaren, R.G.; Sudicky, E.A.; Panday, S.M. HydroGeoSphere: A Three-Dimensional Numerical Model Describing Fully-Integrated Subsurface and Surface Flow and Solute Transport; Groundwater Simulations Group, University of Waterloo: Waterloo, ON, Canada, 2010; p. 830. [Google Scholar]
- DHI Software. MIKE SHE User Manual; DHI Software: Hørsholm, Danemark, 2007; Volume 2. [Google Scholar]
- Guay, C.; Nastev, M.; Paniconi, C.; Sulis, M. Comparison of Two Modeling Approaches for Groundwater–Surface Water Interactions. Hydrol. Process. 2013, 27, 2258–2270. [Google Scholar] [CrossRef]
- Arnold, J.G.; Moriasi, D.N.; Gassman, P.W.; Abbaspour, K.C.; White, M.J.; Srinivasan, R.; Santhi, C.; Harmel, R.D.; Van Griensven, A.; Van Liew, M.W.; et al. SWAT: Model Use, Calibration, and Validation. Trans. ASABE 2012, 55, 1491–1508. [Google Scholar] [CrossRef]
- Larocque, M.; Levison, J.; Martin, A.; Chaumont, D. A Review of Simulated Climate Change Impacts on Groundwater Resources in Eastern Canada. Can. Water Resour. J. Rev. Can. Ressour. Hydr. 2019, 44, 22–41. [Google Scholar] [CrossRef]
- Harbaugh, A.W. MODFLOW-2005, The U.S. Geological Survey Modular Ground-Water Model—The Ground-Water Flow Process. In U.S. Geological Survey. USGS Editor. Techniques and Methods; US Department of the Interior, US Geological Survey: Reston, VA, USA, 2005; 253p. [Google Scholar]
- Diersch, H.-J.G. FEFLOW: Finite Element Modeling of Flow, Mass and Heat Transport in Porous and Fractured Media; Springer: Berlin/Heidelberg, Germany, 2014. [Google Scholar]
- Green, N.R.; MacQuarrie, K.T.B. An Evaluation of the Relative Importance of the Effects of Climate Change and Groundwater Extraction on Seawater Intrusion in Coastal Aquifers in Atlantic Canada. Hydrogeol. J. 2014, 22, 609–623. [Google Scholar] [CrossRef]
- Paradis, D.; Vigneault, H.; Lefebvre, R.; Savard, M.M.; Ballard, J.-M.; Qian, B. Groundwater Nitrate Concentration Evolution under Climate Change and Agricultural Adaptation Scenarios: Prince Edward Island, Canada. Earth Syst. Dyn. 2016, 7, 183–202. [Google Scholar] [CrossRef]
- Coulon, C.; White, J.T.; Pryet, A.; Gatel, L.; Lemieux, J.-M. An Ensemble-Based Approach for Pumping Optimization in an Island Aquifer Considering Parameter, Observation and Climate Uncertainty. Hydrol. Earth Syst. Sci. 2024, 28, 303–319. [Google Scholar] [CrossRef]
- Lin, J.; Snodsmith, J.B.; Zheng, C.; Wu, J. A Modeling Study of Seawater Intrusion in Alabama Gulf Coast, USA. Environ. Geol. 2009, 57, 119–130. [Google Scholar] [CrossRef]
- Bittner, L.; England, S.; Murray, C.; Mirecki, J.; Richardson, E.; Brown, C.; Kaiman, B. Development of a New Model Tool for Evaluating Groundwater Resources within the Floridan Aquifer System in Southern Florida, USA. Environ. Earth Sci. 2017, 76, 718. [Google Scholar] [CrossRef]
- Trasviña-Carrillo, J.A.; Wurl, J.; Imaz-Lamadrid, M.A. Groundwater Flow Model and Statistical Comparisons Used in Sustainability of Aquifers in Arid Regions. Resources 2019, 8, 134. [Google Scholar] [CrossRef]
