Chromatographic Comparison of Commercially Available Columns for Liquid Chromatography in Polar Pesticide Detection and Quantification Using a Score-Based Methodology
<p>Chemical Structures of main polar pesticides; AMPA, N-Acetyl Glyphosate are metabolites of Glyphosate, N-Acetyl Glufosinate G and MPP are Glufosinate metabolites.</p> "> Figure 2
<p>Cyanuric acid (<b>top</b>) and N-Acetyl Glyphosate (<b>bottom</b>) peaks, the concentration of which is 0.005 mg/Kg, with an APP chromatographic column.</p> "> Figure 3
<p>From Top to the Bottom: Glyphosate peak on Hypercarb, Injection Number 1, 15, 35 and 50.</p> "> Figure 4
<p>From Top to the Bottom: Glyphosate Peak on Raptor Polar X, Injection Number 1, 15, 35, and 50.</p> "> Figure 5
<p>From Top to the Bottom: Glyphosate peak on APP, Injection Number 1, 15, 35 and 50.</p> "> Figure 6
<p>From Top to Bottom: Cyanuric Acid, Maleic Hydrazide, and N-Acetyl Glyphosate on Raptor Polar X at LOD.</p> "> Figure 7
<p>From top to bottom, Cyanuric Acid, Maleic Hydrazide, and N-Acetyl Glyphosate on the APP at LOD.</p> "> Figure 8
<p>Peaks of Etephon (<b>top</b>) and Fosetyl Al (<b>bottom</b>) on Hypercarb at the first (<b>left</b>) and 500th injection (<b>right</b>).</p> "> Figure 9
<p>Peaks of Etephon (<b>top</b>) and Fosetyl Al (<b>bottom</b>) on APP at the first (<b>left</b>) and 500th injection (<b>right</b>).</p> "> Figure 10
<p>Peaks of Etephon (<b>top</b>) and Fosetyl Al (<b>bottom</b>) on Raptor Polar X at the first (<b>left</b>) and 500th injection (<b>right</b>).</p> "> Figure 11
<p>LC-HRMS chromatograms of chicken egg samples spiked with 0.005 mg/kg of AMPA, Etephon, Fosetyl Al, Glyphosate, HEPA, Maleic Hydrazide, N-Acetyl Glyphosate and Cyanuric Acid with 0.001 mg/kg for Glufosinate, MPP e N-Acetyl Glyphosate with the three columns of the present study: Raptor polar X (30 × 2.1 mm, 2.7 µm); Hypercarb™ (100 × 2.1 mm; 5 µm); Anionic Polar Pesticides (APP) (100 × 2.1 mm; 5 µm).</p> ">
Abstract
:1. Introduction
2. Materials and Methods
2.1. Reagents, Standard Solution, and Materials
2.2. Samples
2.3. Column Selection
2.4. Analytical Method
2.4.1. Extraction Method
2.4.2. Chromatographic Methods
Time (min) | Flow Rate (mL/min) | % A | % B |
---|---|---|---|
0 | 0.5 | 35 | 65 |
5 | 0.5 | 90 | 10 |
11.5 | 0.5 | 90 | 10 |
11.51 | 0.5 | 35 | 65 |
13 | 0.5 | 35 | 65 |
Time (min) | Flow Rate (mL/min) | % A | % B |
---|---|---|---|
0 | 0.5 | 35 | 65 |
5 | 0.5 | 90 | 10 |
11.5 | 0.5 | 90 | 10 |
11.51 | 0.5 | 35 | 65 |
13 | 0.5 | 35 | 65 |
Time (min) | Flow Rate (mL/min) | % A | % B |
---|---|---|---|
0 | 0.5 | 10 | 90 |
4 | 0.5 | 85 | 15 |
13 | 0.5 | 85 | 15 |
18.5 | 0.5 | 10 | 90 |
2.4.3. Acquisition Method
2.5. Column Selection Criteria
2.5.1. Conditioning or Passivation (Y/N)
2.5.2. Peak Shape and Symmetry
2.5.3. Stability Test
2.5.4. Sensitivity Test
2.5.5. Retention Factor ()
2.5.6. Chromatographic Column Life
- 200 initial injections;
- 75 injections for stability and sensitivity tests;
- 200 final injections.
