Eisenia bicyclis Extract Ameliorates Colitis in In Vitro and In Vivo Models Through Modulation of mTOR Axis and Gut Microbiota Composition
<p>Representative LC-MS/MS chromatograms of <span class="html-italic">E.bicyclis</span> extract. (<b>A</b>) Negative-ion TIC and (<b>B</b>) positive-ion TIC of the EB extract: 1. phloroglucinol; 2. fucodiphlorethol G; 3. dioxinodehydroeckol; 4. diphlorethol; 5. bifuhalol; 6. eckol; 7. 7-phloroeckol; 8. 2-O-(2,4,6-Trihydroxyphenyl)-6,6′-bieckol; 9. dieckol; 10. phlorofucofuroeckol A; 11. fucofuroeckol; 12. 3,4-dihydroxybenzoic acid; and 13. zingerol. EB: <span class="html-italic">E. bicyclis</span> extract.</p> "> Figure 2
<p>Inflammation-reducing effects of <span class="html-italic">E. bicyclis</span> extract (EB) in LPS-stimulated Caco-2 and RAW264.7 cells. (<b>A</b>) Cytotoxicity of EB (0–50 mg/L) against Caco-2 and RAW264.7 cells was measured using MTS assay. (<b>B</b>) IL-6 and (<b>C</b>) TNF-α levels in RAW264.7 cells treated with LPS (50 ng/mL) and EB. (<b>D</b>) Nfkb, (<b>E</b>) Inos, (<b>F</b>) Il6, and (<b>G</b>) Cox-2 mRNA expressions in RAW264.7 cells treated with LPS (50 ng/mL) and EB. (<b>H</b>) Occludin, (<b>I</b>) Zo1, and (<b>J</b>) claudin-1 mRNA expressions in Caco-2 cells treated with LPS (2 μg/mL) and EB. The data are shown as mean ± SD (n = 4), with comparisons made to the positive control (PC) group. Statistical significance was defined as * <span class="html-italic">p</span> < 0.05, ** <span class="html-italic">p</span> < 0.01, *** <span class="html-italic">p</span> < 0.001, and **** <span class="html-italic">p</span> < 0.0001. NC: negative control; PC: positive control; EB: <span class="html-italic">Ecklonia bicyclis</span> extract.</p> "> Figure 3
<p><span class="html-italic">E. bicyclis</span> extract (EB) alters cellular responses in LPS-induced Caco-2 cells. (<b>A</b>) Pi3k, (<b>B</b>) Akt, (<b>C</b>) Mtor, (<b>D</b>) S6k, (<b>E</b>) 4Ebp1, (<b>F</b>) Nfkb, and (<b>G</b>) Cox2 mRNA expressions in LPS (2 μg/mL)-stimulated Caco-2 cells with EB extracts (25 and 50 mg/L) for 4 h. β-Actin was used as the reference gene. The data are shown as mean ± SD (n = 4), with comparisons made to the positive control (PC) group. Statistical significance was defined as * <span class="html-italic">p</span> < 0.05, ** <span class="html-italic">p</span> < 0.01, *** <span class="html-italic">p</span> < 0.001, and **** <span class="html-italic">p</span> < 0.0001. (<b>H</b>) Protein expressions of p-mTOR, mTOR, p-NF-κB, NF-κB, p-S6K, S6K, and β-actin in LPS (2 μg/mL)-treated Caco-2 cells with EB extracts (25 and 50 mg/L) for 24 h. NC: negative control; PC: positive control; EB: <span class="html-italic">Ecklonia bicyclis</span> extract.</p> "> Figure 4
<p>Effects of <span class="html-italic">E. bicyclis</span> extract (EB) on sign of inflammation in UC mice. (<b>A</b>) Experimental timeline of the DSS-treated mice. (<b>B</b>) The weight changes of mice were recorded weekly. (<b>C</b>) Percentage change in body weight. (<b>D</b>) Changes in DAI scores per group after administration of DSS. (<b>E</b>) Gut length and (<b>F</b>) spleen weight were compared between the four groups. (<b>G</b>) Histological score of colon tissues stained with hematoxylin and eosin (H&E) was assessed by scoring the level of inflammation and ulceration on a scale of 0–6. (<b>H</b>) Representative images of colon tissues (magnification ×400). Data are represented as mean ± SD (n = 8/group). Significance is denoted by * <span class="html-italic">p</span> < 0.05, ** <span class="html-italic">p</span> < 0.01, *** <span class="html-italic">p</span> < 0.001, and **** <span class="html-italic">p</span> < 0.0001 (in comparison to the DSS-treated group).</p> "> Figure 5
