Game Awareness: A Questionnaire
<p>k selection error logs for scenarios S1–S9, 2021 LR coded data. Scenarios 1–9 are denoted S1–S9, respectively.</p> "> Figure A1
<p>k selection error logs for the 2021 LR coded data.</p> "> Figure A2
<p>k selection error logs for the 2021 LR CP coded data.</p> "> Figure A3
<p>k selection error logs for the 2021 SR CP coded data.</p> "> Figure A4
<p>k selection error logs for scenarios S1–S9 for the 2021 LR CP coded data.</p> "> Figure A5
<p>k selection error logs for scenarios S1–S9 for the 2021 SR CP coded data.</p> ">
Abstract
:1. Introduction
2. Methodology
2.1. Theoretical Basis
2.2. The Questionnaire and Scenarios
- Are someone’s actions and strategies influencing my possible outcomes, and which are those actions?
- Are there, and who are, the players who choose those actions and strategies?
- What are the possible outcomes, and how do other players’ actions influence the set of possible outcomes?
- What are the other players’ preferences, given the employed actions and strategies?
2.3. Studies and Samples
2.4. Coding Issues
2.5. Reliability and Validity
3. Results
3.1. Reliability
3.2. Validity
4. Discussion and Conclusions
4.1. Reliability and Validity
4.2. Limitations
4.3. Implication for Further Research
4.4. Practical Implications
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
Scenarios | Scenarios in Original Language (Croatian) | |
---|---|---|
Scenario 1 1,2,3 | You are going to the shop to do your usual grocery shopping. In addition to the items on your usual shopping list, you intend to buy your favorite chocolate. When you arrive to the shelf with the chocolates, you learn that your favorite chocolate’s price increased by HRK 10 (approx. EUR 1.34). | Ulazite u dućan s namjerom da obavite svoju uobičajenu kupovinu. Između ostalog, namjeravate kupiti svoju omiljenu čokoladu. Dolaskom do police s čokoladama, pogledom nalazite svoju omiljenu čokoladu i uočavate da je poskupila za 10 kuna. |
Scenario 2 1,2,3,* | You are at a usual cafe hanging out with a friend. You notice that your friend is behaving slightly differently and is somewhat restrained. Moreover, you notice an unusual look that can be interpreted as playful or mischievous. You are trying to figure out what that would mean: maybe it is a secret about preparations for your upcoming birthday, maybe the friend knows something you do not know (e.g., some gossip or some footage that has appeared on YouTube), maybe the friend is about to announce something important, maybe he or she is conducting a scheme, maybe… There may be a lot of options and maybe they have nothing to do with you. | Na uobičajenoj ste kavi s prijateljem/prijateljicom. Primjećujete da se ponaša malo drugačije, pomalo suzdržano. Štoviše, tu i tamo primjećujete neobičan pogled koji može asocirati na zaigranost ili podsmjeh. Pokušavate dokučiti što bi to značilo: možda je to tajanstvenost zbog toga što priprema nešto za Vaš skori rođendan, možda zna nešto što Vi ne znate (npr. trač ili neku snimku koja se pojavila na youtube-u), možda se priprema priopćiti nešto važno, možda Vam priprema spačku, možda… Može biti puno mogućnosti, a možda uopće nema veze s Vama. |
Scenario 3 1,2,3,* | You arrive to work. You expect the usual tense working pace, and in addition to all your existing obligations, you get another one. Lately, you have caught a few glances and greetings from other colleagues, and the reasons for these changes are not quite clear to you. You figure that you may be promoted to a better position. During the break, you meet a colleague, and you mention the amount of work you need to do. With understanding and good intent, your colleague admits to you that one of your colleagues spoke badly about you. Moreover, it was the person who assigns you your tasks. | Dolazite na posao. Očekujete uobičajen naporan tempo, kad pored svih već postojećih obaveza dobivate još jednu novu. Osim toga, u zadnje ste vrijeme uhvatili nekoliko pogleda i pozdrava kolega, koji Vam nisu bili potpuno jasni. Pada Vam na pamet kako Vam se možda sprema unaprjeđenje na bolje radno mjesto. Tijekom pauze, srećete kolegu kojem se požalite na količinu posla. S razumijevanjem i u dobroj namjeri, kolega Vam prizna da netko od kolega govori ružno o Vama. Štoviše, to je upravo osoba koja Vam dodjeljuje obaveze. |
Scenario 4 1,2,3,* | A month ago, you started a seasonal job. This season is better than the last one for the company’s turnover. There is a rumor amongst your colleagues that all the employees could get a raise. | Prije mjesec dana dobili ste sezonski posao na kojem i sad radite. Ova je sezona bolja od prethodne po prometu poduzeća za koje radite. Među Vašim kolegama se šuška da bi svi mogli dobiti povišicu na plaću. |
Scenario 5 1,2,3,* | You have received a team assignment to conduct some research and to report the results in a written form. There are four of you in the team. Your part of the assignment is to create a questionnaire. You are unfamiliar with designing questionnaires, so you contact one of the team members to help you. At that time, you learn that one of the team members already assembled the questionnaire. | Dobili ste zadatak u timu provesti manje istraživanje i o tome sastaviti izvještaj u obliku seminarskog rada. U timu vas je četvero. Vaš je dio posla sastaviti anketu. Ne znate ništa o tome i kontaktirate jednog člana tima da Vam u tome pomogne. U tom kontaktu saznajete da je netko već sastavio upitnik. |
Scenario 6 1,2,3,* | You are a manager of a department for consulting clients in a leading consulting company. The company is well known for its substantial number of clients and for the low prices of its services. You meet a client and, in an informal conversation at the beginning of the meeting, s/he reveals that s/he has been contacted by a newly opened consultant company that offered their services at a lower price. | Voditelj ste odjela za savjetovanje klijenata u vodećem poduzeću za savjetovanje. Poduzeće je poznato po velikom broju klijenata, ali i najjeftinijoj cijeni usluge. Na sastanak s Vama dolazi klijent. U neformalnom razgovoru na početku savjetovanja, od klijenta saznajete da su ga kontaktirali iz novootvorenog poduzeća koje se odlučilo baviti istom djelatnošću, a savjetovanja nude po nižoj cijeni. |
Scenario 7 1,2,3,* | You have come up with an idea to start your own business. Even though all the people who hear about the idea agree that it is an excellent idea, you do not have the capital to start the company. You consider giving up the idea, given that you cannot finance it. At that time, you receive an invitation to pitch your idea in front of five investors. If you impress the investors, they could decide to invest. | Osmislili ste ideju za pokretanje svog poduzeća. Iako se svi koji čuju slažu s Vama da se radi o izvrsnoj ideji, Vi nemate dovoljno kapitala za pokretanje poduzeća. Namjeravate odustati od ideje, jer je ne možete financirati. Tad primate poziv na sastanak na kojem ćete održati prezentaciju svoje ideje pred pet investitora. Ako ih oduševite svojom idejom, investitori bi mogli odlučiti investirati u Vas. |