2.5.7. Supplementary Extra Molecules
3. Results and Discussion
3.1. Conditioning or Passivation Results
3.2. Peak Shape and Symmetry Results
3.3. Stability Test Results
3.4. Sensitivity Test Results
3.5. Retention Factor (k) Results
3.6. Chromatographic Column Life Results
3.7. Supplementary Molecules
3.8. Methodological Improvement of Column Performance Evaluation in Comparison with QuPPe
- −
- Hypercarb, Comparison present study vs. QuPPe LC-MS/MS method M1.3:
- −
- APPC, Comparison present study vs. QuPPe LC-MS/MS method M1.6:
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Powles, S.B. Evolved glyphosate-resistant weeds around the world: Lessons to be learnt. Pest. Manag. Sci. 2008, 64, 360–365. [Google Scholar] [CrossRef] [PubMed]
- Verdini, E.; Pecorelli, I. The Current Status of Analytical Methods Applied to the Determination of Polar Pesticides in Food of Animal Origin: A Brief Review. Foods 2022, 11, 152. [Google Scholar] [CrossRef] [PubMed]
- Zhang, L.; Rana, I.; Shaffer, R.M.; Taioli, E.; Sheppard, L. Exposure to glyphosate-based herbicides and risk for non-Hodgkin lymphoma: A meta-analysis and supporting evidence. Mutat. Res. Rev. Mutat. Res. 2019, 781, 186–206. [Google Scholar] [CrossRef]
- European Commission. Directorate-General for Health and Food Safety Commission Implementing Regulation (EU) 2021/601 of 13 April 2021 concerning a coordinated multiannual control program of the Union for 2022, 2023 and 2024 to ensure compliance with maximum residue levels of pesticides and to assess the consumer exposure to pesticide residues in and on food of plant and animal origin. Off. J. Eur. Union 2021, L 127, 29–41. [Google Scholar]
- Euerby, M.R.; Petersson, P. Chromatographic classification and comparison of commercially available reversed-phase liquid chromatographic columns containing polar embedded groups/amino endcappings using principal component analysis. J. Chrom. A 2005, 1088, 1–15. [Google Scholar] [CrossRef]
- Euerby, M.R.; Petersson, P. Chromatographic classification and comparison of commercially available reversed-phase liquid chromatographic columns using principal component analysis. J. Chrom. A 2003, 994, 13–36. [Google Scholar] [CrossRef] [PubMed]
- John, J.; Liu, H. Glyphosate monitoring in water, foods, and urine reveals an association between urinary glyphosate and tea drinking: A pilot study. Int. J. Env. Health. Eng. 2018, 7, 2. [Google Scholar]
- Krüger, M.; Schledorn, P.; Schrödl, W.; Hoppe, H.W.; Lutz, W. Detection of Glyphosate Residues in Animals and Humans. J. Environ. Anal. Toxicol. 2014, 4, 1. [Google Scholar]
- Alferness, P.L.; Iwata, Y. Determination of Glyphosate and (Aminomethy1)phosphonic Acid in Soil, Plant and Animal Matrices, and Water by Capillary Gas Chromatography with Mass-Selective Detection. J. Agric. Food Chem. 1994, 42, 2751–2759. [Google Scholar] [CrossRef]
- Ehling, S.; Reddy, T.M. Analysis of Glyphosate and Aminomethylphosphonic Acid in Nutritional Ingredients and Milk by Derivatization with Fluorenylmethyloxycarbonyl Chloride and Liquid Chromatography-Mass Spectrometry. J. Agric. Food Chem. 2015, 63, 10562–10568. [Google Scholar] [CrossRef]
