Cooperative Game for Fish Harvesting and Pollution Control
<p>Phase field of the uncontrolled dynamics for <math display="inline"><semantics> <mrow> <msub> <mi mathvariant="script">R</mi> <mn>0</mn> </msub> <mo><</mo> <mn>1</mn> </mrow> </semantics></math> (<b>top left</b>), <math display="inline"><semantics> <mrow> <msub> <mi mathvariant="script">R</mi> <mn>0</mn> </msub> <mo>=</mo> <mn>1</mn> </mrow> </semantics></math> (<b>right</b>) and <math display="inline"><semantics> <mrow> <msub> <mi mathvariant="script">R</mi> <mn>0</mn> </msub> <mo>></mo> <mn>1</mn> </mrow> </semantics></math> (<b>bottom left</b>).</p> "> Figure 2
<p>Dynamic of the controlled model with <math display="inline"><semantics> <mrow> <mi>K</mi> <mrow> <mo>(</mo> <msub> <mi>x</mi> <msub> <mrow/> <mn>1</mn> </msub> </msub> <mo>)</mo> </mrow> <mo>=</mo> <mfrac> <mn>1</mn> <mrow> <msub> <mi>x</mi> <msub> <mrow/> <mn>1</mn> </msub> </msub> <mo>+</mo> <mn>1</mn> </mrow> </mfrac> </mrow> </semantics></math>: one terminal condition for the control <math display="inline"><semantics> <mrow> <mo>(</mo> <msub> <mi>u</mi> <msub> <mrow/> <mn>1</mn> </msub> </msub> <mrow> <mo>(</mo> <mi>T</mi> <mo>)</mo> </mrow> <mo>,</mo> <msub> <mi>u</mi> <msub> <mrow/> <mn>2</mn> </msub> </msub> <mrow> <mo>(</mo> <mi>T</mi> <mo>)</mo> </mrow> <mo>)</mo> <mo>=</mo> <mrow> <mo>(</mo> <mn>0.3</mn> <mo>,</mo> <mn>0.2</mn> <mo>)</mo> </mrow> </mrow> </semantics></math> combined with different starting states <math display="inline"><semantics> <mrow> <mo>(</mo> <msubsup> <mi>x</mi> <msub> <mrow/> <mn>1</mn> </msub> <mn>0</mn> </msubsup> <mo>,</mo> <msubsup> <mi>x</mi> <msub> <mrow/> <mn>2</mn> </msub> <mn>0</mn> </msubsup> <mo>)</mo> </mrow> </semantics></math>.</p> "> Figure 3
<p>Dynamic of the controlled model with <math display="inline"><semantics> <mrow> <mi>K</mi> <mrow> <mo>(</mo> <msub> <mi>x</mi> <msub> <mrow/> <mn>1</mn> </msub> </msub> <mo>)</mo> </mrow> <mo>=</mo> <mfrac> <mn>1</mn> <mrow> <msub> <mi>x</mi> <msub> <mrow/> <mn>1</mn> </msub> </msub> <mo>+</mo> <mn>1</mn> </mrow> </mfrac> </mrow> </semantics></math> starting at <math display="inline"><semantics> <mrow> <mrow> <mo>(</mo> <msubsup> <mi>x</mi> <msub> <mrow/> <mn>1</mn> </msub> <mn>0</mn> </msubsup> <mo>,</mo> <msubsup> <mi>x</mi> <msub> <mrow/> <mn>2</mn> </msub> <mn>0</mn> </msubsup> <mo>)</mo> </mrow> <mo>=</mo> <mrow> <mo>(</mo> <mn>4.0</mn> <mo>,</mo> <mn>0.4</mn> <mo>)</mo> </mrow> </mrow> </semantics></math> combined with several terminal conditions for the control <math display="inline"><semantics> <mrow> <mo>(</mo> <msub> <mi>u</mi> <msub> <mrow/> <mn>1</mn> </msub> </msub> <mrow> <mo>(</mo> <mi>T</mi> <mo>)</mo> </mrow> <mo>,</mo> <msub> <mi>u</mi> <msub> <mrow/> <mn>2</mn> </msub> </msub> <mrow> <mo>(</mo> <mi>T</mi> <mo>)</mo> </mrow> <mo>)</mo> </mrow> </semantics></math>.</p> "> Figure 4