Scenario 8 1,2,3,* | You and your colleague have been accused of cheating in an exam using unallowed electronic devices and are taken in front of the faculty’s ethical committee for interrogation. You and your colleague are placed in separate rooms and cannot know what the other one is saying during interrogation. The ethical committee member who conducts the interrogation makes the following offer to each of you: ”You may choose to confess or remain silent. If you confess and your accomplice remains silent, you will not be punished, and your testimony will be used to ensure that your accomplice gets a year of suspension. Likewise, if your accomplice confesses while you remain silent, s/he will go free while you get a year of the suspension. If you both confess there will be two punishments, but I’ll see to it that you both get only 6 months of suspension. If you both remain silent, I’ll have to settle for a token punishment for having unallowed devices during the exam and you will get 1 month of suspension”. | Vaš kolega/ica i Vi optuženi ste za varanje na ispitu korištenjem nedopuštenih elektronskih uređaja i odvedeni ste pred Etički odbor fakulteta na ispitivanje. Vi i Vaš/a kolega/ica smješteni ste u odvojene prostorije i ne možete znati što druga osoba govori ispitivaču. Član Etičkog odbora koji provodi ispitivanja daje jednaku ponudu Vama i kolegi/ci u drugoj prostoriji: “Možete odabrati priznati ili šutjeti. Ako priznate, a Vaš/a kolega/ica ostane šutjeti, Vi nećete biti kažnjeni, a Vaša će izjava poslužiti kao dokaz i Vaš/a kolega/ica dobiva godinu dana suspenzije na studiju. Također, ako kolega/ica prizna, a Vi šutite, on/a neće biti kažnjen/a i Vi dobivate godinu dana suspenzije na studiju. Ako oboje/obje/obojica priznate, svaki dobiva po 6 mjeseci suspenzije. Ako oboje/obje/obojica odaberete šutjeti, bit ćete kažnjeni samo za posjedovanje nedopuštenih elektroničkih uređaja tijekom ispita i to s jednim mjesecom suspenzije”. |
Scenario 9 1,2,3,* | You and your colleague participated in a presentation for your faculty. At lunch, you were given the last sandwich, so your colleague is left with none. Your colleague promises to take you for a coffee later, hoping that you will give him a piece of your sandwich now. You can decide to trust your colleague and give him a piece of the sandwich or keep it all for yourself. | Sudjelovali ste u prezentaciji na fakultetu s kolegom. Na marendi ste dobili posljednji sendvič, tako da je kolega ostao bez. Kolega obećava da će Vas kasnije odvesti na kavu, u nadi da ćete mu sad dati dio sendviča. Možete odabrati vjerovati kolegi i dati mu dio sendviča ili cijelog zadržati za sebe. |
Questions per scenario | ||
Q1 1,2,3,* | Is it possible to notice any activity that influences your outcomes (economic or otherwise)? 1,2,3,* Yes 1,2,3,* Don’t know 1 No 1,2,3,* | Je li moguće uočiti ikakvu aktivnost drugih osoba koje utječu na Vaše ishode (ekonomske, ili kakve druge)? |
Q2 1,2,3,* | How certain are you in the previous answer? (Please, answer in the form of probability that represents your assessment that the offered answer is true, 0–100%.) | Koliko ste uvjereni u prethodni odgovor? (odgovoriti u obliku vjerojatnosti koja predstavlja Vašu procjenu da je ponuđen odgovor točan u obliku broja 0–100%): |
Q3 1,2,3,* | Can you identify (describe) that activity? | Možete li identificirati tu aktivnost? Opišite je: |
Q4 1,2,3,* | How certain are you in the previous answer? (Please, answer in the form of probability that represents your assessment that the offered answer is true, 0–100%.) | Koliko ste uvjereni u prethodni odgovor? (odgovoriti u obliku vjerojatnosti koja predstavlja Vašu procjenu da je ponuđen odgovor točan u obliku broja 0–100%): |
Q5 1,2,3,* | Is there a person (or a group/association/company, etc.) who initiated the activity? Yes 1,2,3,* Don’t know 1 No 1,2,3,* | Postoji li osoba (ili grupa/udruženje/poduzeće) koja je poduzela tu aktivnost? |
Q6 1,2,3,* | How certain are you in the previous answer? (Please, answer in the form of probability that represents your assessment that the offered answer is true, 0–100%.) | Koliko ste uvjereni u prethodni odgovor? (odgovoriti u obliku vjerojatnosti koja predstavlja Vašu procjenu da je ponuđen odgovor točan u obliku broja 0–100%): |
Q7 1,2,3,* | Can you identify a person (or group/association/company, etc.) that initiated the noticed activity? Describe. | Možete li identificirati tu osobu (ili grupu/udruženje/poduzeće)—opišite: |
Q8 1,2,3,* | How certain are you in the previous answer? (Please, answer in the form of probability that represents your assessment that the offered answer is true, 0–100%.) | Koliko ste uvjereni u prethodni odgovor? (odgovoriti u obliku vjerojatnosti koja predstavlja Vašu procjenu da je ponuđen odgovor točan u obliku broja 0–100%): |
Q9 1,2,3,* | Can you determine desirable outcomes for that person (or group/association/company, etc.)? Yes 1,2,3,* Don’t know 1 No 1,2,3,* | Možete li utvrditi koji su poželjni ishodi za tu osobu (ili grupu/udruženje/poduzeće) s obzirom na poduzetu aktivnost? |
Q10 1,2,3,* | How certain are you in the previous answer? (Please, answer in the form of probability that represents your assessment that the offered answer is true, 0–100%.) | Koliko ste uvjereni u prethodni odgovor? (odgovoriti u obliku vjerojatnosti koja predstavlja Vašu procjenu da je ponuđen odgovor točan u obliku broja 0–100%): |
Q11 1,2,3,* | The outcomes for yourself regarding the initiated activity are Positive Don’t know 1 Negative | Koji su ishodi za Vas s obzirom na poduzetu aktivnost te osobe (ili grupe/udruženja/poduzeća)? |
Q12 1,2,3,* | How certain are you in the previous answer? (Please, answer in the form of probability that represents your assessment that the offered answer is true, 0–100%.) | Koliko ste uvjereni u prethodni odgovor? (odgovoriti u obliku vjerojatnosti koja predstavlja Vašu procjenu da je ponuđen odgovor točan u obliku broja 0–100%): |
Q13 1,2,3,* | Describe your own outcomes given the initiated activity by a person (or group/association/company, etc.). | Opišite koji su ishodi za Vas s obzirom na poduzetu aktivnost te osobe (ili grupe/udruženja/poduzeća): |
Q14 1,2,3,* | How certain are you in the previous answer? (Please, answer in the form of probability that represents your assessment that the offered answer is true, 0–100%.) | Koliko ste uvjereni u prethodni odgovor? (odgovoriti u obliku vjerojatnosti koja predstavlja Vašu procjenu da je ponuđen odgovor točan u obliku broja 0–100%): |
Q15 1,2,3,* | Do you believe that something is going on that affects you and that there exists a person (or group/association/company, etc.) whose activities influence your outcomes? Yes 1,2,3,* Don’t know 1 No 1,2,3,* | Vjerujete li da se događa nešto što utječe na Vas i da pritom postoji neka osoba (ili grupa/udruženje/poduzeće) koja svojim aktivnostima utječe na Vas, te da s obzirom na to za Vas nastaju drukčiji ishodi? |