- Wurl, J.; Gámez, A.E.; Ivanova, A.; Imaz Lamadrid, M.A.; Hernández-Morales, P. Socio-Hydrological Resilience of an Arid Aquifer System, Subject to Changing Climate and Inadequate Agricultural Management: A Case Study from the Valley of Santo Domingo, Mexico. J. Hydrol. 2018, 559, 486–498. [Google Scholar] [CrossRef]
- Rama, F.; Miotliński, K. Multiple-Step Numerical Modeling to Assist Aquifer Characterization: A Case Study from the South of Brazil. Hydrogeol. J. 2020, 28, 2747–2763. [Google Scholar] [CrossRef]
- Bofill, L.M.; Suhogusoff, A.V.; Ferrari, L.; Roisenberg, A. Analysis and Comparison of Wellhead Protection Areas Delimitation Methods Applying a Stochastic MODFLOW Model as a Reference. Environ. Monit. Assess. 2023, 195, 704. [Google Scholar] [CrossRef]
- Marazuela, M.A.; Vázquez-Suñé, E.; Ayora, C.; García-Gil, A.; Palma, T. The Effect of Brine Pumping on the Natural Hydrodynamics of the Salar de Atacama: The Damping Capacity of Salt Flats. Sci. Total Environ. 2019, 654, 1118–1131. [Google Scholar] [CrossRef]
- Narvaez-Montoya, C.; Torres-Martínez, J.A.; Pino-Vargas, E.; Cabrera-Olivera, F.; Loge, F.J.; Mahlknecht, J. Predicting Adverse Scenarios for a Transboundary Coastal Aquifer System in the Atacama Desert (Peru/Chile). Sci. Total Environ. 2022, 806, 150386. [Google Scholar] [CrossRef] [PubMed]
- Waterloo Hydrogeologic Inc. Visual MODFLOW; Waterloo Hydrogeologic Inc.: Waterloo, ON, Canada, 2022. [Google Scholar]
- Winston, R.B. ModelMuse—A Graphical User Interface for MODFLOW–2005 and PHAST. In U.S. Geological Survey Techniques and Methods; US Geological Survey: Reston, VA, USA, 2009; p. 52. [Google Scholar]
- Environmental Simulations Incorporated. Guide to Using Groundwater Vistas; Environmental Simulations Incorporated: Leesport, PA, USA, 2015. [Google Scholar]
- Aquaveo. GMS 10.1 Tutorial: MODFLOW—Stochastic Modeling; Indicator Simulations; Aquaveo: Provo, UT, USA, 2016. [Google Scholar]
- Aquaveo. Software GMS 10.0 Groundwater Modeling System. 2014. Available online: https://www.aquaveo.com/announcements (accessed on 10 June 2024).
- Chiang, W.-H.; Kinzelbach, W. 3D-Groundwater Modeling with PMWIN: A Simulation System for Modeling Groundwater Flow and Transport Processes, 2nd ed.; Springer: Berlin/Heidelberg, Germany; New York, NY, USA, 2005. [Google Scholar]
- Šejna, M.; Šimůnek, J.; van Genuchten, M.T. The HYDRUS Software Package for Simulating Two- and Three-Dimensional Movement of Water, Heat, and Multiple Solutes in Variably-Saturated Media, Version 3.01; User Manual; PC Progress: Prague, Czech Republic, 2018. [Google Scholar]
- Pollock, D.W. User’s Guide for MODPATH/MODPATH-PLOT, Version 3: A Particle Tracking Post-Processing Package for MODFLOW the U.S. Geological Survey Finite-Difference Ground-Water Flow Model; U.S. Geological Survey: Reston, VA, USA, 1994; pp. 94–464.