<p>Effects of <span class="html-italic">E. bicyclis</span> extract (EB) on inflammatory markers in UC mice. (<b>A</b>) Lipocalin-2 levels in serum and (<b>B</b>–<b>E</b>) myeloperoxidase (MPO), IFN-γ, TNF-α, and IL-6 levels in colon tissue were quantified using ELISA analysis. Data are represented as mean ± SD (n = 8/group). Significance is denoted by * <span class="html-italic">p</span> < 0.05, ** <span class="html-italic">p</span> < 0.01, *** <span class="html-italic">p</span> < 0.001, and **** <span class="html-italic">p</span> < 0.0001 (relative to the DSS-treated group).</p> "> Figure 6
<p><span class="html-italic">E. bicyclis</span> extract (EB) effects on tight junctions and mTOR pathway markers in UC mice. (<b>A</b>–<b>J</b>) Nfkb, Inos, Cox2, claudin-1, occludin, Zo1, Pi3k, Akt, Mtor, and S6k mRNA levels in colon tissue. β-Actin was used as the reference gene. (<b>K</b>) p-mTOR and total mTOR protein expression in mice colon tissue. (<b>L</b>) p-mTOR/mTOR ratio was calculated. Data are represented as mean ± SD (n = 8/group). Significance is denoted by * <span class="html-italic">p</span> < 0.05, ** <span class="html-italic">p</span> < 0.01, *** <span class="html-italic">p</span> < 0.001, and **** <span class="html-italic">p</span> < 0.0001 (in comparison to the DSS-treated group).</p> "> Figure 7
<p>Impact of <span class="html-italic">E. bicyclis</span> extract (EB) on the composition and distribution of gut flora in UC mice. (<b>A</b>) Shannon index and (<b>B</b>) Faith PD for evaluating alpha-diversity. (<b>C</b>) Principal coordinate analysis (PCoA) of unweighted UniFrac distances. (<b>D</b>) Taxonomic analysis of microbiota at the phylum and genus levels. (<b>E</b>) The relative abundance of <span class="html-italic">Firmicutes</span> to <span class="html-italic">Bacteroidota.</span> (<b>F</b>–<b>H</b>) Abundance differences of specific microbial groups between DSS and EB groups. Data are expressed as box and whisker plots (n = 3 or 4; fecal DNA from 2 mice was pooled into one sample for 16S sequencing). (<b>I</b>) Quantitative PCR results for <span class="html-italic">Akkermansia muciniphila</span>, (<b>J</b>) <span class="html-italic">Bifidobacterium bifidum</span>, (<b>K</b>) <span class="html-italic">Lactobacillus plantarum</span>, and (<b>L</b>) <span class="html-italic">Lactococcus lactis</span>. The relative abundance of bacterial groups was represented as the ratio of total bacteria (F341/R518). Data are expressed as mean ± SD (n = 8/group). Compared between the control and the DSS group, # <span class="html-italic">p</span> < 0.05, ## <span class="html-italic">p</span> < 0.01, and #### <span class="html-italic">p</span> < 0.0001. Compared between the DSS group and the EB group, * <span class="html-italic">p</span> < 0.05, ** <span class="html-italic">p</span> < 0.01, and **** <span class="html-italic">p</span> < 0.0001 by nonparametric Mann–Whitney U test. (<b>M</b>) Spearman correlation analysis was performed to assess the relationship between gut microbiota species and UC-related indices (* <span class="html-italic">p</span> < 0.05, ** <span class="html-italic">p</span> < 0.01).</p> ">
Abstract
:1. Introduction
2. Materials and Methods
2.1. Preparation of E. bicyclis Extract
2.2. Liquid Chromatography–Tandem Mass Spectrometry Conditions
2.3. Cell Culture
2.4. Animal Experimental Design
2.5. Histopathological Testing
2.6. RT-PCR
2.7. ELISA Assay
2.8. Western Blot for Protein Detection
2.9. Gut Microbiota Analysis
2.10. Statistical Analysis
3. Results
3.1. Phenolic Composition and Content in E. bicyclis Extract
3.2. Effects of E. bicyclis Extracts in LPS-Stimulated Cell Models
3.3. Effects of E. bicyclis Extract on mTOR Axis in LPS-Treated Caco-2 Cells