Q16 1,2,3,* | How certain are you in the previous answer? (Please, answer in the form of probability that represents your assessment that the offered answer is true, 0–100%.) | Koliko ste uvjereni u prethodni odgovor? (odgovoriti u obliku vjerojatnosti koja predstavlja Vašu procjenu da je ponuđen odgovor točan u obliku broja 0–100%): |
Q17 1,2,3* | Do you believe that activity was deliberate or accidental? Deliberate 1,2,3 Don’t know 1 Accidental 1,2,3 | Vjerujete li da je to djelovanje namjerno ili slučajno? |
Q18 1,2,3,* | How certain are you in the previous answer? (Please, answer in the form of probability that represents your assessment that the offered answer is true, 0–100%.) | Koliko ste uvjereni u prethodni odgovor? (odgovoriti u obliku vjerojatnosti koja predstavlja Vašu procjenu da je ponuđen odgovor točan u obliku broja 0–100%): |
Q19 2,3,* | Is there an action that you can take to influence outcomes? Yes 2,3 No 2,3 | Možete li Vi donijeti odluku ili poduzeti aktivnost na način da utječete na ishode? |
Q20 2,3,* | How certain are you in the previous answer? (Please, answer in the form of probability that represents your assessment that the offered answer is true, 0–100%.) | Koliko ste uvjereni u prethodni odgovor? (odgovoriti u obliku vjerojatnosti koja predstavlja Vašu procjenu da je ponuđen odgovor točan u obliku broja 0–100%): |
Items | ||
Without complementary probability | With complementary probability (CP) | |
I1 1,2,3,* | Activity awareness = Q1 × Q2/100 | if Q1 = 1, then Q1 × Q2, else (100−Q2)/100 |
I2 1,2,3,* | Activity assessment = Q3 × Q4/100 | if Q3 = 1, then Q3 × Q4, else (100−Q4)/100 |
I3 1,2,3,* | Player awareness = Q5 × Q6/100 | if Q5 = 1, then Q5 × Q6, else (100−Q6)/100 |
I4 1,2,3,* | Player assessment = Q7 × Q8/100 | if Q7 = 1, then Q7 × Q8, else (100−Q8)/100 |
I5 1,2,3,* | Other player’s outcome awareness = Q9 × Q10/100 | if Q9 = 1, then Q9 × Q10, else (100−Q10)/100 |
I6 1,2,3,* | Own outcome assessment = Q13 × Q14/100 | if Q13 = 1, then Q13 × Q14, else (100−Q14)/100 |
I7 1,2,3,* | Game existence awareness = Q15 × Q16/100 | if Q15 = 1, then Q15 × Q16, else (100−Q16)/100 |
I8 1,2,3 | Deliberation = Q17 × Q18/100 | if Q17 = 1, then Q17 × Q18, else (100−Q18)/100 |
I9 2,3 | Own activity awareness = Q19 × Q20/100 | if Q19 = 1, then Q19 × Q20, else (100−Q20)/100 |
Study | Age (Mean, Standard Deviation, Min, Max) | Gender (Frequency Male, Female) | Year of Study (Mean, Standard Deviation, Min, Max) | Previously Learned Game Theory (Frequency) | Used Knowledge of Game Theory (Frequency) | Number of Responses |
---|---|---|---|---|---|---|
2019 | 22.03 4.788 18 46 | 48.54% 51.45% | 1.934 1.1556 1 5 | 54% | 21.8% | 822 |
2020 | 19.931 3.687 18 52 | 26.9% 73.1% | 1.049 0.2154 1 2 | 43.8% | 18.8% | 739 |
2021 | 19.83 2.31 18 34 * | 33.5% 66.5% * | 1.06 0.2382 1 2 * | 45.74% * | 13.37% | 448 |
Total | 20.768 4.0822 18 52 | 37.23% 62.77% | 1.414 0.8738 1 5 | 48.41% | 18.82% | 2009 |
Study | Age (Mean, Standard Deviation, Min, Max) | Gender (Frequency Male, Female) | Year of Study (Mean, Standard Deviation, Min, Max) | Previously Learned Game Theory (Frequency) | Used Knowledge of Game Theory (Frequency) | Number of Responses |
---|---|---|---|---|---|---|
2019 | 22.03 4.788 18 46 | 48.54% 51.45% | 1.934 1.1556 1 5 | 54% | 21.8% | 822 |
2020 | 19.87 3.469 18 52 | 27.1% 72.9% | 1.048 0.2139 1 2 | 43.6% | 18.7% | 750 |
2021 | 19.855 2.315 18 34 * | 33.92% 66.08% * | 1.06 0.2367 1 2 * | 46.04% * | 13.88% | 454 |
Total | 20.711 3.9348 18 52 | 37.33% 62.67% | 1.38 0.8763 1 5 | 48.37% | 18.88% | 2026 |
Study | 2019 | 2020 | 2021 | ||||
---|---|---|---|---|---|---|---|
Scenario | Questions | % (q = 1) LR | % (q = 1) SR | % (q = 1) LR | % (q = 1) SR | % (q = 1) LR | % (q = 1) SR |
S1 | Q1 | 83.62 | / | 87.18 | / | 77.08 | / |
Q3 | 73.28 | 75.00 | 83.33 | 56.96 | 56.25 | 32.65 | |
Q5 | 76.72 | / | 87.18 | / | 77.08 | / | |
Q7 | 57.76 | 59.48 | 79.49 | 58.23 | 62.50 | 55.10 | |
Q9 | 73.28 | / | 79.49 | / | 70.83 | / | |
Q13 | 76.72 | 72.41 | 92.31 | 87.34 | 85.42 | 61.22 | |
Q15 | 96.55 | / | 85.90 | / | 89.58 | / | |
Q17 | 74.14 | / | 67.95 | / | 60.42 | / | |
Q19 | / | / | 79.49 | / | 77.08 | / | |
n | 116 | 114 | 78 | 79 | 48 | 49 | |
S2 | Q1 | 75.86 | / | 91.76 | / | 68.97 | / |
Q3 | 49.14 | 47.41 | 81.18 | 79.01 | 55.17 | 52.63 | |
Q5 | 70.69 | / | 78.82 | / | 67.24 | / | |
Q7 | 47.41 | 51.72 | 65.88 | 70.37 | 56.90 | 54.39 | |
Q9 | 53.45 | / | 43.53 | / | 53.45 | / | |
Q13 | 49.14 | 45.69 | 84.71 | 76.54 | 65.52 | 40.35 | |
Q15 | 95.69 | / | 87.06 | / | 86.21 | / | |
Q17 | 47.41 | / | 61.18 | / | 55.17 | / | |
Q19 | / | / | 85.88 | / | 91.38 | / | |
n | 116 | 113 | 85 | 81 | 58 | 57 | |
S3 | Q1 | 86.44 | / | 90.59 | / | 80.70 | / |
Q3 | 69.49 | 65.25 | 82.35 | 76.47 | 64.91 | 61.40 | |
Q5 | 75.42 | / | 92.94 | / | 78.95 | / | |
Q7 | 59.32 | 62.71 | 85.88 | 77.65 | 68.42 | 66.67 | |
Q9 | 61.86 | / | 64.71 | / | 75.44 | / | |
Q13 | 70.34 | 67.80 | 90.59 | 76.47 | 78.95 | 59.65 | |
Q15 | 96.61 | / | 90.59 | / | 82.46 | / | |
Q17 | 74.58 | / | 91.76 | / | 78.95 | / | |
Q19 | / | / | 83.53 | / | 87.72 | / | |
n | 118 | 118 | 85 | 85 | 57 | 57 | |
S4 | Q1 | 84.75 | / | 81.18 | / | 85.00 | / |
Q3 | 79.66 | 73.73 | 69.41 | 71.43 | 73.33 | 73.77 | |
Q5 | 73.73 | / | 82.35 | / | 85.00 | / | |
Q7 | 65.25 | 64.41 | 75.29 | 73.81 | 71.67 | 72.13 | |
Q9 | 68.64 | / | 78.82 | / | 88.33 | / | |
Q13 | 76.27 | 0.00 | 96.47 | 95.24 | 83.33 | 72.13 | |
Q15 | 96.61 | / | 81.18 | / | 91.67 | / | |
Q17 | 59.32 | / | 62.35 | / | 70.00 | / | |
Q19 | / | / | 58.82 | / | 71.67 | / | |
n | 118 | 118 | 85 | 84 | 60 | 61 | |
S5 | Q1 | 74.79 | / | 92.86 | / | 77.78 | / |
Q3 | 73.11 | 65.55 | 79.76 | 82.35 | 74.07 | 74.55 | |
Q5 | 73.95 | / | 89.29 | / | 87.04 | / | |
Q7 | 60.50 | 60.50 | 77.38 | 77.65 | 79.63 | 80.00 | |
Q9 | 63.03 | / | 60.71 | / | 75.93 | / | |
Q13 | 68.07 | 65.55 | 96.43 | 85.88 | 85.19 | 72.73 | |
Q15 | 96.64 | / | 84.52 | / | 90.74 | / | |
Q17 | 57.14 | / | 63.10 | / | 66.67 | / | |
Q19 | / | / | 90.48 | / | 87.04 | / | |
n | 119 | 119 | 84 | 85 | 54 | 55 | |
S6 | Q1 | 79.13 | / | 88.24 | / | 90.91 | / |
Q3 | 72.17 | 63.48 | 85.88 | 79.76 | 83.64 | 80.36 | |
Q5 | 75.65 | / | 88.24 | / | 87.27 | / | |
Q7 | 62.61 | 66.09 | 76.47 | 73.81 | 74.55 | 76.79 | |
Q9 | 68.70 | / | 82.35 | / | 89.09 | / | |
Q13 | 75.65 | 66.09 | 96.47 | 90.48 | 90.91 | 82.14 | |
Q15 | 97.39 | / | 84.71 | / | 92.73 | / | |
Q17 | 64.35 | / | 80.00 | / | 63.64 | / | |
Q19 | / | / | 90.59 | / | 96.36 | / | |
n | 115 | 115 | 85 | 84 | 55 | 56 | |
S7 | Q1 | 83.33 | / | 96.47 | / | 91.07 | / |
Q3 | 73.33 | 30.83 | 82.35 | 78.82 | 75.00 | 75.00 | |
Q5 | 72.50 | / | 90.59 | / | 80.36 | / | |
Q7 | 51.67 | 50.00 | 65.88 | 61.76 | 78.57 | 75.00 | |
Q9 | 65.83 | / | 92.94 | / | 85.71 | / | |
Q13 | 71.67 | 59.17 | 95.29 | 95.29 | 87.50 | 83.93 | |