- Bedekar, V.; Morway, E.D.; Langevin, C.D.; Tonkin, M. MT3D-USGS Version 1: A U.S. Geological Survey Release of MT3DMS Updated with New and Expanded Transport Capabilities for Use with MODFLOW. In U.S. Geological Survey Techniques and Methods; U.S. Geological Survey: Reston, VA, USA, 2016; p. 69. [Google Scholar]
- Machiwal, D.; Jha, M.K.; Singh, V.P.; Mohan, C. Assessment and Mapping of Groundwater Vulnerability to Pollution: Current Status and Challenges. Earth Sci. Rev. 2018, 185, 901–927. [Google Scholar] [CrossRef]
- Langevin, C.D. SEAWAT: A Computer Program for Simulation of Variable-Density Groundwater Flow and Multi-Species Solute and Heat Transport; US Geological Survey: Reston, VA, USA, 2009.
- Bakker, M.; Schaars, F.; Hughes, J.D.; Langevin, C.D.; Dausman, A.M. Documentation of the Seawater Intrusion (SWI2) Package for MODFLOW. In U.S. Geological Survey Techniques and Methods; US Geological Survey: Reston, VA, USA, 2013; p. 47. [Google Scholar]
- Voss, C.I.; Provost, A.M. SUTRA, a Model for Saturated-Unsaturated, Variable-Density Groundwater Flow with Solute or Energy Transport—Documentation of Generalized Boundary Conditions, a Modified Implementation of Specified Pressures and Concentrations or Temperatures, and the Lake Capability. In U.S. Geological Survey Techniques and Methods; US Geological Survey: Reston, VA, USA, 2019; p. 62. [Google Scholar]
- HydroGeoLogic Inc. MODHMS—MODFLOW-Based Hydrologic Modeling System: Documentation and User’s Guide; HydroGeoLogic Inc.: Herndon, VA, USA, 2002. [Google Scholar]
- Bear, J.; Cheng, A.H.-D.; Sorek, S.; Ouazar, D.; Herrera, I. Seawater Intrusion in Coastal Aquifers—Concepts, Methods and Practices; Theory and Applications of Transport in Porous Media; Springer: Dordrecht, The Netherlands, 1999; Volume 14. [Google Scholar]
- Langevin, C.D.; Oude Essink, G.H.P.; Panday, S.; Bakker, M.; Prommer, H.; Swain, E.D.; Jones, W.; Beach, M.; Barcelo, M. MODFLOW-Based Tools for Simulation of Variable-Density Groundwater FLow. In Coastal Aquifer Management: Monitoring, Modeling, and Case Studies; Cheng, A., Ouazar, D., Eds.; Lewis Publishers: Boca Raton, FL, USA, 2004; pp. 49–76. [Google Scholar]
- Yang, X.; Steward, D.R.; De Lange, W.J.; Lauwo, S.Y.; Chubb, R.M.; Bernard, E.A. Data Model for System Conceptualization in Groundwater Studies. Int. J. Geogr. Inf. Sci. 2010, 24, 677–694. [Google Scholar] [CrossRef]
- Kumar, C.P. Groundwater flow models. Int. J. Mod. Sci. Eng. Technol. 2015, 2, 18–27. [Google Scholar]
- Coffey, M.E.; Workman, S.R.; Taraba, J.L.; Fogle, A.W. Statistical procedures for evaluating daily and monthly hydrologic model predictions. Trans. ASAE 2004, 47, 59–68. [Google Scholar] [CrossRef]
- Moriasi, D.N.; Arnold, J.G.; Van Liew, M.W.; Bingner, R.L.; Harmel, R.D.; Veith, T.L. Model Evaluation Guidelines for Systematic Quantification of Accuracy in Watershed Simulations. Trans. ASABE 2007, 50, 885–900. [Google Scholar] [CrossRef]
