Characterising the Chemical Composition of Bushfire Smoke and Implications for Firefighter Exposure in Western Australia
<p>Scenes at a typical burn.</p> "> Figure 2
<p>The principal researcher in full wildland PPE collecting data inside a smouldering area of Jarrah Forest.</p> "> Figure 3
<p>The dense vegetation of Blackwood Forest.</p> "> Figure 4
<p>Manjimup peat fire, pictured with the Gasmet Technology DX4040.</p> "> Figure 5
<p>The sandy soils and low-lying vegetation of Wilbinga, pictured with the DBCA commencing a prescribed burn.</p> "> Figure 6
<p>The laterite soils and kwongan heathland of Badgingarra.</p> "> Figure 7
<p>The tall, open canopies and sparse groundcover of the Julimar region.</p> "> Figure 8
<p>The ten most prevalent chemicals present in bushfire smoke, reported in parts per million (ppm).</p> "> Figure 9
<p>The tenth to nineteenth most prevalent gases in general bushfire smoke reported in ppm.</p> "> Figure 10
<p>The ten most prevalent chemicals present in peat fire smoke, reported in ppm.</p> "> Figure 11
<p>Mean concentration of chemicals present inside prescribed burn smoke across five unique ecoregions in WA expressed as parts per million (ppm). * Sulphur dioxide concentration at Manjimup was 9.5 ppm.</p> "> Figure 12
<p>Comparison of the mean chemical emissions across the flaming and smouldering phases of prescribed burns across four different prescribed burns (ppm).</p> ">
Abstract
:1. Introduction
1.1. Overview of Bushfires in Western Australia
1.2. Health Impacts of Bushfire Smoke Exposure
1.3. Previous Research and Gaps in Knowledge
1.4. Rationale and Aims
2. Methods
2.1. Participants
2.2. Sampling Method
3. Results
3.1. Sampled Locations
3.2. Overview of Smoke Sample Characteristics
3.3. The Special Case of Peat Fires
3.4. “Clear” Air Is Potentially a Problem Too
3.5. Do Vegetation Patterns Matter?
3.6. Does Phase of the Fire Change the Emissions?
4. Discussion
4.1. General Smoke Composition
4.2. Smouldering Versus Flaming Chemical Emissions
4.3. Peat Fires
4.4. Vegetation and Smoke Emissions
4.5. Clear Air
4.6. Occupational Health Considerations
4.7. Strengths and Limitations
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Plucinski, M.P.; McCaw, W.L.; Gould, J.S.; Wotton, B.M. Predicting the Number of Daily Human-Caused Bushfires to Assist Suppression Planning in South-West Western Australia. Int. J. Wildland Fire 2014, 23, 520–531. [Google Scholar] [CrossRef]
- The Department of Fire and Emergency Services. Dfes Annual Report 2022-23. Available online: https://assets-global.website-files.com/61de5d84c5a92d75c52a9ca6/6513b74e7ca95e90b3821f5b_DFES-Annual-Report-2022-23.pdf (accessed on 9 May 2024).
- Department of Biodiversity Conservation and Attractions. Annual Report 2021-22. Available online: https://www.dbca.wa.gov.au/sites/default/files/2022-10/DBCA%20Annual%20Report%202021-22.pdf (accessed on 19 December 2022).
- Walter, C.M.; Schneider-Futschik, E.K.; Knibbs, L.D.; Irving, L.B. Health Impacts of Bushfire Smoke Exposure in Australia. Respirology 2020, 25, 495–501. [Google Scholar] [CrossRef] [PubMed]
- Lelieveld, J.; Evans, J.S.; Fnais, M.; Giannadaki, D.; Pozzer, A. The Contribution of Outdoor Air Pollution Sources to Premature Mortality on a Global Scale. Nature 2015, 525, 367–371. [Google Scholar] [CrossRef]