Q15 | 97.50 | / | 84.71 | / | 92.86 | / | |
Q17 | 68.33 | / | 77.65 | / | 73.21 | / | |
Q19 | / | / | 81.18 | / | 92.86 | / | |
n | 120 | 120 | 85 | 85 | 56 | 56 | |
S8 | Q1 | / | / | 82.14 | / | 83.64 | / |
Q3 | / | / | 84.52 | 63.86 | 74.55 | 74.55 | |
Q5 | / | / | 82.14 | / | 85.45 | / | |
Q7 | / | / | 78.57 | 36.14 | 63.64 | 25.45 | |
Q9 | / | / | 73.81 | / | 87.27 | / | |
Q13 | / | / | 96.43 | 93.98 | 90.91 | 78.18 | |
Q15 | / | / | 89.29 | / | 87.27 | / | |
Q17 | / | / | 67.86 | / | 65.45 | / | |
Q19 | / | / | 92.86 | / | 92.73 | / | |
n | 0 | 0 | 84 | 83 | 55 | 55 | |
S9 | Q1 | / | / | 89.41 | / | 83.64 | / |
Q3 | / | / | 82.35 | 80.95 | 78.18 | 76.36 | |
Q5 | / | / | 85.88 | / | 78.18 | / | |
Q7 | / | / | 78.82 | 77.38 | 74.55 | 70.91 | |
Q9 | / | / | 90.59 | / | 83.64 | / | |
Q13 | / | / | 90.59 | 88.10 | 83.64 | 78.18 | |
Q15 | / | / | 78.82 | / | 81.82 | / | |
Q17 | / | / | 70.59 | / | 49.09 | / | |
Q19 | / | / | 97.65 | / | 90.91 | / | |
0 | 0 | 85 | 84 | 55 | 55 |
Coding | LR | LR CP | SR CP | ||||||
---|---|---|---|---|---|---|---|---|---|
Reliability Statistics | Cronbach’s Alpha | Cronbach’s Alpha Based on Standardized Items | No. of Items | Cronbach’s Alpha | Cronbach’s Alpha Based on Standardized Items | No. of Items | Cronbach’s Alpha | Cronbach’s Alpha Based on Standardized Items | No. of Items |
2020 study S1 | 0.777 | 0.788 | 9 | 0.765 | 0.780 | 9 | 0.668 | 0.683 | 9 |
2020 study S2 | 0.766 | 0.775 | 9 | 0.742 | 0.753 | 9 | 0.677 | 0.695 | 9 |
2020 study S3 | 0.696 | 0.708 | 9 | 0.691 | 0.695 | 9 | 0.599 | 0.618 | 9 |
2020 study S4 | 0.713 | 0.730 | 9 | 0.663 | 0.683 | 9 | 0.621 | 0.644 | 9 |
2020 study S5 | 0.595 | 0.640 | 9 | 0.551 | 0.589 | 9 | 0.573 | 0.604 | 9 |
2020 study S6 | 0.793 | 0.802 | 9 | 0.788 | 0.795 | 9 | 0.785 | 0.792 | 9 |
2020 study S7 | 0.707 | 0.726 | 9 | 0.704 | 0.720 | 9 | 0.714 | 0.738 | 9 |
2020 study S8 | 0.758 | 0.754 | 9 | 0.747 | 0.743 | 9 | 0.544 | 0.551 | 9 |
2020 study S9 | 0.814 | 0.820 | 9 | 0.773 | 0.785 | 9 | 0.785 | 0.796 | 9 |
2021 study S1 | 0.750 | 0.743 | 9 | 0.712 | 0.706 | 9 | 0.680 | 0.667 | 9 |
2021 study S2 | 0.861 | 0.853 | 9 | 0.852 | 0.841 | 9 | 0.834 | 0.822 | 9 |
2021 study S3 | 0.852 | 0.847 | 9 | 0.848 | 0.845 | 9 | 0.803 | 0.803 | 9 |
2021 study S4 | 0.783 | 0.797 | 9 | 0.777 | 0.784 | 9 | 0.773 | 0.781 | 9 |
2021 study S5 | 0.727 | 0.735 | 9 | 0.718 | 0.726 | 9 | 0.706 | 0.720 | 9 |
2021 study S6 | 0.846 | 0.862 | 9 | 0.799 | 0.815 | 9 | 0.792 | 0.808 | 9 |
2021 study S7 | 0.842 | 0.845 | 9 | 0.817 | 0.825 | 9 | 0.816 | 0.825 | 9 |
2021 study S8 | 0.824 | 0.822 | 9 | 0.770 | 0.763 | 9 | 0.711 | 0.715 | 9 |
2021 study S9 | 0.778 | 0.779 | 9 | 0.778 | 0.779 | 9 | 0.779 | 0.781 | 9 |
LR | LR CP | SR CP | |||||||
---|---|---|---|---|---|---|---|---|---|
Cronbach’s Alpha | Cronbach’s Alpha Based on Standardized Items | No. of Items | Cronbach’s Alpha | Cronbach’s Alpha Based on Standardized Items | No. of Items | Cronbach’s Alpha | Cronbach’s Alpha Based on Standardized Items | No. of Items | |
2019 study S1 | 0.793 | 0.793 | 7 | 0.778 | 0.779 | 7 | 0.786 | 0.788 | 7 |
2019 study S2 | 0.660 | 0.679 | 7 | 0.664 | 0.675 | 7 | 0.660 | 0.659 | 7 |
2019 study S3 | 0.756 | 0.781 | 7 | 0.779 | 0.778 | 7 | 0.753 | 0.757 | 7 |
2019 study S4 | 0.350 | 0.760 | 7 | 0.801 | 0.801 | 7 | 0.807 | 0.811 | 7 |
2019 study S5 | 0.784 | 0.789 | 7 | 0.747 | 0.749 | 7 | 0.714 | 0.727 | 7 |
2019 study S6 | 0.825 | 0.836 | 7 | 0.795 | 0.795 | 7 | 0.804 | 0.808 | 7 |
2019 study S7 | 0.823 | 0.826 | 7 | 0.803 | 0.799 | 7 | 0.709 | 0.725 | 7 |
2020 study S1 | 0.827 | 0.827 | 7 | 0.827 | 0.827 | 7 | 0.699 | 0.714 | 7 |
2020 study S2 | 0.793 | 0.800 | 7 | 0.793 | 0.800 | 7 | 0.709 | 0.727 | 7 |
2020 study S3 | 0.674 | 0.680 | 7 | 0.674 | 0.680 | 7 | 0.617 | 0.632 | 7 |
2020 study S4 | 0.750 | 0.754 | 7 | 0.750 | 0.754 | 7 | 0.686 | 0.690 | 7 |
2020 study S5 | 0.612 | 0.660 | 7 | 0.612 | 0.660 | 7 | 0.580 | 0.611 | 7 |
2020 study S6 | 0.792 | 0.804 | 7 | 0.792 | 0.804 | 7 | 0.774 | 0.783 | 7 |
2020 study S7 | 0.755 | 0.761 | 7 | 0.755 | 0.761 | 7 | 0.754 | 0.769 | 7 |
2020 study S8 | 0.784 | 0.782 | 7 | 0.784 | 0.782 | 7 | 0.578 | 0.581 | 7 |
2020 study S9 | 0.798 | 0.802 | 7 | 0.798 | 0.802 | 7 | 0.795 | 0.802 | 7 |
2021 study S1 | 0.780 | 0.767 | 7 | 0.747 | 0.744 | 7 | 0.708 | 0.704 | 7 |
2021 study S2 | 0.870 | 0.870 | 7 | 0.868 | 0.866 | 7 | 0.849 | 0.849 | 7 |
2021 study S3 | 0.875 | 0.875 | 7 | 0.864 | 0.865 | 7 | 0.809 | 0.816 | 7 |
2021 study S4 | 0.811 | 0.815 | 7 | 0.790 | 0.791 | 7 | 0.786 | 0.789 | 7 |
2021 study S5 | 0.782 | 0.779 | 7 | 0.793 | 0.796 | 7 | 0.766 | 0.781 | 7 |
2021 study S6 | 0.884 | 0.890 | 7 | 0.842 | 0.848 | 7 | 0.826 | 0.836 | 7 |
2021 study S7 | 0.832 | 0.833 | 7 | 0.782 | 0.785 | 7 | 0.776 | 0.782 | 7 |
2021 study S8 | 0.833 | 0.833 | 7 | 0.772 | 0.775 | 7 | 0.688 | 0.707 | 7 |
2021 study S9 | 0.794 | 0.794 | 7 | 0.805 | 0.805 | 7 | 0.798 | 0.799 | 7 |
Descriptive Statistics 2019 Study | Descriptive Statistics 2020 Study | Descriptive Statistics 2021 Study | |||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
S1 n = 116 | Min | Max | s | S1 n = 78 | Min | Max | s | S1 n = 48 | Min | Max | s | ||||||
Q2 | 20.00 | 100.00 | 85.457 | 1.714 | 18.458 | Q2 | 50.00 | 100.000 | 81.218 | 1.879 | 16.597 | Q2 | 0.000 | 100.000 | 67.542 | 4.091 | 28.344 |
Q4 | 0.00 | 100.00 | 89.647 | 1.873 | 20.171 | Q4 | 0.00 | 100.000 | 78.949 | 2.553 | 22.545 | Q4 | 0.000 | 100.000 | 80.792 | 3.783 | 26.212 |
Q6 | 0.00 | 100.00 | 89.224 | 1.886 | 20.309 | Q6 | 0.00 | 100.000 | 84.103 | 2.551 | 22.528 | Q6 | 50.000 | 100.000 | 88.729 | 2.437 | 16.887 |
Q8 | 0.00 | 100.00 | 86.716 | 1.902 | 20.488 | Q8 | 0.00 | 100.000 | 81.090 | 2.208 | 19.497 | Q8 | 45.000 | 100.000 | 89.229 | 2.474 | 17.141 |
Q10 | 0.00 | 100.00 | 83.483 | 2.161 | 23.280 | Q10 | 30.00 | 100.000 | 81.231 | 2.180 | 19.249 | Q10 | 20.000 | 100.000 | 82.292 | 3.169 | 21.954 |
Q14 | 0.00 | 100.00 | 88.284 | 2.127 | 22.913 | Q14 | 30.00 | 100.000 | 86.500 | 1.970 | 17.395 | Q14 | 50.000 | 100.000 | 90.229 | 2.150 | 14.896 |
Q16 | 2.00 | 100.00 | 85.664 | 1.967 | 21.191 | Q16 | 45.00 | 100.000 | 87.718 | 1.685 | 14.879 | Q16 | 30.000 | 100.000 | 88.375 | 2.650 | 18.359 |
Q18 | 8.00 | 100.00 | 85.534 | 2.121 | 22.841 | Q18 | 40.00 | 100.000 | 82.462 | 2.013 | 17.780 | Q18 | 50.000 | 100.000 | 85.125 | 2.844 | 19.704 |
Q20 | Q20 | 50.00 | 100.000 | 86.256 | 1.855 | 16.385 | Q20 | 20.000 | 100.000 | 87.646 | 2.825 | 19.569 | |||||
S2 n = 116 | Min | Max | s | S2 n = 85 | Min | Max | s | S2 n = 58 | Min | Max | s | ||||||
Q2 | 3.00 | 100.00 | 82.862 | 2.045 | 22.030 | Q2 | 20.00 | 100.000 | 85.612 | 1.831 | 16.885 | Q2 | 0.000 | 100.000 | 82.845 | 3.100 | 23.606 |
Q4 | 0.00 | 100.00 | 83.621 | 2.200 | 23.695 | Q4 | 0.00 | 100.000 | 81.529 | 2.445 | 22.546 | Q4 | 20.000 | 100.000 | 88.845 | 2.553 | 19.442 |
Q6 | 0.00 | 100.00 | 84.741 | 2.251 | 24.243 | Q6 | 20.00 | 100.000 | 85.212 | 2.162 | 19.933 | Q6 | 40.000 | 100.000 | 88.569 | 2.585 | 19.689 |