- Moriasi, D.N.; Gitau, M.W.; Pai, N.; Daggupati, P. Hydrologic and Water Quality Models: Performance Measures and Evaluation Criteria. Trans. ASABE 2015, 58, 1763–1785. [Google Scholar] [CrossRef]
- Doherty, J. PEST: Model-Independent Parameter Estimation, User Manual, 5th ed.; With Slight Additions, Watermark Numerical Computing: Brisbane, Australia, 2010. [Google Scholar]
- Abbaspour, K.C. SWAT-CUP: SWAT Calibration and Uncertainty Programs—A User Manual, Department of Systems Analysis, Integrated Assessment and Modelling (SIAM), EAWAG; Swiss Federal Institute of Aqualtic Science and Technology: Duebendorf, Switzerland, 2015. [Google Scholar]
- Bushira, K.M.; Hernandez, J.R.; Sheng, Z. Surface and Groundwater Flow Modeling for Calibrating Steady State Using MODFLOW in Colorado River Delta, Baja California, Mexico. Model. Earth Syst. Environ. 2017, 3, 815–824. [Google Scholar] [CrossRef]
- Poeter, E.P.; Hill, M.C.; Lu, D.; Tiedeman, C.; Mehl, S.W. UCODE_2014, with New Capabilities to Define Parameters Unique to Predictions, Calculate Weights Using Simulated Values, Estimate Parameters with SVD, Evaluate Uncertainty with MCMC, and More (Technical Report); Integrated Groundwater Modeling Center (IGWMC) of the Colorado School of Mines: Golden, CO, USA, 2014. [Google Scholar]
- Rafiei, V.; Nejadhashemi, A.P.; Mushtaq, S.; Bailey, R.T.; An-Vo, D.-A. An Improved Calibration Technique to Address High Dimensionality and Non-Linearity in Integrated Groundwater and Surface Water Models. Environ. Model. Softw. 2022, 149, 105312. [Google Scholar] [CrossRef]
- Hill, M.C. The Practical Use of Simplicity in Developing Ground Water Models. Groundwater 2006, 44, 775–781. [Google Scholar] [CrossRef]
- Lévesque, Y.; Chesnaux, R.; Walter, J. Using Geophysical Data to Assess Groundwater Levels and the Accuracy of a Regional Numerical Flow Model. Hydrogeol. J. 2023, 31, 351–370. [Google Scholar] [CrossRef]
- Edwards, P.J.; Williard, K.W.J.; Schoonover, J.E. Fundamentals of Watershed Hydrology. J. Contemp. Water Res. Educ. 2015, 154, 3–20. [Google Scholar] [CrossRef]
- Prasad, V.; Yousuf, A.; Sharma, N. Hydrological Modeling for Watershed Management. J. Nat. Resour. Conserv. Manag. 2020, 1, 29. [Google Scholar] [CrossRef]
- Rodríguez, L.; Vives, L.; Gomez, A. Conceptual and Numerical Modeling Approach of the Guarani Aquifer System. Hydrol. Earth Syst. Sci. 2013, 17, 295–314. [Google Scholar] [CrossRef]
- Maxwell, R.M.; Condon, L.E.; Kollet, S.J. A High-Resolution Simulation of Groundwater and Surface Water over Most of the Continental US with the Integrated Hydrologic Model ParFlow V3. Geosci. Model Dev. 2015, 8, 923–937. [Google Scholar] [CrossRef]
- De Graaf, I.E.M.; Van Beek, R.L.P.H.; Gleeson, T.; Moosdorf, N.; Schmitz, O.; Sutanudjaja, E.H.; Bierkens, M.F.P. A Global-Scale Two-Layer Transient Groundwater Model: Development and Application to Groundwater Depletion. Adv. Water Resour. 2017, 102, 53–67. [Google Scholar] [CrossRef]