3.4. Effects of E. bicyclis Extract on Histological Changes in DSS-Treated Mice
3.5. Effects of E. bicyclis Extract on Inflammatory Biomarkers in DSS-Exposed Mice
3.6. E. bicyclis Extract Improves Colitis in Mice by Inhibiting the mTOR Axis
3.7. Effects of E. bicyclis Extract on Gut Microbiota
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Sands, B.E. From symptom to diagnosis: Clinical distinctions among various forms of intestinal inflammation. Gastroenterology 2004, 126, 1518–1532. [Google Scholar] [CrossRef]
- Burisch, J.; Munkholm, P. Inflammatory bowel disease epidemiology. Curr. Opin. Gastroenterol. 2013, 29, 357–362. [Google Scholar] [CrossRef] [PubMed]
- Kucharzik, T.; Koletzko, S.; Kannengiesser, K.; Dignass, A. Ulcerative colitis—Diagnostic and therapeutic algorithms. Dtsch. Ärzteblatt Int. 2020, 117, 564. [Google Scholar] [CrossRef] [PubMed]
- Silva, A.; Cassani, L.; Grosso, C.; Garcia-Oliveira, P.; Morais, S.L.; Echave, J.; Carpena, M.; Xiao, J.; Barroso, M.F.; Simal-Gandara, J. Recent advances in biological properties of brown algae-derived compounds for nutraceutical applications. Crit. Rev. Food Sci. Nutr. 2024, 64, 1283–1311. [Google Scholar] [CrossRef] [PubMed]
- Choi, S.-I.; Han, H.-S.; Kim, J.-M.; Park, G.; Jang, Y.-P.; Shin, Y.-K.; Ahn, H.-S.; Lee, S.-H.; Lee, K.-T. Eisenia bicyclis extract repairs uvb-induced skin photoaging in vitro and in vivo: Photoprotective effects. Mar. Drugs 2021, 19, 693. [Google Scholar] [CrossRef] [PubMed]
- Kim, J.-M.; Chung, K.-S.; Yoon, Y.-S.; Jang, S.-Y.; Heo, S.-W.; Park, G.; Jang, Y.-P.; Ahn, H.-S.; Shin, Y.-K.; Lee, S.-H. Dieckol isolated from eisenia bicyclis ameliorates wrinkling and improves skin hydration via mapk/ap-1 and tgf-β/smad signaling pathways in uvb-irradiated hairless mice. Mar. Drugs 2022, 20, 779. [Google Scholar] [CrossRef]
- Zheng, H.; Zhao, Y.; Guo, L. A bioactive substance derived from brown seaweeds: Phlorotannins. Mar. Drugs 2022, 20, 742. [Google Scholar] [CrossRef]
- Gomes, I.; Rodrigues, H.; Rodrigues, C.; Marques, M.; Paíga, P.; Paiva, A.; Simões, P.; Fernandes, V.C.; Vieira, M.; Delerue-Matos, C. Evaluation of the biological potential of himanthalia elongata (l.) sf gray and eisenia bicyclis (kjellman) setchell subcritical water extracts. Foods 2022, 11, 746. [Google Scholar] [CrossRef]
- Pacheco, L.V.; Parada, J.; Pérez-Correa, J.R.; Mariotti-Celis, M.S.; Erpel, F.; Zambrano, A.; Palacios, M. Bioactive polyphenols from southern chile seaweed as inhibitors of enzymes for starch digestion. Mar. Drugs 2020, 18, 353. [Google Scholar] [CrossRef]
- Obluchinskaya, E.D.; Pozharitskaya, O.N.; Shevyrin, V.A.; Kovaleva, E.G.; Flisyuk, E.V.; Shikov, A.N. Optimization of extraction of phlorotannins from the arctic fucus vesiculosus using natural deep eutectic solvents and their hplc profiling with tandem high-resolution mass spectrometry. Mar. Drugs 2023, 21, 263. [Google Scholar] [CrossRef] [PubMed]
- Rajan, D.K.; Mohan, K.; Zhang, S.; Ganesan, A.R. Dieckol: A brown algal phlorotannin with biological potential. Biomed. Pharmacother. 2021, 142, 111988. [Google Scholar] [CrossRef] [PubMed]
- Zhu, Y.; Guo, J.; Hu, X.; Liu, J.; Li, S.; Wang, J. Eckol protects against acute experimental colitis in mice: Possible involvement of reg3g. J. Funct. Foods 2020, 73, 104088. [Google Scholar] [CrossRef]
- Zhu, X.; Sun, Y.; Zhang, Y.; Su, X.; Luo, C.; Alarifi, S.; Yang, H. Dieckol alleviates dextran sulfate sodium-induced colitis via inhibition of inflammatory pathway and activation of nrf2/ho-1 signaling pathway. Environ. Toxicol. 2021, 36, 782–788. [Google Scholar] [CrossRef] [PubMed]
- Bossler, F.; Hoppe-Seyler, K.; Hoppe-Seyler, F. Pi3k/akt/mtor signaling regulates the virus/host cell crosstalk in hpv-positive cervical cancer cells. Int. J. Mol. Sci. 2019, 20, 2188. [Google Scholar] [CrossRef] [PubMed]