<p>Dynamics of the state and control variables in the cooperative scenario for the terminal condition for the control <math display="inline"><semantics> <mrow> <mo>(</mo> <msub> <mi>u</mi> <msub> <mrow/> <mn>1</mn> </msub> </msub> <mrow> <mo>(</mo> <mi>T</mi> <mo>)</mo> </mrow> <mo>,</mo> <msub> <mi>u</mi> <msub> <mrow/> <mn>2</mn> </msub> </msub> <mrow> <mo>(</mo> <mi>T</mi> <mo>)</mo> </mrow> <mo>)</mo> <mo>=</mo> <mrow> <mo>(</mo> <mn>0.3</mn> <mo>,</mo> <mn>0.2</mn> <mo>)</mo> </mrow> </mrow> </semantics></math> combined with different starting states <math display="inline"><semantics> <mrow> <mo>(</mo> <msubsup> <mi>x</mi> <msub> <mrow/> <mn>1</mn> </msub> <mn>0</mn> </msubsup> <mo>,</mo> <msubsup> <mi>x</mi> <msub> <mrow/> <mn>2</mn> </msub> <mn>0</mn> </msubsup> <mo>)</mo> </mrow> </semantics></math>.</p> "> Figure 5
<p>Comparison of the aggregated running cost in the cooperative regime (blue line) and the sum of the two running costs in the non-cooperative regime (red dashed line) starting at (<math display="inline"><semantics> <mrow> <msubsup> <mi>x</mi> <msub> <mrow/> <mn>1</mn> </msub> <mn>0</mn> </msubsup> <mo>=</mo> <mn>0.5</mn> <mo>,</mo> <msubsup> <mi>x</mi> <msub> <mrow/> <mn>2</mn> </msub> <mn>0</mn> </msubsup> <mo>=</mo> <mn>0.2</mn> </mrow> </semantics></math>). Pollution control and fish population control after <math display="inline"><semantics> <mrow> <mi>T</mi> <mo>=</mo> <mn>10</mn> </mrow> </semantics></math> months are <math display="inline"><semantics> <mrow> <msub> <mi>u</mi> <msub> <mrow/> <mn>1</mn> </msub> </msub> <mrow> <mo>(</mo> <mi>T</mi> <mo>)</mo> </mrow> <mo>=</mo> <mn>0.7</mn> </mrow> </semantics></math> and <math display="inline"><semantics> <mrow> <msub> <mi>u</mi> <msub> <mrow/> <mn>2</mn> </msub> </msub> <mrow> <mo>(</mo> <mi>T</mi> <mo>)</mo> </mrow> <mo>=</mo> <mn>0.9</mn> </mrow> </semantics></math>, respectively, and <math display="inline"><semantics> <mrow> <msub> <mi>α</mi> <msub> <mrow/> <mn>2</mn> </msub> </msub> <mo>=</mo> <mn>2.01</mn> </mrow> </semantics></math> and <math display="inline"><semantics> <mrow> <msub> <mover accent="true"> <mi>α</mi> <mo stretchy="false">^</mo> </mover> <msub> <mrow/> <mn>2</mn> </msub> </msub> <mo>=</mo> <mn>1.0</mn> </mrow> </semantics></math>.</p> ">
Abstract
:1. Introduction
2. Water Pollution and Fishing Industry
2.1. Management Problema
2.2. Mathematical Model
3. Analysis of the Model
3.1. Stability Analysis of the Eutrophication Process
- If , the only stationary point is the free-pollution equilibrium .
- If , additional to the free-pollution equilibrium , there is one equilibrium point , which is positive.