- Alattar, M.H.; Troy, T.J.; Russo, T.A.; Boyce, S.E. Modeling the Surface Water and Groundwater Budgets of the US Using MODFLOW-OWHM. Adv. Water Resour. 2020, 143, 103682. [Google Scholar] [CrossRef]
- Doherty, J.; Christensen, S. Use of Paired Simple and Complex Models to Reduce Predictive Bias and Quantify Uncertainty. Water Resour. Res. 2011, 47, 2011WR010763. [Google Scholar] [CrossRef]
- Doherty, J.; Moore, C. Decision Support Modeling: Data Assimilation, Uncertainty Quantification, and Strategic Abstraction. Groundwater 2020, 58, 327–337. [Google Scholar] [CrossRef]
- Menking, K.M.; Syed, K.H.; Anderson, R.Y.; Shafike, N.G.; Arnold, J.G. Model Estimates of Runoff in the Closed, Semiarid Estancia Basin, Central New Mexico, USA. Hydrol. Sci. J. 2003, 48, 953–970. [Google Scholar] [CrossRef]
- Walraevens, K.; Vandecasteele, I.; Martens, K.; Nyssen, J.; Moeyersons, J.; Gebreyohannes, T.; De Smedt, F.; Poesen, J.; Deckers, J.; Van Camp, M. Groundwater Recharge and Flow in a Small Mountain Catchment in Northern Ethiopia. Hydrol. Sci. J. 2009, 54, 739–753. [Google Scholar] [CrossRef]
- Galindo-Castillo, E.; Marín-Celestino, A.E.; Otazo-Sánchez, E.M.; Gordillo-Martínez, A.J.; González-Ramírez, C.A.; Cabrera-Cruz, R.B. Modeling the Groundwater Response to Megacity Expansion Demand and Climate Change. Case Study: The Cuautitlán–Pachuca Aquifer, in the Northeast of Mexico City. Environ. Earth Sci. 2017, 76, 510. [Google Scholar] [CrossRef]
- Hernández-Cruz, A.; Sandoval-Solís, S.; Mendoza-Espinosa, L.G. An Overview of Modeling Efforts of Water Resources in Mexico: Challenges and Opportunities. Environ. Sci. Policy 2022, 136, 510–519. [Google Scholar] [CrossRef]
- Robles-Morua, A.; Halvorsen, K.E.; Mayer, A.S.; Vivoni, E.R. Exploring the Application of Participatory Modeling Approaches in the Sonora River Basin, Mexico. Environ. Model. Softw. 2014, 52, 273–282. [Google Scholar] [CrossRef]
- Fuentes-Arreazola, M.; Ramírez-Hernández, J.; Vázquez-González, R. Hydrogeological Properties Estimation from Groundwater Level Natural Fluctuations Analysis as a Low-Cost Tool for the Mexicali Valley Aquifer. Water 2018, 10, 586. [Google Scholar] [CrossRef]
- Slater, L. Near Surface Electrical Characterization of Hydraulic Conductivity: From Petrophysical Properties to Aquifer Geometries—A Review. Surv. Geophys. 2007, 28, 169–197. [Google Scholar] [CrossRef]
- Hamdi, M.; Goïta, K. Analysis of Groundwater Depletion in the Saskatchewan River Basin in Canada from Coupled SWAT-MODFLOW and Satellite Gravimetry. Hydrology 2023, 10, 188. [Google Scholar] [CrossRef]
- Tapley, B.D.; Bettadpur, S.; Ries, J.C.; Thompson, P.F.; Watkins, M.M. GRACE Measurements of Mass Variability in the Earth System. Science 2004, 305, 503–505. [Google Scholar] [CrossRef]
- Fatolazadeh, F.; Eshagh, M.; Goïta, K.; Wang, S. A New Spatiotemporal Estimator to Downscale GRACE Gravity Models for Terrestrial and Groundwater Storage Variations Estimation. Remote Sens. 2022, 14, 5991. [Google Scholar] [CrossRef]