- Morgan, G.; Sheppeard, V.; Khalaj, B.; Ayyar, A.; Lincoln, D.; Jalaludin, B.; Beard, J.; Corbett, S.; Lumley, T. Effects of Bushfire Smoke on Daily Mortality and Hospital Admissions in Sydney, Australia. Epidemiology 2010, 21, 47–55. [Google Scholar] [CrossRef]
- De Vos, A.J.B.M.; Reisen, F.; Cook, A.; Devine, B.; Weinstein, P. Respiratory Irritants in Australian Bushfire Smoke: Air Toxics Sampling in a Smoke Chamber and during Prescribed Burns. Arch. Environ. Contam. Toxicol. 2009, 56, 380–388. [Google Scholar] [CrossRef]
- Alves, C.A.; Gonçalves, C.; Evtyugina, M.; Pio, C.A.; Mirante, F.; Puxbaum, H. Particulate Organic Compounds Emitted from Experimental Wildland Fires in a Mediterranean Ecosystem. Atmos. Environ. 2010, 44, 2750–2759. [Google Scholar] [CrossRef]
- Nadon, L.; Siemiatycki, J.; Dewar, R.; Krewski, D.; Gérin, M. Cancer Risk Due to Occupational Exposure to Polycyclic Aromatic Hydrocarbons. Am. J. Ind. Med. 1995, 28, 303–324. [Google Scholar] [CrossRef]
- Bachand, A.M.; Mundt, K.A.; Mundt, D.J.; Montgomery, R.R. Epidemiological Studies of Formaldehyde Exposure and Risk of Leukemia and Nasopharyngeal Cancer: A Meta-Analysis. Crit. Rev. Toxicol. 2010, 40, 85–100. [Google Scholar] [CrossRef]
- Marques, M.M.; Beland, F.A.; Lachenmeier, D.W.; Phillips, D.H.; Chung, F.-L.; Dorman, D.C.; Elmore, S.E.; Hammond, S.K.; Krstev, S.; Linhart, I.; et al. Carcinogenicity of Acrolein, Crotonaldehyde, and Arecoline. Lancet Oncol. 2021, 22, 19–20. [Google Scholar] [CrossRef]
- Simmons, J.B.; Paton-Walsh, C.; Mouat, A.P.; Kaiser, J.; Humphries, R.S.; Keywood, M.; Griffith, D.W.T.; Sutresna, A.; Naylor, T.; Ramirez-Gamboa, J. Bushfire Smoke Plume Composition and Toxicological Assessment from the 2019–2020 Australian Black Summer. Air Qual. Atmos. Health 2022, 15, 2067–2089. [Google Scholar] [CrossRef]
- Griffith, D.W.T. Ftir, Bushfires, and Atmospheric Chemistry. In Proceedings of the 8th International Conference on Fourier Transform Spectroscopy, Lubeck-Travemunde, Germany, 1 March 1992. [Google Scholar]
- Smith, T.E.L.; Paton-Walsh, C.; Meyer, C.P.; Cook, G.D.; Maier, S.W.; Russell-Smith, J.; Wooster, M.J.; Yates, C.P. New Emission Factors for Australian Vegetation Fires Measured Using Open-Path Fourier Transform Infrared Spectroscopy–Part 2: Australian Tropical Savanna Fires. Atmos. Chem. Phys. 2014, 14, 11335–11352. [Google Scholar] [CrossRef]
- Duc, H.N.; Chang, L.T.-C.; Azzi, M.; Jiang, N. Smoke Aerosols Dispersion and Transport from the 2013 New South Wales (Australia) Bushfires. Environ. Monit. Assess. 2018, 190, 1–22. [Google Scholar] [CrossRef] [PubMed]
- Guérette, E.-A.; Paton-Walsh, C.; Desservettaz, M.; Smith, T.E.L.; Volkova, L.; Weston, C.J.; Meyer, C.P. Emissions of Trace Gases from Australian Temperate Forest Fires: Emission Factors and Dependence on Modified Combustion Efficiency. Atmos. Chem. Phys. 2018, 18, 3717–3735. [Google Scholar] [CrossRef]
- Reisen, F.; Meyer, C.P.; Weston, C.J.; Volkova, L. Ground-Based Field Measurements of Pm2. 5 Emission Factors from Flaming and Smoldering Combustion in Eucalypt Forests. J. Geophys. Res. Atmos. 2018, 123, 8301–8314. [Google Scholar] [CrossRef]
- Demers, P.A.; DeMarini, D.M.; Fent, K.W.; Glass, D.C.; Hansen, J.; Adetona, O.; Andersen, M.H.G.; Freeman, L.E.B.; Caban-Martinez, A.J.; Daniels, R.D. Carcinogenicity of Occupational Exposure as a Firefighter. Lancet Oncol. 2022, 23, 985–986. [Google Scholar] [CrossRef]