Q8 | 0.00 | 100.00 | 85.724 | 2.196 | 23.652 | Q8 | 0.00 | 100.000 | 83.271 | 2.480 | 22.865 | Q8 | 0.000 | 100.000 | 89.431 | 2.653 | 20.202 |
Q10 | 0.00 | 100.00 | 82.526 | 2.133 | 22.972 | Q10 | 20.00 | 100.000 | 78.976 | 2.152 | 19.836 | Q10 | 20.000 | 100.000 | 81.638 | 3.000 | 22.846 |
Q14 | 0.00 | 100.00 | 85.129 | 2.069 | 22.279 | Q14 | 0.00 | 100.000 | 83.400 | 2.331 | 21.492 | Q14 | 30.000 | 100.000 | 85.776 | 2.776 | 21.140 |
Q16 | 0.00 | 100.00 | 86.560 | 1.899 | 20.449 | Q16 | 0.00 | 100.000 | 81.894 | 2.191 | 20.198 | Q16 | 25.000 | 100.000 | 86.190 | 2.623 | 19.975 |
Q18 | 0.00 | 100.00 | 78.060 | 2.465 | 26.545 | Q18 | 20.00 | 100.000 | 79.871 | 2.237 | 20.620 | Q18 | 20.000 | 100.000 | 80.621 | 3.125 | 23.801 |
Q20 | Q20 | 20.00 | 100.000 | 87.388 | 1.864 | 17.182 | Q20 | 50.000 | 100.000 | 86.000 | 2.205 | 16.792 | |||||
S3 n = 118 | Min | Max | s | S3 n = 85 | Min | Max | s | S3 n = 57 | Min | Max | s | ||||||
Q2 | 20.00 | 100.00 | 90.042 | 1.625 | 17.652 | Q2 | 50.00 | 100.000 | 89.906 | 1.640 | 15.121 | Q2 | 20.000 | 100.000 | 87.895 | 2.517 | 19.006 |
Q4 | 30.00 | 100.00 | 88.441 | 1.578 | 17.140 | Q4 | 0.00 | 100.000 | 86.082 | 2.186 | 20.153 | Q4 | 0.000 | 100.000 | 84.649 | 3.114 | 23.511 |
Q6 | 0.00 | 100.00 | 88.958 | 1.821 | 19.778 | Q6 | 10.00 | 100.000 | 89.365 | 1.930 | 17.794 | Q6 | 20.000 | 100.000 | 87.789 | 2.616 | 19.748 |
Q8 | 0.00 | 100.00 | 87.051 | 2.051 | 22.284 | Q8 | 10.00 | 100.000 | 88.106 | 1.994 | 18.387 | Q8 | 20.000 | 100.000 | 88.175 | 2.798 | 21.128 |
Q10 | 0.00 | 100.00 | 81.653 | 2.040 | 22.165 | Q10 | 10.00 | 100.000 | 80.600 | 2.200 | 20.281 | Q10 | 20.000 | 100.000 | 85.175 | 2.684 | 20.263 |
Q14 | 0.00 | 100.00 | 84.373 | 2.089 | 22.697 | Q14 | 0.00 | 100.000 | 85.059 | 2.308 | 21.282 | Q14 | 0.000 | 100.000 | 83.649 | 3.383 | 25.540 |
Q16 | 0.00 | 100.00 | 84.068 | 2.126 | 23.089 | Q16 | 50.00 | 100.000 | 88.506 | 1.562 | 14.403 | Q16 | 20.000 | 100.000 | 88.018 | 2.453 | 18.523 |
Q18 | 0.00 | 100.00 | 85.186 | 2.196 | 23.856 | Q18 | 50.00 | 100.000 | 89.200 | 1.603 | 14.783 | Q18 | 50.000 | 100.000 | 88.509 | 2.279 | 17.207 |
Q20 | Q20 | 46.00 | 100.000 | 86.035 | 2.011 | 18.537 | Q20 | 30.000 | 100.000 | 88.474 | 2.472 | 18.660 | |||||
S4 n = 118 | Min | Max | s | S4 n = 85 | Min | Max | s | S4 n = 60 | Min | Max | s | ||||||
Q2 | 0.00 | 100.00 | 87.975 | 1.863 | 20.239 | Q2 | 30.00 | 100.000 | 87.353 | 1.788 | 16.486 | Q2 | 39.000 | 100.000 | 88.217 | 2.455 | 19.016 |
Q4 | 7.00 | 100.00 | 83.644 | 1.923 | 20.894 | Q4 | 20.00 | 100.000 | 84.247 | 2.021 | 18.635 | Q4 | 20.000 | 100.000 | 83.900 | 2.717 | 21.044 |
Q6 | 0.00 | 100.00 | 85.398 | 2.032 | 22.076 | Q6 | 20.00 | 100.000 | 85.294 | 2.103 | 19.392 | Q6 | 20.000 | 100.000 | 88.150 | 2.609 | 20.211 |
Q8 | 0.00 | 100.00 | 85.186 | 2.080 | 22.594 | Q8 | 0.00 | 100.000 | 84.494 | 2.172 | 20.022 | Q8 | 10.000 | 100.000 | 87.700 | 2.745 | 21.266 |
Q10 | 0.00 | 100.00 | 82.280 | 2.287 | 24.838 | Q10 | 20.00 | 100.000 | 84.012 | 2.029 | 18.706 | Q10 | 40.000 | 100.000 | 86.917 | 2.460 | 19.055 |
Q14 | 0.00 | 100.00 | 86.568 | 1.984 | 21.555 | Q14 | 10.00 | 100.000 | 86.659 | 1.968 | 18.143 | Q14 | 0.000 | 100.000 | 90.267 | 2.535 | 19.636 |
Q16 | 20.00 | 100.00 | 87.161 | 1.856 | 20.165 | Q16 | 0.00 | 100.000 | 84.765 | 2.125 | 19.591 | Q16 | 35.000 | 100.000 | 88.583 | 2.323 | 17.996 |
Q18 | 0.00 | 100.00 | 82.017 | 2.313 | 25.121 | Q18 | 20.00 | 100.000 | 82.082 | 2.053 | 18.930 | Q18 | 34.000 | 100.000 | 86.150 | 2.451 | 18.985 |
Q20 | Q20 | 50.00 | 100.000 | 84.129 | 1.898 | 17.503 | Q20 | 28.000 | 100.000 | 84.717 | 2.629 | 20.365 | |||||
S5 n = 119 | Min | Max | s | S5 n = 84 | Min | Max | s | S5 n = 54 | Min | Max | s | ||||||
Q2 | 0.00 | 100.00 | 85.193 | 2.051 | 22.377 | Q2 | 50.00 | 100.000 | 89.643 | 1.649 | 15.111 | Q2 | 50.000 | 100.000 | 86.852 | 2.539 | 18.661 |
Q4 | 0.00 | 100.00 | 85.538 | 2.015 | 21.985 | Q4 | 40.00 | 100.000 | 84.369 | 1.874 | 17.172 | Q4 | 30.000 | 100.000 | 88.056 | 2.599 | 19.097 |
Q6 | 0.00 | 100.00 | 88.345 | 1.917 | 20.908 | Q6 | 40.00 | 100.000 | 88.679 | 1.973 | 18.086 | Q6 | 25.000 | 100.000 | 90.778 | 2.512 | 18.458 |
Q8 | 0.00 | 100.00 | 86.731 | 2.045 | 22.303 | Q8 | 0.00 | 100.000 | 89.405 | 2.128 | 19.500 | Q8 | 1.000 | 100.000 | 89.444 | 2.666 | 19.591 |
Q10 | 0.00 | 100.00 | 85.076 | 2.150 | 23.452 | Q10 | 50.00 | 100.000 | 82.917 | 1.962 | 17.983 | Q10 | 20.000 | 100.000 | 84.130 | 2.764 | 20.310 |
Q14 | 0.00 | 100.00 | 84.361 | 2.112 | 23.037 | Q14 | 10.00 | 100.000 | 85.643 | 2.119 | 19.417 | Q14 | 40.000 | 100.000 | 86.907 | 2.485 | 18.261 |
Q16 | 0.00 | 100.00 | 85.571 | 2.198 | 23.979 | Q16 | 30.00 | 100.000 | 85.940 | 1.842 | 16.886 | Q16 | 40.000 | 100.000 | 90.667 | 2.081 | 15.293 |
Q18 | 0.00 | 100.00 | 82.336 | 2.285 | 24.925 | Q18 | 0.00 | 100.000 | 80.036 | 2.254 | 20.660 | Q18 | 20.000 | 100.000 | 80.963 | 3.002 | 22.056 |
Q20 | Q20 | 50.00 | 100.000 | 87.381 | 1.705 | 15.627 | Q20 | 40.000 | 100.000 | 87.944 | 2.320 | 17.045 | |||||
S6 n = 115 | Min | Max | s | S6 n = 85 | Min | Max | s | S6 n = 55 | Min | Max | s | ||||||
Q2 | 0.00 | 100.00 | 89.061 | 2.116 | 22.691 | Q2 | 30.00 | 100.000 | 90.212 | 1.858 | 17.133 | Q2 | 25.000 | 100.000 | 90.345 | 2.409 | 17.868 |
Q4 | 0.00 | 100.00 | 84.730 | 2.344 | 25.132 | Q4 | 0.00 | 100.000 | 85.929 | 2.431 | 22.413 | Q4 | 10.000 | 100.000 | 86.473 | 3.021 | 22.408 |
Q6 | 0.00 | 100.00 | 86.061 | 2.104 | 22.559 | Q6 | 30.00 | 100.000 | 89.318 | 2.004 | 18.474 | Q6 | 1.000 | 100.000 | 89.545 | 2.847 | 21.112 |
Q8 | 0.00 | 100.00 | 86.643 | 2.123 | 22.772 | Q8 | 50.00 | 100.000 | 88.988 | 1.754 | 16.172 | Q8 | 10.000 | 100.000 | 88.473 | 2.950 | 21.881 |
Q10 | 0.00 | 100.00 | 84.009 | 2.192 | 23.505 | Q10 | 50.00 | 100.000 | 89.788 | 1.712 | 15.787 | Q10 | 20.000 | 100.000 | 84.909 | 3.027 | 22.447 |
Q14 | 0.00 | 100.00 | 87.861 | 1.908 | 20.460 | Q14 | 0.00 | 100.000 | 85.906 | 2.247 | 20.715 | Q14 | 1.000 | 100.000 | 86.127 | 2.931 | 21.740 |
Q16 | 0.00 | 100.00 | 86.843 | 1.989 | 21.335 | Q16 | 20.00 | 100.000 | 85.447 | 1.940 | 17.887 | Q16 | 50.000 | 100.000 | 89.545 | 2.269 | 16.830 |
Q18 | 0.00 | 100.00 | 83.078 | 2.091 | 22.428 | Q18 | 0.00 | 100.000 | 83.988 | 2.254 | 20.780 | Q18 | 34.000 | 100.000 | 82.709 | 2.828 | 20.972 |
Q20 | Q20 | 10.00 | 100.000 | 86.341 | 2.084 | 19.210 | Q20 | 50.000 | 100.000 | 90.327 | 2.141 | 15.882 | |||||
S7 n = 120 | Min | Max | s | S7 n = 85 | Min | Max | s | S7 n = 56 | Min | Max | s | ||||||
Q2 | 0.00 | 100.00 | 88.842 | 1.901 | 20.830 | Q2 | 50.00 | 100.000 | 92.388 | 1.497 | 13.804 | Q2 | 40.000 | 100.000 | 90.357 | 2.385 | 17.850 |
Q4 | 0.00 | 100.00 | 85.458 | 2.187 | 23.962 | Q4 | 50.00 | 100.000 | 89.506 | 1.732 | 15.966 | Q4 | 40.000 | 100.000 | 85.357 | 2.713 | 20.304 |
Q6 | 0.00 | 100.00 | 85.367 | 2.047 | 22.426 | Q6 | 46.00 | 100.000 | 87.800 | 1.867 | 17.210 | Q6 | 38.000 | 100.000 | 88.464 | 2.578 | 19.293 |
Q8 | 0.00 | 100.00 | 85.208 | 2.181 | 23.891 | Q8 | 0.00 | 100.000 | 87.671 | 2.107 | 19.422 | Q8 | 30.000 | 100.000 | 88.625 | 2.649 | 19.820 |