- Refsgaard, J.C.; Sonnenborg, T.O.; Butts, M.B.; Christensen, J.H.; Christensen, S.; Drews, M.; Jensen, K.H.; Jørgensen, F.; Jørgensen, L.F.; Larsen, M.A.D.; et al. Climate Change Impacts on Groundwater Hydrology—Where Are the Main Uncertainties and Can They Be Reduced? Hydrol. Sci. J. 2016, 61, 2312–2324. [Google Scholar] [CrossRef]
- Imaz-Lamadrid, M.A.; Wurl, J.; Ramos-Velázquez, E. Future of Coastal Lagoons in Arid Zones under Climate Change and Anthropogenic Pressure. A Case Study from San Jose Lagoon, Mexico. Resources 2019, 8, 57. [Google Scholar] [CrossRef]
- Karki, R.; Srivastava, P.; Kalin, L. Evaluating Climate Change Impacts in a Heavily Irrigated Karst Watershed Using a Coupled Surface and Groundwater Model. J. Hydrol. Reg. Stud. 2023, 50, 101565. [Google Scholar] [CrossRef]
- Balakrishnan, J.V.; Bailey, R.T.; Jeong, J.; Park, S.; Abitew, T. Quantifying Climate Change Impacts on Future Water Resources and Salinity Transport in a High Semi-Arid Watershed. J. Contam. Hydrol. 2024, 261, 104289. [Google Scholar] [CrossRef] [PubMed]
- Pereira, S.; Galvão, P.; Miotlinski, K.; Schuch, C. Numerical Modeling Applications for the Evaluation of the Past and Future Scenarios of Groundwater Use in an Urbanized Complex Karst Aquifer in the City of Sete Lagoas, State of Minas Gerais, Brazil. Groundw. Sustain. Dev. 2024, 25, 101089. [Google Scholar] [CrossRef]
- Vahdat-Aboueshagh, H.; Tsai, F.T.-C.; Bhatta, D.; Paudel, K.P. Irrigation-Intensive Groundwater Modeling of Complex Aquifer Systems Through Integration of Big Geological Data. Front. Water 2021, 3, 623476. [Google Scholar] [CrossRef]
- Scibek, J.; Allen, D.M. Modeled Impacts of Predicted Climate Change on Recharge and Groundwater Levels. Water Resour. Res. 2006, 42, 2005WR004742. [Google Scholar] [CrossRef]
- Lavigne, M.-A.; Nastev, M.; Lefebvre, R. Numerical Simulation of Groundwater Flow in the Chateauguay River Aquifers. Can. Water Resour. J. 2010, 35, 469–486. [Google Scholar] [CrossRef]
- Levison, J.; Larocque, M.; Ouellet, M.-A.; Ferland, O.; Poirier, C. Long-Term Trends in Groundwater Recharge and Discharge in a Fractured Bedrock Aquifer—Past and Future Conditions. Can. Water Resour. J. Rev. Can. Ressour. Hydr. 2016, 41, 500–514. [Google Scholar] [CrossRef]
- Rodriguez, L.; Sanchez, R.; Zhan, H.; Knappett, P.S.K. The Transboundary Nature of the Allende–Piedras Negras Aquifer Using a Numerical Model Approach. J. Am. Water Resour. Assoc. 2020, 56, 387–408. [Google Scholar] [CrossRef]
- Global Water Partnership—GWP. Situación de Los Recursos Hídricos En Centroamérica: Hacia Una Gestión Integrada; Global Water Partnership: Tegucigalpa, Honduras, 2011. [Google Scholar]
- Kumar, C.P. Climate Change and Its Impact on Groundwater Resources. Res. Inven. Int. J. Eng. Sci. 2012, 1, 43–60. [Google Scholar]
Scopus Search String |