- If , additional to the free-pollution equilibrium , there are two equilibrium points and , which are positive. For , they are given by:
- (1)
- For all , the solution is decreasing and as .
- (2)
- For all , the solution is decreasing and as .
- (1)
- For all , the solution is decreasing and as .
- (2)
- The solution is increasing if and decreasing if . Moreover, as for all .
3.2. Stability Analysis of the Fish Pollution Dynamic
- If , the only equilibrium points are thetrivial equilibrium and the best-case scenario equilibrium, which are given, respectively, by:
- If , additional to the trivial equilibrium and the best-case scenario equilibrium, there are two equilibrium points, which are:
- If , additional to the trivial equilibrium and the best-case scenario equilibrium, there are four equilibrium points, which are:
- (i)
- For each with , we have:
- (ii)
- For each with , we have:
- (i)
- For each with , we have:
- (ii)
- For each with , we have:
3.3. Numerical Illustrations
- We have the trivial equilibrium and the best-case scenario equilibrium , which is a nodal sink and globally asymptotically stable. It characterizes non-pollution for a perfect natural growth of the fish population.
- . Here, additionally to the trivial equilibrium and the best-case scenario equilibrium , we have , which is unstable, and . In this case, we see that if the initial condition is in , the dynamic converges to as stated by Lemma 9. For initial condition starting at , is a stable point and behaves as a nodal sink. The level of pollution is damping at half the level of fish population growth.
- . Additionally to the trivial equilibrium and best-case scenario equilibrium , we have , , and . The equilibrium point is unstable (as well as and ) and behaves as a source. This stands for a very low pollution state, where the pollutants are not yet damping or at least not at an alarming level regarding the fish population growth. The stationary point is a nodal sink and is locally asymptotically stable. It illustrates the impact of a high level of pollution on the fish population. This leads asymptotically to the survival of the fish population after the total disintegration of the pollutant.
3.4. Controllability
4. Non-Cooperative Regime: Quest for Profit
4.1. Optimal Control System
4.2. Numerical Results
5. Cooperative Strategies and Biodiversity
5.1. The Optimal Strategy
5.2. Taxation: Incentive Design
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Ganguly, S. Leather processing industries generate effluents causing environmental and water pollution: An Asian perspective. J. Ind. Lea. Tech. Assoc. LXII 2012, 12, 1133–1137. [Google Scholar]
- Ganguly, S. Water pollution from various sources and human infringements: An editorial. Ind. J. Sci. Res. Tech. 2013, 1, 54–55. [Google Scholar]
- Sharma, P. Weblog on Keeping Word Environment Safer and Greener Oil Spilsâ Adverse Effects on Marine Environmental Bio-System and Control Measure. Environment. 2008. Available online: saferenvironment.wordpress.com (accessed on 18 August 2021).
- Crunkilton, R.L.; Duchrow, R.M. Impact of a massive crude oil spill on the invertebrate fauna of a missouri ozark stream. Environ. Pollut. 1990, 63, 13–31. [Google Scholar] [CrossRef]
- Khatua, A.; Jana, A.; Kar, T.K. A fuzzy rule-based model to assess the effects of global warming, pollution and harvesting on the production of Hilsa fishes. Ecol. Inform. 2020, 57, 101070. [Google Scholar] [CrossRef]
- Auger, P.; Lett, C.; Moussaoui, A.; Pioch, S. Optimal number of sites in artificial pelagic multi-site fisheries. Can. J. Fish. Aquat. Sci. 2010, 67, 296–303. [Google Scholar] [CrossRef]