- Li, T.; Wang, G. Computer-aided targeting of the pi3k/akt/mtor pathway: Toxicity reduction and therapeutic opportunities. Int. J. Mol. Sci. 2014, 15, 18856–18891. [Google Scholar] [CrossRef] [PubMed]
- Porta, C.; Paglino, C.; Mosca, A. Targeting pi3k/akt/mtor signaling in cancer. Front. Oncol. 2014, 4, 64. [Google Scholar] [CrossRef]
- Torrealba, N.; Vera, R.; Fraile, B.; Martinez-Onsurbe, P.; Paniagua, R.; Royuela, M. Tgf-β/pi3k/akt/mtor/nf-kb pathway. Clinicopathological features in prostate cancer. In The Aging Male; Taylor Francis: Abingdon, UK, 2020. [Google Scholar]
- Atreya, I.; Atreya, R.; Neurath, M. Nf-κb in inflammatory bowel disease. J. Intern. Med. 2008, 263, 591–596. [Google Scholar] [CrossRef] [PubMed]
- Clayburgh, D.R.; Shen, L.; Turner, J.R. A porous defense: The leaky epithelial barrier in intestinal disease. Lab. Investig. 2004, 84, 282–291. [Google Scholar] [CrossRef] [PubMed]
- Guo, X.Y.; Liu, X.J.; Hao, J.Y. Gut microbiota in ulcerative colitis: Insights on pathogenesis and treatment. J. Dig. Dis. 2020, 21, 147–159. [Google Scholar] [CrossRef] [PubMed]
- Khan, I.; Ullah, N.; Zha, L.; Bai, Y.; Khan, A.; Zhao, T.; Che, T.; Zhang, C. Alteration of gut microbiota in inflammatory bowel disease (ibd): Cause or consequence? Ibd treatment targeting the gut microbiome. Pathogens 2019, 8, 126. [Google Scholar] [CrossRef] [PubMed]
- Kumari, R.; Ahuja, V.; Paul, J. Fluctuations in butyrate-producing bacteria in ulcerative colitis patients of north india. World J. Gastroenterol. 2013, 19, 3404. [Google Scholar] [CrossRef] [PubMed]
- Alves-Santos, A.M.; Sugizaki, C.S.A.; Lima, G.C.; Naves, M.M.V. Prebiotic effect of dietary polyphenols: A systematic review. J. Funct. Foods 2020, 74, 104169. [Google Scholar] [CrossRef]
- Go, Y.G.; Wang, Q.; Park, J.; Lee, H.-J.; Kim, H. Phlorotannins isolated from eisenia bicyclis and lactobacillus casei ameliorate dextran sulfate sodium-induced colitis in mice through the ahr pathway. Appl. Sci. 2024, 14, 2835. [Google Scholar] [CrossRef]
- Kim, T.-H.; Ko, S.-C.; Oh, G.-W.; Park, H.-H.; Lee, D.-S.; Yim, M.-J.; Lee, J.M.; Yoo, J.S.; Kim, C.-S.; Choi, I.-W. Studies on bioactive substances and antioxidant activities of marine algae from jeju island. J. Mar. Biotechnol. 2016, 8, 30–38. [Google Scholar] [CrossRef]
- Swain, T.; Hillis, W. The phenolic constituents of prunus domestica. I.—The quantitative analysis of phenolic constituents. J. Sci. Food Agric. 1959, 10, 63–68. [Google Scholar] [CrossRef]
- Cassano, A.; Conidi, C.; Ruby-Figueroa, R. Recovery of flavonoids from orange press liquor by an integrated membrane process. Membranes 2014, 4, 509–524. [Google Scholar] [CrossRef] [PubMed]
- Kumar, Y.; Singhal, S.; Tarafdar, A.; Pharande, A.; Ganesan, M.; Badgujar, P.C. Ultrasound assisted extraction of selected edible macroalgae: Effect on antioxidant activity and quantitative assessment of polyphenols by liquid chromatography with tandem mass spectrometry (lc-ms/ms). Algal Res. 2020, 52, 102114. [Google Scholar] [CrossRef]
- Kamiloglu, S.; Sari, G.; Ozdal, T.; Capanoglu, E. Guidelines for cell viability assays. Food Front. 2020, 1, 332–349. [Google Scholar] [CrossRef]
- Facchin, B.M.; Dos Reis, G.O.; Vieira, G.N.; Mohr, E.T.B.; da Rosa, J.S.; Kretzer, I.F.; Demarchi, I.G.; Dalmarco, E.M. Inflammatory biomarkers on an lps-induced raw 264.7 cell model: A systematic review and meta-analysis. Inflamm. Res. 2022, 71, 741–758. [Google Scholar] [CrossRef] [PubMed]
- Chassaing, B.; Aitken, J.D.; Malleshappa, M.; Vijay-Kumar, M. Dextran sulfate sodium (dss)-induced colitis in mice. Curr. Protoc. Immunol. 2014, 104, 15.25.1–15.25.14. [Google Scholar] [CrossRef]