Q10 | 0.00 | 100.00 | 81.583 | 2.344 | 25.677 | Q10 | 40.00 | 100.000 | 87.400 | 1.882 | 17.354 | Q10 | 20.000 | 100.000 | 85.625 | 2.916 | 21.818 |
Q14 | 0.00 | 100.00 | 85.275 | 2.161 | 23.675 | Q14 | 50.00 | 100.000 | 90.576 | 1.526 | 14.069 | Q14 | 20.000 | 100.000 | 89.304 | 2.364 | 17.687 |
Q16 | 0.00 | 100.00 | 86.233 | 2.037 | 22.312 | Q16 | 6.00 | 100.000 | 87.447 | 1.930 | 17.795 | Q16 | 40.000 | 100.000 | 85.661 | 2.663 | 19.930 |
Q18 | 0.00 | 100.00 | 84.258 | 2.174 | 23.814 | Q18 | 43.00 | 100.000 | 86.576 | 1.881 | 17.343 | Q18 | 44.000 | 100.000 | 84.089 | 2.594 | 19.415 |
Q20 | Q20 | 20.00 | 100.000 | 88.200 | 1.978 | 18.236 | Q20 | 8.000 | 100.000 | 88.589 | 2.628 | 19.664 | |||||
S8 n = 84 | Min | Max | s | S8 n = 55 | Min | Max | s | ||||||||||
Q2 | 30.00 | 100.000 | 89.762 | 1.883 | 17.257 | Q2 | 10.000 | 100.000 | 88.145 | 2.920 | 21.652 | ||||||
Q4 | 30.00 | 100.000 | 84.464 | 2.272 | 20.823 | Q4 | 0.000 | 100.000 | 86.727 | 3.177 | 23.564 | ||||||
Q6 | 10.00 | 100.000 | 87.536 | 2.319 | 21.255 | Q6 | 10.000 | 100.000 | 88.345 | 2.914 | 21.613 | ||||||
Q8 | 1.00 | 100.000 | 85.583 | 2.449 | 22.449 | Q8 | 10.000 | 100.000 | 87.691 | 3.139 | 23.276 | ||||||
Q10 | 35.00 | 100.000 | 87.548 | 1.954 | 17.907 | Q10 | 10.000 | 100.000 | 85.964 | 3.000 | 22.250 | ||||||
Q14 | 30.00 | 100.000 | 84.702 | 2.095 | 19.203 | Q14 | 10.000 | 100.000 | 88.473 | 2.613 | 19.381 | ||||||
Q16 | 50.00 | 100.000 | 88.857 | 1.734 | 15.889 | Q16 | 45.000 | 100.000 | 89.127 | 2.341 | 17.361 | ||||||
Q18 | 0.00 | 100.000 | 85.524 | 2.141 | 19.623 | Q18 | 20.000 | 100.000 | 86.800 | 2.704 | 20.052 | ||||||
Q20 | 46.00 | 100.000 | 90.976 | 1.777 | 16.283 | Q20 | 50.000 | 100.000 | 91.855 | 1.918 | 14.222 | ||||||
S9 n = 85 | Min | Max | s | S9 n = 55 | Min | Max | s | ||||||||||
Q2 | 43.00 | 100.000 | 89.600 | 1.832 | 16.891 | Q2 | 50.000 | 100.000 | 89.800 | 2.238 | 16.597 | ||||||
Q4 | 0.00 | 100.000 | 86.306 | 2.222 | 20.487 | Q4 | 20.000 | 100.000 | 90.327 | 2.576 | 19.107 | ||||||
Q6 | 6.00 | 100.000 | 85.894 | 2.365 | 21.805 | Q6 | 45.000 | 100.000 | 90.055 | 2.360 | 17.501 | ||||||
Q8 | 17.00 | 100.000 | 88.000 | 2.185 | 20.148 | Q8 | 50.000 | 100.000 | 92.182 | 1.991 | 14.765 | ||||||
Q10 | 20.00 | 100.000 | 91.082 | 1.806 | 16.647 | Q10 | 0.000 | 100.000 | 86.055 | 3.265 | 24.217 | ||||||
Q14 | 10.00 | 100.000 | 86.624 | 2.357 | 21.731 | Q14 | 10.000 | 100.000 | 89.782 | 2.418 | 17.935 | ||||||
Q16 | 0.00 | 100.000 | 87.718 | 2.184 | 20.134 | Q16 | 40.000 | 100.000 | 89.055 | 2.200 | 16.312 | ||||||
Q18 | 0.00 | 100.000 | 83.494 | 2.567 | 23.667 | Q18 | 10.000 | 100.000 | 87.600 | 2.730 | 20.244 | ||||||
Q20 | 45.00 | 100.000 | 93.647 | 1.444 | 13.315 | Q20 | 45.000 | 100.000 | 95.364 | 1.565 | 11.607 |
S1 | S2 | S3 | S4 | S5 | S6 | S7 | S8 | S9 | 2021 LR CP | |
---|---|---|---|---|---|---|---|---|---|---|
I1 | 0.12 | 0.13 | 0.12 | 0.13 | 0.12 | 0.14 | 0.12 | 0.15 | 0.13 | 0.12 |
I2 | 0.12 | 0.12 | 0.12 | 0.12 | 0.13 | 0.1 | 0.13 | 0.14 | 0.12 | 0.13 |
I3 | 0.13 | 0.14 | 0.13 | 0.12 | 0.11 | 0.14 | 0.12 | 0.14 | 0.13 | 0.12 |
I4 | 0.13 | 0.12 | 0.11 | 0.13 | 0.11 | 0.15 | 0.13 | 0.09 | 0.13 | 0.13 |
I5 | 0.13 | 0.12 | 0.13 | 0.13 | 0.13 | 0.16 | 0.12 | 0.14 | 0.12 | 0.12 |
I6 | 0.13 | 0.12 | 0.13 | 0.13 | 0.13 | 0.08 | 0.12 | 0.11 | 0.12 | 0.13 |
I8 | 0.13 | 0.12 | 0.12 | 0.13 | 0.13 | 0.09 | 0.13 | 0.12 | 0.13 | 0.13 |
I9 | 0.12 | 0.13 | 0.13 | 0.12 | 0.13 | 0.14 | 0.12 | 0.13 | 0.13 | 0.13 |
S1 | S2 | S3 | S4 | S5 | S6 | S7 | S8 | S9 | 2021 SR CP | |
---|---|---|---|---|---|---|---|---|---|---|
I1 | 0.13 | 0.14 | 0.15 | 0.12 | 0.12 | 0.13 | 0.12 | 0.12 | 0.13 | 0.12 |
I2 | 0.13 | 0.12 | 0.14 | 0.12 | 0.12 | 0.12 | 0.12 | 0.14 | 0.13 | 0.13 |
I3 | 0.12 | 0.13 | 0.11 | 0.13 | 0.12 | 0.12 | 0.11 | 0.13 | 0.13 | 0.12 |
I4 | 0.12 | 0.12 | 0.12 | 0.12 | 0.13 | 0.14 | 0.12 | 0.13 | 0.14 | 0.12 |
I5 | 0.12 | 0.13 | 0.12 | 0.13 | 0.14 | 0.11 | 0.12 | 0.13 | 0.13 | 0.12 |
I6 | 0.13 | 0.11 | 0.13 | 0.12 | 0.14 | 0.12 | 0.13 | 0.12 | 0.1 | 0.13 |
I8 | 0.13 | 0.13 | 0.12 | 0.13 | 0.13 | 0.12 | 0.14 | 0.11 | 0.11 | 0.13 |
I9 | 0.13 | 0.13 | 0.12 | 0.13 | 0.13 | 0.15 | 0.14 | 0.12 | 0.12 | 0.12 |
S1 | S2 | S3 | S4 | S5 | S6 | S7 | S8 | S9 | ||
---|---|---|---|---|---|---|---|---|---|---|
1 | 2 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | |
I1 | 0.758 | 0.816 | 0.843 | 0.776 | 0.713 | 0.797 | 0.825 | 0.878 | 0.808 | |
I2 | 0.738 | 0.772 | 0.664 | 0.664 | 0.808 | 0.843 | 0.626 | 0.716 | 0.578 | |
I3 | 0.785 | 0.831 | 0.866 | 0.789 | 0.866 | 0.787 | 0.755 | 0.763 | 0.860 | |
I4 | 0.7 | 0.835 | 0.801 | 0.786 | 0.792 | 0.705 | 0.768 | 0.600 | 0.768 | |
I5 | 0.693 | 0.706 | 0.670 | 0.732 | 0.679 | 0.811 | 0.667 | 0.747 | 0.604 | |
I6 | omitted | 0.461 | 0.709 | 0.651 | omitted | 0.611 | 0.645 | omitted | omitted | |
I7 | 0.752 | 0.657 | 0.659 | 0.718 | 0.682 | 0.691 | 0.699 | 0.728 | 0.840 | |
I8 | omitted | 0.597 | 0.626 | omitted | omitted | omitted | 0.574 | 0.746 | omitted | |
I9 | 0.562 | omitted | omitted | omitted | omitted | 0.703 | 0.701 | 0.519 | omitted | |
variance explained | 57.68% | 51.87% | 54% | 53.73% | 57.76% | 55.81% | 48.93% | 51.74% | 56.43% | |
KMO | 0.629 | 0.815 | 0.85 | 0.783 | 0.844 | 0.804 | 0.819 | 0.836 | 0.792 | |
Bartlett’s test | 93.38 (p < 0.001) | 200.37 (p < 0.001) | 206.2 (p < 0.001) | 176.4 (p < 0.001) | 129.66 (p < 0.001) | 219.86 (p < 0.001) | 201.69 (p < 0.001) | 187.97 (p < 0.001) | 146.26 (p < 0.001) |
S1 | S2 | S3 | S4 | S5 | S6 | S7 | S8 | S9 | |||
---|---|---|---|---|---|---|---|---|---|---|---|
1 | 2 | 3 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | |
I1 | 0.691 | 0.823 | 0.818 | 0.787 | 0.713 | 0.794 | 0.823 | 0.85 | 0.819 | ||
I2 | 0.813 | 0.777 | 0.57 | 0.665 | 0.808 | 0.793 | 0.615 | 0.667 | 0.584 | ||
I3 | 0.771 | 0.853 | 0.881 | 0.783 | 0.866 | 0.791 | 0.772 | 0.7 | 0.827 | ||
I4 | 0.666 | 0.802 | 0.806 | 0.796 | 0.792 | 0.724 | 0.722 | omitted * | 0.692 | ||
I5 | 0.728 | −0.43 | 0.731 | 0.656 | 0.731 | 0.679 | 0.8 | 0.664 | 0.77 | omitted * | |
I6 | 0.775 | omitted * | 0.537 | 0.612 | omitted * | 0.531 | 0.655 | 0.46 * | 0.592 * | ||
I7 | 0.87 | 0.65 | 0.66 | 0.705 | 0.682 | 0.685 | 0.692 | 0.749 | 0.864 | ||
I8 | omitted | 0.628 | 0.606 | omitted * | omitted | omitted | 0.591 | 0.769 | omitted | ||
I9 | omitted | omitted | omitted | omitted | omitted | 0.688 | 0.697 | 0.536 | omitted | ||
variance explained | 71.77% | 57.157% | 49.25% | 53.06% | 57.76% | 53.45% | 48.38% | 48.76% | 54.49% | ||
KMO | 0.716 | 0.832 | 0.835 | 0.779 | 0.844 | 0.832 | 0.75 | 0.808 | 0.773 | ||
Bartlett’s test | 74.823 (p < 0.001) | 183.84 (p < 0.001) | 178.41 (p < 0.001) | 172.42 (p < 0.001) | 129.66 (p < 0.001) | 189.91 (p < 0.001) | 209.03 (p < 0.001) | 162.62 (p < 0.001) | 132.13 (p < 0.001) |
References
- Halpern, J.Y.; Rêgo, L. Extensive games with possibly unaware players. arXiv 2007, arXiv:0704.2014. Available online: https://arxiv.org/abs/0704.2014 (accessed on 10 February 2019).