- Ly, S.; Auger, P.; Balde, M. A bioeconomic model of a multi-site fishery with nonlinear demand function: Number of sites optimizing the total catch. Acta Biotheor. 2014, 62, 371–384. [Google Scholar] [CrossRef] [PubMed]
- Brochier, T.; Auger, P.; Thiao, D.; Bah, A.; Ly, S.; Nguyen-Huu, T.; Brehmer, P. Can over-exploited fisheries recover by self-organization? reallocation of fishing effort as an emergent form of governance. Mar. Policy 2018, 95, 46–56. [Google Scholar] [CrossRef]
- Bergl, H.; Burlakov, E.; Pedersen, P.A.; Wyller, J. Aquaculture, pollution and fishery dynamics of marine industrial interactions. Ecol. Complex. 2020, 43, 100853. [Google Scholar] [CrossRef]
- Tahvonen, O. On the dynamics of renewable resource harvesting and pollution control. Environ. Resour. Econ. 1991, 1, 97–117. [Google Scholar]
- Pochai, N.; Tangmanee, V.; Crane, L.J.; Miller, J.J.H. A mathematical model of water pollution control using the finite element method. Proc. Appl. Math. Mech 2006, 6, 755–756. [Google Scholar] [CrossRef]
- Carpenter, S.R.; Ludwig, D.; Brock, W.A. Management of eutrophication for lakes subject to potentially irreversible change. Ecol. Appl. 1999, 9, 751–771. [Google Scholar] [CrossRef]
- Palomares, M.; Froese, R.; Derrick, B.; Meeuwig, J.; Nöel, S.-L.; Tsui, G.; Woroniak, J.; Zeller, D.; Pauly, D. Fishery biomass trends of exploited fish populations in marine eco-regions, climatic zones and ocean basins. Estuarine Coast. Shelf Sci. 2020, 243, 106896. [Google Scholar] [CrossRef]
- Kossioris, G.; Plexousakis, M.; Xepapadeas, A.; de Zeeuw, A.; Mäler, K.-G. Feedback Nash equilibria for non-linear differential games in pollution control. J. Econ. Dyn. Control. 2008, 32, 1312–1331. [Google Scholar] [CrossRef] [Green Version]
- Dia, B.M.; Diagne, M.L.; Goudiaby, M.S. Optimal control of invasive species with economic benefits: Application to the Typha proliferation. Nat. Resour. Model. 2020, 33, e12268. [Google Scholar] [CrossRef]
- Jones, J.H. Notes on R0. Department of Anthropological Sciences; Stanford University: Stanford, CA, USA, 2007; Volume 323. [Google Scholar]
- Pontryagin, L.; Boltyanskii, V.; Gamkrelidze, R.; Mishchenko, E. The Mathematical Theory of Optimal Processes; A Pergamon Press Book; The Macmillan Co.: New York, NY, USA, 1964. [Google Scholar]
- Carlini, E.; Ferretti, R.; Russo, G. A weighted essentially nonoscillatory, large time-step scheme for Hamilton-Jacobi equations. SIAM J. Sci. Comput. 2005, 27, 1071–1091. [Google Scholar] [CrossRef] [Green Version]
- Liu, X.D.; Osher, S.; Chan, T. Weighted essentially non-oscillatory schemes. J. Comput. Phys. 1994, 115, 200–212. [Google Scholar] [CrossRef] [Green Version]
- Bauso, D.; Dia, B.M.; Djehiche, B.; Tembine, H.; Tempone, R. Mean-field games for marriage. PLoS ONE 2014, 9, e94933. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bauso, D.; Tembine, H.; Başar, T. Robust mean field games. Dyn. Games Appl. 2016, 6, 277–303. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Goudiaby, M.S.; Dia, B.M.; Diagne, M.L.; Tembine, H. Cooperative Game for Fish Harvesting and Pollution Control. Games 2021, 12, 65. https://doi.org/10.3390/g12030065
Goudiaby MS, Dia BM, Diagne ML, Tembine H. Cooperative Game for Fish Harvesting and Pollution Control. Games. 2021; 12(3):65. https://doi.org/10.3390/g12030065
Chicago/Turabian StyleGoudiaby, Mouhamadou Samsidy, Ben Mansour Dia, Mamadou L. Diagne, and Hamidou Tembine. 2021. "Cooperative Game for Fish Harvesting and Pollution Control" Games 12, no. 3: 65. https://doi.org/10.3390/g12030065