- Xu, H.M.; Huang, H.L.; Liu, Y.D.; Zhu, J.Q.; Zhou, Y.L.; Chen, H.T.; Xu, J.; Zhao, H.L.; Guo, X.; Shi, W.; et al. Selection strategy of dextran sulfate sodium-induced acute or chronic colitis mouse models based on gut microbial profile. BMC Microbiol. 2021, 21, 279. [Google Scholar] [CrossRef]
- Gu, W.; Zhang, L.; Han, T.; Huang, H.; Chen, J. Dynamic changes in gut microbiome of ulcerative colitis: Initial study from animal model. J. Inflamm. Res. 2022, 15, 2631–2647. [Google Scholar] [CrossRef] [PubMed]
- Ghaly, S.; Kaakoush, N.O.; Lloyd, F.; McGonigle, T.; Mok, D.; Baird, A.; Klopcic, B.; Gordon, L.; Gorman, S.; Forest, C. High dose vitamin d supplementation alters faecal microbiome and predisposes mice to more severe colitis. Sci. Rep. 2018, 8, 11511. [Google Scholar] [CrossRef] [PubMed]
- Lan, J.; Dou, X.; Li, J.; Yang, Y.; Xue, C.; Wang, C.; Gao, N.; Shan, A. L-arginine ameliorates lipopolysaccharide-induced intestinal inflammation through inhibiting the tlr4/nf-κb and mapk pathways and stimulating β-defensin expression in vivo and in vitro. J. Agric. Food Chem. 2020, 68, 2648–2663. [Google Scholar] [CrossRef]
- Im, Y.; Wang, Q.; Park, J.; Lee, H.; Kim, H. Sargassum horneri extract ameliorates dss-induced colitis through modulation of mtor axis and intestinal microbiota. Appl. Sci. 2023, 13, 1742. [Google Scholar] [CrossRef]
- Kim, H.; Wang, Q.; Im, Y.; Yan, J.; Kim, D.; Kang, J.H. Anti-inflammatory effects of gallotannin in combination with lactobacillus plantarum in a dss-induced colitis mouse model. Curr. Dev. Nutr. 2022, 6, 298. [Google Scholar] [CrossRef]
- Kim, D.; Yan, J.; Bak, J.; Park, J.; Lee, H.; Kim, H. Sargassum thunbergii extract attenuates high-fat diet-induced obesity in mice by modulating ampk activation and the gut microbiota. Foods 2022, 11, 2529. [Google Scholar] [CrossRef]
- Lim, S.-B.; Lee, J.; Yang, Y.-H.; Son, H.; Yoo, H.Y.; Han, J.-A. Development of a novel functional jelly with dieckol-rich extract from eisenia bicyclis: Physicochemical, antioxidant, and sensory characterization. Food Chem. X 2024, 24, 102044. [Google Scholar] [CrossRef] [PubMed]
- Moschen, A.R.; Adolph, T.E.; Gerner, R.R.; Wieser, V.; Tilg, H. Lipocalin-2: A master mediator of intestinal and metabolic inflammation. Trends Endocrinol. Metab. 2017, 28, 388–397. [Google Scholar] [CrossRef] [PubMed]
- Stallhofer, J.; Friedrich, M.; Konrad-Zerna, A.; Wetzke, M.; Lohse, P.; Glas, J.; Tillack-Schreiber, C.; Schnitzler, F.; Beigel, F.; Brand, S. Lipocalin-2 is a disease activity marker in inflammatory bowel disease regulated by il-17a, il-22, and tnf-α and modulated by il23r genotype status. Inflamm. Bowel Dis. 2015, 21, 2327–2340. [Google Scholar] [CrossRef]
- Hansberry, D.R.; Shah, K.; Agarwal, P.; Agarwal, N. Fecal myeloperoxidase as a biomarker for inflammatory bowel disease. Cureus 2017, 9, e1004. [Google Scholar] [CrossRef]
- Cioffi, M.; De Rosa, A.; Serao, R.; Picone, I.; Vietri, M.T. Laboratory markers in ulcerative colitis: Current insights and future advances. World J. Gastrointest. Pathophysiol. 2015, 6, 13. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Li, P.; Liu, S.; Zhang, B.; Hu, Y.; Ma, H.; Wang, S. Green tea leaf powder prevents dyslipidemia in high-fat diet-fed mice by modulating gut microbiota. Food Nutr. Res. 2020, 64, 3672. [Google Scholar] [CrossRef]
- Luo, D.; Chen, K.; Li, J.; Fang, Z.; Pang, H.; Yin, Y.; Rong, X.; Guo, J. Gut microbiota combined with metabolomics reveals the metabolic profile of the normal aging process and the anti-aging effect of fufang zhenshu tiaozhi (ftz) in mice. Biomed. Pharmacother. 2020, 121, 109550. [Google Scholar] [CrossRef] [PubMed]