- Li, J. Information structures with unawareness. J. Econ. Theory 2009, 144, 977–993. [Google Scholar] [CrossRef] [Green Version]
- Chen, Y.-C.; Ely, J.C.; Luo, X. Note on unawareness: Negative Introspection versus AU Introspection (and KU Introspection). Int. J. Game Theory 2012, 41, 325–329. [Google Scholar] [CrossRef]
- Chen, G.; Shen, D.; Kwan, C.; Cruz, J.B.; Kruger, M. Game theoretic approach to threat prediction and situation awareness. In Proceedings of the 9th International Conference on Information Fusion, Florence, Italy, 10–13 July 2006; pp. 1–8. [Google Scholar]
- Chugh, D.; Bazerman, M.H. Bounded awareness: What you fail to see can hurt you. Mind Soc. 2007, 6, 1–18. [Google Scholar] [CrossRef]
- Bazerman, M.H.; Chugh, D. Bounded awareness: Focusing failures in negotiation. In Negotiation Theory and Research; Psychology Press: New York, NY, USA, 2006; pp. 7–26. [Google Scholar]
- Endsley, M.R. Toward a theory of situation awareness in dynamic systems. Hum. Factors 1995, 37, 32–64. [Google Scholar] [CrossRef]
- Feinberg, Y. Games with unawareness. BE J. Theor. Econ. 2021, 21, 433–488. Available online: https://www.researchgate.net/profile/Yossi-Feinberg/publication/256039554_Games_with_Unawareness/links/5b4529b6a6fdcc6619170a93/Games-with-Unawareness.pdf (accessed on 10 February 2019). [CrossRef]
- Piermont, E. Unforeseen evidence. J. Econ. Theory 2021, 193, 105235. [Google Scholar] [CrossRef]
- Kostelic, K. Guessing the game: An individual’s awareness and assessment of a game’s existence. Games 2020, 11, 17. [Google Scholar] [CrossRef] [Green Version]
- Neuberg, S.L. Behavioral implications of information presented outside of conscious awareness: The effect of subliminal presentation of trait information on behavior in the Prisoner’s Dilemma Game. Soc. Cogn. 1988, 6, 207–230. [Google Scholar] [CrossRef]
- Halpern, J.Y.; Piermont, E. Partial awareness. arXiv 2018, arXiv:1811.05751. Available online: https://arxiv.org/abs/1811.05751 (accessed on 10 February 2019). [CrossRef]
- Grant, S.; Quiggin, J. Inductive reasoning about unawareness. Econ. Theory 2013, 54, 717–755. [Google Scholar] [CrossRef] [Green Version]
- Halpern, J.Y.; Piermont, E. Dynamic awareness. arXiv 2020, preprint. arXiv:2007.02823. Available online: https://arxiv.org/abs/2007.02823 (accessed on 10 February 2019).
- Zhao, W. Cost of reasoning and strategic sophistication. Games 2020, 11, 40. [Google Scholar] [CrossRef]
- Rêgo, L.C.; Halpern, J.Y. Generalized solution concepts in games with possibly unaware players. Int. J. Game Theory 2012, 41, 131–155. [Google Scholar] [CrossRef]
- Blasch, E.; Shen, D.; Pham, K.D.; Chen, G. Review of game theory applications for situation awareness. In Sensors and Systems for Space Applications VIII; International Society for Optics and Photonics: Bellingham, WA, USA, 2015; Volume 9469. [Google Scholar]
- Gino, F.; Norton, M.I.; Weber, R.A. Motivated Bayesians: Feeling moral while acting egoistically. J. Econ. Perspect. 2016, 30, 189–212. [Google Scholar] [CrossRef] [Green Version]
- Ramirez, R.; Mukherjee, M.; Vezzoli, S.; Kramer, A.M. Scenarios as a scholarly methodology to produce “interesting research”. Futures 2015, 71, 70–87. [Google Scholar] [CrossRef]
- Camerer, C.F. Progress in behavioral game theory. J. Econ. Perspect. 1997, 11, 167–188. [Google Scholar] [CrossRef] [Green Version]
- Aumann, R. Interactive knowledge. Int. J. Game Theory 1999, 28, 263–300. [Google Scholar] [CrossRef]
- Cozic, M. Probabilistic unawareness. Games 2016, 7, 38. [Google Scholar] [CrossRef] [Green Version]
- Burgoon, J.K.; Buller, D.B. Interpersonal deception: III. Effects of deceit on perceived communication and nonverbal behavior dynamics. J. Nonverbal Behav. 1994, 18, 155–184. [Google Scholar] [CrossRef]
- Synodinos, N.E. The “art” of questionnaire construction: Some important considerations for manufacturing studies. Integr. Manuf. Syst. 2003, 14, 221–237. [Google Scholar] [CrossRef]
- Chan, L.L.; Idris, N. Validity and reliability of the instrument using exploratory factor analysis and Cronbach’s alpha. Int. J. Acad. Res. Bus. Soc. Sci. 2017, 7, 400–410. [Google Scholar]
- Peterson, R. Constructing Effective Questionnaires; Sage Publications: Thousand Oaks, CA, USA, 2000. [Google Scholar] [CrossRef]
- Salehnejad, R. Rationality, Bounded Rationality and Microfoundations: Foundations of Theoretical Economics; Springer: Berlin/Heidelberg, Germany, 2006. [Google Scholar]
- Kahneman, D. Maps of bounded rationality: A perspective on intuitive judgment and choice. Nobel Prize Lect. 2002, 8, 351–401. [Google Scholar]
- Božac, M.G.; Kostelić, K.; Paulišić, M.; Smith, C. Business ethics decision-making: Examining partial reflective awareness. Sustainability 2021, 13, 2635. [Google Scholar] [CrossRef]
- Schuman, H.; Presser, S. Questions and Answers in Attitude Surveys: Experiments on Question Form, Wording, and Context; Sage: Thousand Oaks, CA, USA, 1996. [Google Scholar]
- Patel, H.; Joseph, J. Questionnaire designing process: A review. J. Clin. Trials 2016, 6, 255. [Google Scholar]
- Sreejesh, S.; Mohapatra, S.; Anusree, M.R. Questionnaire design. In Business Research Methods; Springer: Cham, Switzerland, 2014; pp. 143–159. [Google Scholar] [CrossRef]
- Labaw, P. Advanced Questionnaire Design; Abt Books: Cambridge, MA, USA, 1980. [Google Scholar]
- Hunt, S.D.; Sparkman, R.D., Jr.; Wilcox, J.B. The pretest in survey research: Issues and preliminary findings. J. Market. Res. 1982, 19, 269–273. [Google Scholar] [CrossRef]
- Stemler, S. An overview of content analysis. Pract. Assess. Res. Eval. 2001, 7, 137–146. [Google Scholar]
- Blair, E. A reflexive exploration of two qualitative data coding techniques. J. Methods Meas. Soc. Sci. 2015, 6, 14–29. [Google Scholar] [CrossRef] [Green Version]
- Krippendorff, K. Content Analysis: An Introduction to Its Methodology, 2nd ed.; Sage Publications: Thousand Oaks, CA, USA, 2004. [Google Scholar]
- Adu, P. A Step-by-Step Guide to Qualitative Data Coding; Routledge: Oxford, UK, 2019. [Google Scholar] [CrossRef]
- Armstrong, D.; Gosling, A.; Weinman, J.; Marteau, T. The place of inter-rater reliability in qualitative research: An empirical study. Sociology 1997, 31, 597–606. [Google Scholar] [CrossRef]
- Morse, J.M.; Barrett, M.; Mayan, M.; Olson, K.; Spiers, J. Verification strategies for establishing reliability and validity in qualitative research. Int. J. Qual. Methods 2002, 1, 13–22. [Google Scholar] [CrossRef]
- Peshkin, A. In search of subjectivity—One’s own. Educ. Res. 1988, 17, 17–21. [Google Scholar]
- Strauss, A.; Corbin, J. Basics of Qualitative Research Techniques; Sage Publications: Thousand Oaks, CA, USA, 1998. [Google Scholar]
- Taherdoost, H. Validity and reliability of the research instrument; How to test the validation of a questionnaire/survey in a research. Int. J. Acad. Res. Manag. 2016, 5, 28–36. [Google Scholar] [CrossRef]
- Cronbach, L.J. Coefficient alpha and the internal structure of tests. Psychometrika 1951, 16, 297–334. [Google Scholar] [CrossRef] [Green Version]
- Kline, R.B. Principles and Practice of Structural Equation Modeling, 3rd ed.; The Guilford Press: New York, NY, USA, 2011. [Google Scholar]
- Wilson, J. Essentials of Business Research: A Guide to Doing Your Research Project; Sage: Thousand Oaks, CA, USA, 2014. [Google Scholar]
- Buckendahl, C.; Plake, B.S. Evaluating tests. In Handbook of Test Development; Downing, S.M., Haladyna, T.M., Eds.; Lawrence Erlbaum Associates Publishers: Mahwah, NJ, USA, 2006; pp. 725–738. [Google Scholar]
- Messick, S. Validity. In Educational Measurement, 3rd ed.; Linn, R., Ed.; American Council of Education: Washington, DC, USA; Macmillan: New York, NY, USA, 1989; pp. 13–103. [Google Scholar]
- Campbell, D.T.; Fiske, D.W. Convergent and discriminant validation by the multitrait-multimethod matrix. Psychol. Bull. 1959, 56, 81. [Google Scholar] [CrossRef] [Green Version]
- Korkmaz, S.; Goksuluk, D.; Zararsiz, G. MVN: An R package for assessing multivariate normality. R J. 2014, 6, 151. [Google Scholar] [CrossRef] [Green Version]
- Mittag, K.C.; Scale-free nonparametric factor analysis: A user-friendly introduction with concrete heuristic examples. Presented at the Annual Meeting of the Southwest Educational Research Association, Austin, TX, USA, 28–30 January 1993. Available online: https://files.eric.ed.gov/fulltext/ED355281.pdf (accessed on 18 October 2021).
- De Winter, J.C.F.; Gosling, S.D.; Potter, J. Comparing the Pearson and Spearman correlation coefficients across distributions and sample sizes: A tutorial using simulations and empirical data. Psychol. Methods 2016, 21, 273–290. [Google Scholar] [CrossRef]
- Conover, W.J.; Iman, R.L. Rank transformations as a bridge between parametric and nonparametric statistics. Am. Stat. 1981, 35, 124–129. [Google Scholar]
- Garcia-Granero, M. Factor Analysis with Spearman Correlation through a Matrix. 2002. Available online: https://www.spsstools.net/en/syntax/syntax-index/factor-analysis/factor-analysis-with-spearman-correlation-through-a-matrix/ (accessed on 18 October 2021).