TITLE-ABS-KEY((“numerical groundwater model” OR “simulation groundwater model” OR “groundwater modeling” OR “hydrogeological modeling” OR “MODFLOW” OR “FEFLOW”) AND ((“aquifer” OR “aquifers”) OR (“basin” OR “Watershed”) OR “groundwater” OR “groundwater flow” OR “groundwater levels” OR “groundwater recharge” OR “groundwater management” OR “groundwater resources” OR “hydrogeological system” OR “forecast” OR “scenarios” OR “water resources management” OR “decision-making process” OR “uncertainty”)) AND (LIMIT-TO (PUBYEAR, 2024) OR LIMIT-TO (PUBYEAR, 2023) OR LIMIT-TO (PUBYEAR, 2022) OR LIMIT-TO (PUBYEAR, 2021) OR LIMIT-TO (PUBYEAR, 2020) OR LIMIT-TO (PUBYEAR, 2019) OR LIMIT-TO (PUBYEAR, 2018) OR LIMIT-TO (PUBYEAR, 2017) OR LIMIT-TO (PUBYEAR, 2016) OR LIMIT-TO (PUBYEAR, 2015) OR LIMIT-TO (PUBYEAR, 2014) OR LIMIT-TO (PUBYEAR, 2013) OR LIMIT-TO (PUBYEAR, 2012) OR LIMIT-TO (PUBYEAR, 2011) OR LIMIT-TO (PUBYEAR, 2010) OR LIMIT-TO (PUBYEAR, 2009) OR LIMIT-TO (PUBYEAR, 2008) OR LIMIT-TO (PUBYEAR, 2007) OR LIMIT-TO (PUBYEAR, 2006) OR LIMIT-TO (PUBYEAR, 2005) OR LIMIT-TO (PUBYEAR, 2004) OR LIMIT-TO (PUBYEAR, 2003) OR LIMIT-TO (PUBYEAR, 2002) OR LIMIT-TO (PUBYEAR, 2001) OR LIMIT-TO (PUBYEAR, 2000)) AND (LIMIT-TO (SRCTYPE, “j”)) AND (LIMIT-TO (DOCTYPE, “ar”)) AND (LIMIT-TO (LANGUAGE, “English”) OR LIMIT-TO (LANGUAGE, “Spanish”)) |
Web of Science Search String |
((TS=((“numerical groundwater model” OR “simulation groundwater model” OR “groundwater modeling” OR “hydrogeological modeling” OR “MODFLOW” OR “FEFLOW”) AND ((“aquifer” OR “aquifers”) OR (“basin” OR “Watershed”) OR “groundwater” OR “groundwater flow” OR “groundwater levels” OR “groundwater recharge” OR “groundwater management” OR “groundwater resources” OR “hydrogeological system” OR “forecast” OR “scenarios” OR “water resources management” OR “decision-making process” OR “uncertainty”))) AND DT=(Article)) AND PY=(2000-2024) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lozano Hernández, B.L.; Marín Celestino, A.E.; Martínez Cruz, D.A.; Ramos Leal, J.A.; Hernández Pérez, E.; García Pazos, J.; Almanza Tovar, O.G. A Systematic Review of the Current State of Numerical Groundwater Modeling in American Countries: Challenges and Future Research. Hydrology 2024, 11, 179. https://doi.org/10.3390/hydrology11110179
Lozano Hernández BL, Marín Celestino AE, Martínez Cruz DA, Ramos Leal JA, Hernández Pérez E, García Pazos J, Almanza Tovar OG. A Systematic Review of the Current State of Numerical Groundwater Modeling in American Countries: Challenges and Future Research. Hydrology. 2024; 11(11):179. https://doi.org/10.3390/hydrology11110179
Chicago/Turabian StyleLozano Hernández, Baltazar Leo, Ana Elizabeth Marín Celestino, Diego Armando Martínez Cruz, José Alfredo Ramos Leal, Eliseo Hernández Pérez, Joel García Pazos, and Oscar Guadalupe Almanza Tovar. 2024. "A Systematic Review of the Current State of Numerical Groundwater Modeling in American Countries: Challenges and Future Research" Hydrology 11, no. 11: 179. https://doi.org/10.3390/hydrology11110179