- Creff, J.; Malaquin, L.; Besson, A. In vitro models of intestinal epithelium: Toward bioengineered systems. J. Tissue Eng. 2021, 12, 2041731420985202. [Google Scholar] [CrossRef] [PubMed]
- Antunes, F.; Andrade, F.; Araújo, F.; Ferreira, D.; Sarmento, B. Establishment of a triple co-culture in vitro cell models to study intestinal absorption of peptide drugs. Eur. J. Pharm. Biopharm. 2013, 83, 427–435. [Google Scholar] [CrossRef] [PubMed]
- Kim, H.; Banerjee, N.; Barnes, R.C.; Pfent, C.M.; Talcott, S.T.; Dashwood, R.H.; Mertens-Talcott, S.U. Mango polyphenolics reduce inflammation in intestinal colitis—Involvement of the mir-126/pi3k/akt/mtor axis in vitro and in vivo. Mol. Carcinog. 2017, 56, 197–207. [Google Scholar] [CrossRef]
- Bhonde, M.R.; Gupte, R.D.; Dadarkar, S.D.; Jadhav, M.G.; Tannu, A.A.; Bhatt, P.; Bhatia, D.R.; Desai, N.K.; Deore, V.; Yewalkar, N. A novel mtor inhibitor is efficacious in a murine model of colitis. Am. J. Physiol.-Gastrointest. Liver Physiol. 2008, 295, G1237–G1245. [Google Scholar] [CrossRef]
- Edelblum, K.L.; Turner, J.R. The tight junction in inflammatory disease: Communication breakdown. Curr. Opin. Pharmacol. 2009, 9, 715–720. [Google Scholar] [CrossRef]
- Chen, L.; Li, L.; Han, Y.; Lv, B.; Zou, S.; Yu, Q. Tong-fu-li-fei decoction exerts a protective effect on intestinal barrier of sepsis in rats through upregulating zo-1/occludin/claudin-1 expression. J. Pharmacol. Sci. 2020, 143, 89–96. [Google Scholar] [CrossRef] [PubMed]
- Yuan, M.; Chen, X.; Su, T.; Zhou, Y.; Sun, X. Supplementation of kiwifruit polyphenol extract attenuates high fat diet induced intestinal barrier damage and inflammation via reshaping gut microbiome. Front. Nutr. 2021, 8, 702157. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.; Lei, H.; Hu, X.; Dong, W. Hesperetin ameliorates dss-induced colitis by maintaining the epithelial barrier via blocking ripk3/mlkl necroptosis signaling. Eur. J. Pharmacol. 2020, 873, 172992. [Google Scholar] [CrossRef] [PubMed]
- Solomon, L.; Mansor, S.; Mallon, P.; Donnelly, E.; Hoper, M.; Loughrey, M.; Kirk, S.; Gardiner, K. The dextran sulphate sodium (dss) model of colitis: An overview. Comp. Clin. Path. 2010, 19, 235–239. [Google Scholar] [CrossRef]
- Kim, J.J.; Shajib, M.S.; Manocha, M.M.; Khan, W.I. Investigating intestinal inflammation in dss-induced model of ibd. JoVE (J. Vis. Exp.) 2012, 60, e3678. [Google Scholar] [CrossRef]
- Moschen, A.R.; Gerner, R.R.; Wang, J.; Klepsch, V.; Adolph, T.E.; Reider, S.J.; Hackl, H.; Pfister, A.; Schilling, J.; Moser, P.L. Lipocalin 2 protects from inflammation and tumorigenesis associated with gut microbiota alterations. Cell Host Microbe 2016, 19, 455–469. [Google Scholar] [CrossRef]
- Chen, S.; Chen, H.; Du, Q.; Shen, J. Targeting myeloperoxidase (mpo) mediated oxidative stress and inflammation for reducing brain ischemia injury: Potential application of natural compounds. Front. Physiol. 2020, 11, 433. [Google Scholar] [CrossRef]
- Fujiwara, N.; Kobayashi, K. Macrophages in inflammation. Curr. Drug Targets 2005, 4, 281–286. [Google Scholar] [CrossRef] [PubMed]
- Thomson, A.W.; Turnquist, H.R.; Raimondi, G. Immunoregulatory functions of mtor inhibition. Nat. Rev. Immunol. 2009, 9, 324–337. [Google Scholar] [CrossRef] [PubMed]
- Delgoffe, G.M.; Kole, T.P.; Zheng, Y.; Zarek, P.E.; Matthews, K.L.; Xiao, B.; Worley, P.F.; Kozma, S.C.; Powell, J.D. The mtor kinase differentially regulates effector and regulatory t cell lineage commitment. Immunity 2009, 30, 832–844. [Google Scholar] [CrossRef] [PubMed]
- Yoon, J.H.; Lee, N.; Youn, K.; Jo, M.R.; Kim, H.R.; Lee, D.S.; Ho, C.T.; Jun, M. Dieckol ameliorates aβ production via pi3k/akt/gsk-3β regulated app processing in sweapp n2a cell. Mar. Drugs 2021, 19, 152. [Google Scholar] [CrossRef] [PubMed]