- Weathington, B.L.; Cunningham, C.J.; Pittenger, D.J. Research Methods for the Behavioral and Social Sciences; Wiley: Hoboken, NJ, USA, 2010. [Google Scholar]
- Kane, M.T. Validating the Interpretations and Uses of Test Scores. J. Educ. Meas. 2013, 50, 1–73. [Google Scholar] [CrossRef]
- Škare, M.; Kostelić, K. Interpersonal communication in the internal marketing: Bounded rationality game theory approach. Econ. Comput. Econ. Cybern. Stud. Res. 2015, 49, 127–149. [Google Scholar]
- Nassiri-Mofakham, F.; Nematbakhsh, M.A.; Ghasem-Aghaee, N.; Baraani-Dastjerdi, A. A heuristic personality-based bilateral multi-issue bargaining model in electronic commerce. Int. J. Hum. Comput. Stud. 2009, 67, 1–35. [Google Scholar] [CrossRef]
- Nassiri-Mofakham, F.; Ghasem-Aghaee, N.; Nematbakhsh, M.A.; Baraani-Dastjerdi, A. A personality-based simulation of bargaining in e-commerce. Simul. Gaming 2008, 39, 83–100. [Google Scholar] [CrossRef] [Green Version]
Information | Scenario |
---|---|
Scenario 1 | |
action | The price increases |
player(s) | Not stated explicitly (it can be recognized as shop/shop manager, manufacturer, distributor, etc.) |
outcome | Loss of 10 HRK/the lack of satisfaction from favorite chocolate |
Scenario 2 | |
action | Non-verbal signals |
player(s) | Not stated explicitly (a friend with whom an individual is drinking coffee, or a third party) |
outcome | Not stated explicitly (the payoff could be both positive and negative) |
Scenario 3 | |
action | Two separate actions are stated: workload and a rumor |
player(s) | Two players are stated: colleague and task assignor |
outcome | Not stated explicitly, but both positive and negative payoffs are indicated |
Scenario 4 | |
action | A rumor/company’s turnover |
player(s) | Not stated explicitly (the rumor’s source is the colleagues, but the player is the company) |
outcome | Not stated explicitly (a raise is expressed as a possible payoff, but the information about the higher workload can be deduced from more tourist arrivals, which could also be related to higher salaries) |
Scenario 5 | |
action | Activities within a team assignment |
player(s) | Team members |
outcome | A grade/workload |
Scenario 6 | |
action | New competitor offers service at a lower price and/or a client’s attempt to negotiate a lower price |
player(s) | Newly opened consultant company and/or a client |
outcome | Not stated explicitly, but indicates possible loss (implicitly, in the long run, it can be the loss of a market share to a competitor and/or, in the short-run, a diminished price charged to the client or the loss of the client) |
Scenario 7 | |
action | Invitation to pitch the idea |
player(s) | Five investors |
outcome | Not stated explicitly (immediate—presentation of the idea (or not), and consequently a possibility of investment—positive payoff—of an unknown amount is indicated) |
Scenario 8 | |
action | Confess or remain silent, for both players |
player(s) | A colleague |
outcome | 0, 1, 6, or 12 months of suspension |
Scenario 9 | |
action | A promise of the colleague and one’s own action about the sandwich allocation |
player(s) | A colleague |
outcome | A possibility of a coffee and a piece of/whole sandwich |
Study | Age (Mean, Standard Deviation, Min, Max) | Gender (Frequency Male, Female) | Year of Study (Mean, Standard Deviation, Min, Max) | Previously Learned Game Theory (Frequency) | Used Knowledge of Game Theory (Frequency) | Number of Responses |
---|---|---|---|---|---|---|
2019 | 22.03 | 48.54% | 1.934 | 54% | 21.8% | 822 |
4.788 | 1.1556 | |||||
18 | 51.45% | 1 | ||||
46 | 5 | |||||
2020 | 19.91 | 27% | 1.048 | 43.5% | 18.9% | 756 |
3.648 | 0.2131 | |||||
18 | 73% | 1 | ||||
52 | 2 | |||||
2021 | 19.86 | 33.5% | 1.06 | 41.8% * | 12% * | 452 * |
2.318 | 0.2373 | |||||
18 | 66.5% * | 1 | ||||
34 * | 2 * | |||||
Total | 20.758 | 37.2% | 1.409 | 47.37% | 18.53% | 2030 |
4.065 | 0.8703 | |||||
18 | 62.8% | 1 | ||||
52 | 5 |
Coding | LR | LR CP | SR CP | ||||||
---|---|---|---|---|---|---|---|---|---|
Study/No. of Items | 9 | 8 | 7 | 9 | 8 | 7 | 9 | 8 | 7 |
2019 | / | 0.67 (0.751) | 0.659 (0.755) | / | 0.761 (0.763) | 0.771 (0.771) | / | 0.74 (0.744) | 0.757 (0.761) |
2020 | 0.744 (0.751) | 0.758 (0.767) | 0.759 (0.764) | 0.724 (0.73) | 0.742 (0.747) | 0.75 (0.753) | 0.677 (0.684) | 0.689 (0.699) | 0.695 (0.703) |
2021 | 0.819 (0.818) | 0.829 (0.823) | 0.841 (0.84) | 0.805 (0.802) | 0.817 (0.819) | 0.826 (0.826) | 0.7812 (0.782) | 0.795 (0.801) | 0.796 (0.802) |
Reliability Statistics | Cronbach’s Alpha | Cronbach’s Alpha Based on Standardized Items | No. of Items | Cronbach’s Alpha | Cronbach’s Alpha Based on Standardized Items | No. of Items |
---|---|---|---|---|---|---|
Scenario 1 | 0.750 | 0.743 | 9 | 0.780 | 0.767 | 7 |
Scenario 2 | 0.861 | 0.853 | 9 | 0.870 | 0.870 | 7 |
Scenario 3 | 0.852 | 0.847 | 9 | 0.875 | 0.875 | 7 |
Scenario 4 | 0.783 | 0.797 | 9 | 0.811 | 0.815 | 7 |
Scenario 5 | 0.727 | 0.735 | 9 | 0.782 | 0.779 | 7 |
Scenario 6 | 0.846 | 0.862 | 9 | 0.884 | 0.890 | 7 |
Scenario 7 | 0.842 | 0.845 | 9 | 0.832 | 0.833 | 7 |
Scenario 8 | 0.824 | 0.822 | 9 | 0.833 | 0.833 | 7 |
Scenario 9 | 0.778 | 0.779 | 9 | 0.794 | 0.794 | 7 |
S1 | S2 | S3 | S4 | S5 | S6 | S7 | S8 | S9 | 2021 LR | |
---|---|---|---|---|---|---|---|---|---|---|
I1 | 0.15 | 0.12 | 0.13 | 0.13 | 0.12 | 0.1 | 0.13 | 0.15 | 0.13 | 0.12 |
I2 | 0.12 | 0.13 | 0.12 | 0.12 | 0.11 | 0.11 | 0.14 | 0.15 | 0.12 | 0.12 |
I3 | 0.11 | 0.12 | 0.13 | 0.12 | 0.13 | 0.1 | 0.11 | 0.15 | 0.13 | 0.13 |
I4 | 0.12 | 0.11 | 0.13 | 0.13 | 0.12 | 0.12 | 0.14 | 0.1 | 0.12 | 0.12 |
I5 | 0.13 | 0.14 | 0.13 | 0.13 | 0.12 | 0.15 | 0.11 | 0.1 | 0.13 | 0.13 |
I6 | 0.12 | 0.14 | 0.13 | 0.12 | 0.14 | 0.15 | 0.12 | 0.1 | 0.13 | 0.12 |
I8 | 0.12 | 0.13 | 0.12 | 0.13 | 0.12 | 0.16 | 0.13 | 0.12 | 0.11 | 0.13 |
I9 | 0.12 | 0.12 | 0.12 | 0.12 | 0.14 | 0.1 | 0.12 | 0.14 | 0.12 | 0.13 |
Component (LR) | Component (LR CP) | Component (SR CP) | |
---|---|---|---|
I1 | 0.801 | 0.795 | 0.793 |
I3 | 0.773 | 0.78 | 0.777 |
I4 | 0.758 | 0.736 | 0.654 |
I2 | 0.736 | 0.705 | 0.66 |
I5 | 0.725 | 0.719 | 0.72 |
I7 | 0.714 | 0.688 | 0.684 |
I6 | 0.634 | 0.612 | 0.544 |
I9 | 0.496 | 0.466 | 0.478 |
I8 | 0.480 | 0.459 | 0.443 |
S1 | S2 | S3 | S4 | S5 | S6 | S7 | S8 | S9 | |||
---|---|---|---|---|---|---|---|---|---|---|---|
1 | 2 | 3 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | |
I1 | 0.684 | 0.865 | 0.850 | 0.761 | 0.744 | 0.811 | 0.826 | 0.887 | 0.809 | ||
I2 | 0.712 | 0.763 | 0.759 | 0.681 | 0.799 | 0.867 | 0.686 | 0.747 | 0.590 | ||
I3 | 0.761 | 0.829 | 0.858 | 0.766 | 0.843 | 0.804 | 0.756 | 0.743 | 0.835 | ||
I4 | 0.706 | 0.827 | 0.837 | 0.776 | 0.774 | 0.724 | 0.811 | 0.678 | 0.766 | ||
I5 | 0.736 | 0.662 | 0.693 | 0.751 | 0.640 | 0.849 | 0.673 | 0.757 | 0.614 | ||
I6 | 0.612 | 0.57 | 0.539 | 0.709 | 0.667 | 0.450 | 0.722 | 0.651 | omitted | omitted | |
I7 | 0.45 | 0.61 | 0.704 | 0.668 | 0.748 | 0.671 | 0.733 | 0.706 | 0.786 | 0.838 | |
I8 | 0.505 | 0.65 | 0.624 | 0.588 | 0.490 | omitted | omitted | 0.587 | 0.721 | omitted | |
I9 | 0.72 | omitted | omitted | omitted | omitted | 0.722 | 0.686 | 0.575 | omitted | ||
variance explained | 66.48% | 53.94% | 56.41% | 50.52% | 50.93% | 61.00% | 50.82% | 54.98% | 56.07% | ||
KMO | 0.696 | 0.835 | 0.848 | 0.801 | 0.807 | 0.845 | 0.846 | 0.831 | 0.802 | ||
Bartlett’s test | 132.32 (p < 0.001) | 212.3 (p < 0.001) | 226.12 (p < 0.001) | 193.36 (p < 0.001) | 135.32 (p < 0.001) | 244.3 (p < 0.001) | 212.75 (p < 0.001) | 215.81 (p < 0.001) | 135.64 (p < 0.001) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kostelić, K. Game Awareness: A Questionnaire. Games 2021, 12, 90. https://doi.org/10.3390/g12040090
Kostelić K. Game Awareness: A Questionnaire. Games. 2021; 12(4):90. https://doi.org/10.3390/g12040090
Chicago/Turabian StyleKostelić, Katarina. 2021. "Game Awareness: A Questionnaire" Games 12, no. 4: 90. https://doi.org/10.3390/g12040090