- Padamsey, K.; Wallace, R.; Liebenberg, A.; Cross, M.; Oosthuizen, J. Fighting Fire and Fumes: Risk Awareness and Protective Practices among Western Australian Firefighters. Int. J. Wildland Fire 2024, 33, WF23147. [Google Scholar] [CrossRef]
- Padamsey, K.; Liebenberg, A.; Wallace, R.; Oosthuizen, J. Preliminary Assessment of Tunic Off-Gassing after Wildland Firefighting Exposure. Fire 2024, 7, 321. [Google Scholar] [CrossRef]
- Dong, T.; Hinwood, A.; Callan, A.; Stock, W. Emissions of Gaseous Pollutants from Laboratory-Based Fires of Vegetation from Five Common Vegetation Types in Western Australia. Atmos. Pollut. Res. 2020, 11, 180–189. [Google Scholar] [CrossRef]
- Strelein, G.J. Site Classification in the Southern Jarrah Forest of Western Australia; CABI Digital Library: Wallingford, UK, 1988. [Google Scholar]
- McCaw, L.; Simpson, G.; Mair, G. Extreme Wildfire Behaviour in 3-Year-Old Fuels in a Western Australian Mixed Eucalyptus Forest. Aust. For. 1992, 55, 107–117. [Google Scholar] [CrossRef]
- Clymo, R.S. The Ecology of Peatlands. Sci. Prog. (1933-) 1987, 71, 593–614. [Google Scholar]
- Nelson, K.; Thompson, D.; Hopkinson, C.; Petrone, R.; Chasmer, L. Peatland-Fire Interactions: A Review of Wildland Fire Feedbacks and Interactions in Canadian Boreal Peatlands. Sci. Total Environ. 2021, 769, 145212. [Google Scholar] [CrossRef]
- Hobbs, R.J.; Atkins, L. Fire-Related Dynamics of a Banksia Woodland in South-Western Western Australia. Aust. J. Bot. 1990, 38, 97–110. [Google Scholar] [CrossRef]
- Siddiqi, M.Y.; Myerscough, P.J.; Carolin, R.C. Studies in the Ecology of Coastal Heath in New South Wales: Iv. Seed Survival, Germination, Seedling Establishment and Early Growth in Banksia Serratifolia Salisb., B. Aspleniifolia Salisb. And B. Ericifolia Lf in Relation to Fire: Temperature and Nutritional Effects. Aust. J. Ecol. 1976, 1, 175–183. [Google Scholar]
- Hnatiuk, R.J.; Hopkins, A.J.M. An Ecological Analysis of Kwongan Vegetation South of Eneabba, Western Australia. Aust. J. Ecol. 1981, 6, 423–438. [Google Scholar] [CrossRef]
- Bell, D.T.; Loneragan, W.A. The Relationship of Fire and Soil Type to Floristic Patterns within Heathland Vegetation near Badgingarra, Western Australia. J. R. Soc. West. Aust. 1985, 67, 98–108. [Google Scholar]
- Hussey, B.M.J. How To Manage Your Wandoo Woodlands; Department of Conservation and Land Management: Como, Australia, 1999.
- Burrows, N.; Gardiner, G.; Ward, B.; Robinson, A. Regeneration of Eucalyptus Wandoo Following Fire. Aust. For. 1990, 53, 248–258. [Google Scholar] [CrossRef]
- Aplin, T.E.H. Poison Plants of Western Australia: The Toxic Species of the Genera Gastrolobium and Oxylobium. 1. Characteristics of the Group. J. Dep. Agric. West. Aust. Ser. 4 1967, 8, 42–52. [Google Scholar]
- Ponomarev, E.I.; Zabrodin, A.N.; Shvetsov, E.G.; Ponomareva, T.V. Wildfire Intensity and Fire Emissions in Siberia. Fire 2023, 6, 246. [Google Scholar] [CrossRef]
- Urbanski, S.P.; Hao, W.M.; Baker, S. Chemical Composition of Wildland Fire Emissions. Dev. Environ. Sci. 2008, 8, 79–107. [Google Scholar]
- Koppmann, R.; Von Czapiewski, K.; Reid, J.S. A Review of Biomass Burning Emissions, Part I: Gaseous Emissions of Carbon Monoxide, Methane, Volatile Organic Compounds, and Nitrogen Containing Compounds. Atmos. Chem. Phys. Discuss. 2005, 5, 10455–10516. [Google Scholar]
- Bushfire Centre of Excellence. Advanced Bush Firefighting; The Department of Fire and Emergency Services: Perth, Australia, 2022.