- Manandhar, B.; Paudel, P.; Seong, S.H.; Jung, H.A.; Choi, J.S. Characterizing eckol as a therapeutic aid: A systematic review. Mar. Drugs 2019, 17, 361. [Google Scholar] [CrossRef] [PubMed]
- Wu, Y.; Wang, Z.; Fu, X.; Lin, Z.; Yu, K. Geraniol-mediated osteoarthritis improvement by down-regulating pi3k/akt/nf-κb and mapk signals: In vivo and in vitro studies. Int. Immunopharmacol. 2020, 86, 106713. [Google Scholar] [CrossRef] [PubMed]
- Lee, S.-H.; Eom, S.-H.; Yoon, N.-Y.; Kim, M.-M.; Li, Y.-X.; Ha, S.K.; Kim, S.-K. Fucofuroeckol-a from eisenia bicyclis inhibits inflammation in lipopolysaccharide-induced mouse macrophages via downregulation of the mapk/nf-κb signaling pathway. J. Chem. 2016, 2016, 6509212. [Google Scholar] [CrossRef]
- Parada Venegas, D.; De la Fuente, M.K.; Landskron, G.; González, M.J.; Quera, R.; Dijkstra, G.; Harmsen, H.J.M.; Faber, K.N.; Hermoso, M.A. Short chain fatty acids (scfas)-mediated gut epithelial and immune regulation and its relevance for inflammatory bowel diseases. Front. Immunol. 2019, 10, 277. [Google Scholar]
- Baan, B.; Dihal, A.A.; Hoff, E.; Bos, C.L.; Voorneveld, P.W.; Koelink, P.J.; Wildenberg, M.E.; Muncan, V.; Heijmans, J.; Verspaget, H.W. 5-aminosalicylic acid inhibits cell cycle progression in a phospholipase d dependent manner in colorectal cancer. Gut 2012, 61, 1708–1715. [Google Scholar] [CrossRef]
- Deepika, D.; Kumar, S.; Bravo, N.; Esplugas, R.; Capodiferro, M.; Sharma, R.P.; Schuhmacher, M.; Grimalt, J.O.; Blanco, J.; Kumar, V. Chlorpyrifos, permethrin and cyfluthrin effect on cell survival, permeability, and tight junction in an in-vitro model of the human blood-brain barrier (bbb). Neurotoxicology 2022, 93, 152–162. [Google Scholar] [CrossRef] [PubMed]
- Vázquez-Rodríguez, B.; Santos-Zea, L.; Heredia-Olea, E.; Acevedo-Pacheco, L.; Santacruz, A.; Gutiérrez-Uribe, J.A.; Cruz-Suárez, L.E. Effects of phlorotannin and polysaccharide fractions of brown seaweed silvetia compressa on human gut microbiota composition using an in vitro colonic model. J. Funct. Foods 2021, 84, 104596. [Google Scholar] [CrossRef]
- Zou, J.; Liu, C.; Jiang, S.; Qian, D.; Duan, J. Cross talk between gut microbiota and intestinal mucosal immunity in the development of ulcerative colitis. Infect. Immun. 2021, 89, e00014-21. [Google Scholar] [CrossRef] [PubMed]
- Catarino, M.D.; Marçal, C.; Bonifácio-Lopes, T.; Campos, D.; Mateus, N.; Silva, A.M.; Pintado, M.M.; Cardoso, S.M. Impact of phlorotannin extracts from fucus vesiculosus on human gut microbiota. Mar. Drugs 2021, 19, 375. [Google Scholar] [CrossRef]
- Kim, Y.-M.; Kim, H.-Y.; Jang, J.-T.; Hong, S. Preventive effect of ecklonia cava extract on dss-induced colitis by elevating intestinal barrier function and improving pathogenic inflammation. Molecules 2023, 28, 8099. [Google Scholar] [CrossRef]
- Hills, R.D.; Pontefract, B.A.; Mishcon, H.R.; Black, C.A.; Sutton, S.C.; Theberge, C.R. Gut microbiome: Profound implications for diet and disease. Nutrients 2019, 11, 1613. [Google Scholar] [CrossRef] [PubMed]
- Tian, L.; Zhao, R.; Xu, X.; Zhou, Z.; Xu, X.; Luo, D.; Zhou, Z.; Liu, Y.; Kushmaro, A.; Marks, R.S. Modulatory effects of lactiplantibacillus plantarum on chronic metabolic diseases. Food Sci. Hum. Wellness 2023, 12, 959–974. [Google Scholar] [CrossRef]
- Saleena, L.A.K.; Teo, M.Y.M.; How, Y.H.; In, L.L.A.; Pui, L.P. Immunomodulatory action of lactococcus lactis. J. Biosci. Bioeng. 2023, 135, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Morsy, M.A.; Gupta, S.; Nair, A.B.; Venugopala, K.N.; Greish, K.; El-Daly, M. Protective effect of spirulina platensis extract against dextran-sulfate-sodium-induced ulcerative colitis in rats. Nutrients 2019, 11, 2309. [Google Scholar] [CrossRef] [PubMed]
- Reagan-Shaw, S.; Nihal, M.; Ahmad, N. Dose translation from animal to human studies revisited. FASEB J. 2008, 22, 659–661. [Google Scholar] [CrossRef] [PubMed]
- Lubbs, D.; Vester, B.; Fastinger, N.; Swanson, K. Dietary protein concentration affects intestinal microbiota of adult cats: A study using dgge and qpcr to evaluate differences in microbial populations in the feline gastrointestinal tract. J. Anim. Physiol. Anim. Nutr. (Berl.) 2009, 93, 113–121. [Google Scholar] [CrossRef] [PubMed]
- Collado, M.C.; Derrien, M.; Isolauri, E.; de Vos, W.M.; Salminen, S. Intestinal integrity and akkermansia muciniphila, a mucin-degrading member of the intestinal microbiota present in infants, adults, and the elderly. Appl. Environ. Microbiol. 2007, 73, 7767–7770. [Google Scholar] [CrossRef] [PubMed]
- Sul, S.-Y.; Kim, H.-J.; Kim, T.-W.; Kim, H.-Y. Rapid identification of lactobacillus and bifidobacterium in probiotic products using multiplex pcr. J. Microbiol. Biotechnol. 2007, 17, 490–495. [Google Scholar] [PubMed]
- Bartkiene, E.; Bartkevics, V.; Rusko, J.; Starkute, V.; Bendoraitiene, E.; Zadeike, D.; Juodeikiene, G. The effect of pediococcus acidilactici and lactobacillus sakei on biogenic amines formation and free amino acid profile in different lupin during fermentation. LWT 2016, 74, 40–47. [Google Scholar] [CrossRef]
- Achilleos, C.; Berthier, F. Quantitative pcr for the specific quantification of lactococcus lactis and lactobacillus paracasei and its interest for lactococcus lactis in cheese samples. Food Microbiol. 2013, 36, 286–295. [Google Scholar] [CrossRef] [PubMed]
EB Extract | ||||||
---|---|---|---|---|---|---|
Component Name | Ion Type | Formula | RT (min) | μg PGE/mg * | m/z | |
Phlorotannins | ||||||
1 | Phloroglucinol | [M+H]+ | C6H6O3 | 3.2 | 8.22 | 127.03 |
2 | Fucodiphlorethol G | [M+H]+ | C24H18O12 | 4.16 | 0.77 | 499.08 |
3 | Dioxinodehydroeckol | [M+H]+ | C18H10O9 | 8.49 | 0.60 | 371.03 |
4 | Diphlorethol | [M−H]− | C12H10O6 | 4.11 | 0.12 | 249.04 |
5 | Bifuhalol | [M−H]− | C12H10O7 | 4.62 | 0.43 | 265.03 |
6 | Eckol | [M−H]− | C18H12O9 | 6.81 | 20.16 | 371.04 |
7 | 7-Phloroeckol | [M−H]− | C24H16O12 | 6.89 | 18.55 | 495.05 |
8 | 2-O-(2,4,6-Trihydroxyphenyl)-6,6′-bieckol | [M−H]− | C42H26O21 | 7.17 | 1.42 | 865.09 |
9 | Dieckol | [M−H]− | C36H22O18 | 8.32 | 16.53 | 741.07 |
10 | Phlorofucofuroeckol A | [M−H]− | C30H18O14 | 9.31 | 15.13 | 601.06 |
11 | Fucofuroeckol | [M−H]− | C24H14O11 | 9.71 | 9.71 | 477.04 |
Etc. | ||||||
12 | 3,4-Dihydroxybenzoic acid | [M−H]− | C7H6O4 | 3.95 | 0.25 | 153.01 |
13 | Zingerol | [M+H]+ | C11H16O3 | 7.44 | 3.42 | 197.11 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, Q.; Im, Y.; Park, J.; Lee, H.L.; Ryu, D.G.; Kim, H. Eisenia bicyclis Extract Ameliorates Colitis in In Vitro and In Vivo Models Through Modulation of mTOR Axis and Gut Microbiota Composition. Foods 2025, 14, 714. https://doi.org/10.3390/foods14050714
Wang Q, Im Y, Park J, Lee HL, Ryu DG, Kim H. Eisenia bicyclis Extract Ameliorates Colitis in In Vitro and In Vivo Models Through Modulation of mTOR Axis and Gut Microbiota Composition. Foods. 2025; 14(5):714. https://doi.org/10.3390/foods14050714
Chicago/Turabian StyleWang, Qunzhe, Yuri Im, Jumin Park, Hye Lim Lee, Dae Gon Ryu, and Hyemee Kim. 2025. "Eisenia bicyclis Extract Ameliorates Colitis in In Vitro and In Vivo Models Through Modulation of mTOR Axis and Gut Microbiota Composition" Foods 14, no. 5: 714. https://doi.org/10.3390/foods14050714
APA StyleWang, Q., Im, Y., Park, J., Lee, H. L., Ryu, D. G., & Kim, H. (2025). Eisenia bicyclis Extract Ameliorates Colitis in In Vitro and In Vivo Models Through Modulation of mTOR Axis and Gut Microbiota Composition. Foods, 14(5), 714. https://doi.org/10.3390/foods14050714