- Hu, Y.; Christensen, E.; Restuccia, F.; Rein, G. Transient Gas and Particle Emissions from Smouldering Combustion of Peat. Proc. Combust. Inst. 2019, 37, 4035–4042. [Google Scholar] [CrossRef]
- Hu, Y.; Rein, G. Development of Gas Signatures of Smouldering Peat Wildfire from Emission Factors. Int. J. Wildland Fire 2022, 31, 1014–1032. [Google Scholar] [CrossRef]
- Zheng, X.-Y.; Orellano, P.; Lin, H.-L.; Jiang, M.; Guan, W.-J. Short-Term Exposure to Ozone, Nitrogen Dioxide, and Sulphur Dioxide and Emergency Department Visits and Hospital Admissions Due to Asthma: A Systematic Review and Meta-Analysis. Environ. Int. 2021, 150, 106435. [Google Scholar] [CrossRef]
- Demirbas, A. Combustion of Biomass. Energy Sources Part A: Recovery Util. Environ. Eff. 2007, 29, 549–561. [Google Scholar] [CrossRef]
- Possell, M.; Bell, T.L. The Influence of Fuel Moisture Content on the Combustion of Eucalyptus Foliage. Int. J. Wildland Fire 2013, 22, 343–352. [Google Scholar] [CrossRef]
- Johnston, F.H.; Henderson, S.B.; Chen, Y.; Randerson, J.T.; Marlier, M.; DeFries, R.S.; Kinney, P.; Bowman, D.M.J.; Brauer, M. Estimated Global Mortality Attributable to Smoke from Landscape Fires. Environ. Health Perspect. 2012, 120, 695–701. [Google Scholar] [CrossRef] [PubMed]
- Hu, G.; Zhou, Y.; Tian, J.; Yao, W.; Li, J.; Li, B.; Ran, P. Risk of Copd from Exposure to Biomass Smoke: A Metaanalysis. Chest 2010, 138, 20–31. [Google Scholar] [CrossRef]
- Chen, H.; Samet, J.M.; Bromberg, P.A.; Tong, H. Cardiovascular Health Impacts of Wildfire Smoke Exposure. Part. Fibre Toxicol. 2021, 18, 2. [Google Scholar] [CrossRef]
- Salvi, S.; Barnes, P.J. Is Exposure to Biomass Smoke the Biggest Risk Factor for Copd Globally? Chest 2010, 138, 3–6. [Google Scholar] [CrossRef]
- International Agency for Research on Cancer. Occupational Exposure as a Firefighter. In IARC Monographs on the Identification of Carcinogenic Hazards to Humans; International Agency for Research on Cancer: Lyon, France, 2023; Volume 132, pp. 1–730. [Google Scholar]
- European Agency for Safety and Health at Work. Occupational Safety and Health in Europe: State and Trends 2023; Publications Office of the European Union: Luxembourg, 2023. [Google Scholar]
- Jacklitsch, B.L.; Williams, W.J.; Musolin, K.; Coca, A.; Kim, J.H.; Turner, N. Criteria for a Recommended Standard: Occupational Exposure to Heat and Hot Environments; DHHS (NIOSH): Cincinnati, OH, USA, 2016.
Chemical | Location | |||
---|---|---|---|---|
Wilbinga | Julimar | Badgingarra | Average | |
Carbon monoxide CO (ppm) | 25.55 | 8.47 | 19.76 | 17.93 |
Nitrogen monoxide NO (ppm) | 12.55 | 0.66 | 10.33 | 7.84 |
Sulphur dioxide SO2 (ppm) | 0.05 | 0.00 | 0.02 | 0.02 |
Acrolein C3H4O (ppm) | 0.02 | 0.11 | 0.50 | 0.21 |
Formaldehyde CHOH (ppm) | 0.38 | 0.14 | 0.58 | 0.36 |
Benzene C6H6 (ppm) | 0.59 | 0.67 | 0.56 | 0.61 |
Toluene C7H8 (ppm) | 0.05 | 0.05 | 0.07 | 0.06 |
Ethyl benzene C8H10 (ppm) | 0.10 | 0.32 | 0.03 | 0.15 |
o-Xylene C8H10 (ppm) | 0.01 | 0.05 | 0.02 | 0.02 |
Styrene C8H8 (ppm) | 1.35 | 0.06 | 0.80 | 0.73 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Padamsey, K.; Liebenberg, A.; Wallace, R.; Oosthuizen, J. Characterising the Chemical Composition of Bushfire Smoke and Implications for Firefighter Exposure in Western Australia. Fire 2024, 7, 388. https://doi.org/10.3390/fire7110388
Padamsey K, Liebenberg A, Wallace R, Oosthuizen J. Characterising the Chemical Composition of Bushfire Smoke and Implications for Firefighter Exposure in Western Australia. Fire. 2024; 7(11):388. https://doi.org/10.3390/fire7110388
Chicago/Turabian StylePadamsey, Kiam, Adelle Liebenberg, Ruth Wallace, and Jacques Oosthuizen. 2024. "Characterising the Chemical Composition of Bushfire Smoke and Implications for Firefighter Exposure in Western Australia" Fire 7, no. 11: 388. https://doi.org/10.3390/fire7110388
APA StylePadamsey, K., Liebenberg, A., Wallace, R., & Oosthuizen, J. (2024). Characterising the Chemical Composition of Bushfire Smoke and Implications for Firefighter Exposure in Western Australia. Fire, 7(11), 388. https://doi.org/10.3390/fire7110388