- Szternfeld, P.; Malysheva, S.V.; Hanot, V.; Joly, L. A Robust Transferable Method for the Determination of Glyphosate Residue in Liver after Derivatization by Ultra-high Pressure Liquid Chromatography–Tandem Mass Spectrometry. Food Anal. Methods 2016, 9, 1173–1179. [Google Scholar] [CrossRef]
- Jansons, M.; Pugajeva, I.; Bartkevics, V.; Karkee, H.B. LC-MS/MS characterisation and determination of dansyl chloride derivatised glyphosate, aminomethylphosphonic acid (AMPA), and glufosinate in foods of plant and animal origin. J. Chromatogr. B. Analyt. Technol. Biomed. Life. Sci. 2021, 1177, 122779. [Google Scholar] [CrossRef] [PubMed]
- Cho, I.K.; Rahman, M.M.; Seol, J.U.; Noh, H.H.; Jo, H.-W.; Moon, J.-K. Development of a simultaneous analytical method for diquat, paraquat and chlormequat in animal products using UPLC-MS/MS. Korean J. Environ. Agric. 2020, 39, 368–374. [Google Scholar] [CrossRef]
- Zoller, O.; Rhyn, P.; Rupp, H.; Zarn, J.A.; Geiser, C. Glyphosate residues in Swiss market foods: Monitoring and risk evaluation. Food Addit. Contam. 2017, 11, 83–91. [Google Scholar] [CrossRef]
- Chamkasem, N.; Morris, C.; Harmon, T. Direct Determination of Glyphosate, Glufosinate, and AMPA in milk by Liquid chromatography/tandem mass spectrometry. Lab. Inf. Bull. 2015, 3, 20–26. [Google Scholar] [CrossRef]
- SANTE/11312/2021 v2: Analytical Quality Control and Method Validation Procedures for Pesticide Residues Analysis in Food and Feed Supersedes Document No. SANTE/11312/2021. Implemented by 01/01/2024. Available online: https://food.ec.europa.eu/system/files/2023-11/pesticides_mrl_guidelines_wrkdoc_2021-11312.pdf (accessed on 23 September 2024).
- Gormez, E.; Golge, O.; Kabak, B. Quantification of fosetyl-aluminium/phosphonic acid and other highly polar residues in pomegranates using Quick Polar Pesticides method involving liquid chromatography-tandem mass spectrometry measurement. J. Chromatogr. A. 2021, 1642, 462038. [Google Scholar] [CrossRef]
- Golge, O. Validation of quick polar pesticides (QuPPe) method for determination of eight polar pesticides in cherries by LC-MS/MS. Food Anal. Methods 2021, 14, 1432–1437. [Google Scholar] [CrossRef]
- Constantinou, P.; Louca-Christodoulou, D.; Agapiou, A. LC-ESI-MS/MS determination of oxyhalides (chlorate, perchlorate and bromate) in food and water samples, and chlorate on household water treatment devices along with perchlorate in plants. Chemosphere 2019, 235, 757–766. [Google Scholar] [CrossRef] [PubMed]
- Liao, W.R.; Wu, K.L.; Chiang, K.H.; Teng, C.E.; Chen, S.F. Analysis of highly polar pesticides in foods by LC-MS/MS. J. Food Drug Anal. 2022, 30, 538–548. [Google Scholar] [CrossRef]
- Jasak, J.; Blanc, Y.L.; Speer, K.; Billian, P.; Schoening, R.M. Analysis of triazole-based metabolites in plant materials using differential mobility spectrometry to improve LC/MS/MS selectivity. J. AOAC Int. 2012, 95, 1768–1776. [Google Scholar] [CrossRef]
- Han, Y.; Song, L.; Zhao, P.; Li, Y.; Zou, N.; Qin, Y.; Li, X.; Pan, C. Residue determination of glufosinate in plant origin foods using modified Quick Polar Pesticides (QuPPe) method and liquid chromatography coupled with tandem mass spectrometry. Food Chem. 2016, 197, 730–736. [Google Scholar] [CrossRef] [PubMed]
- Rahman, M.M.; Abd El-Aty, A.; Choi, J.-H.; Kim, S.-W.; Shin, S.C.; Shim, J.-H. Consequences of the matrix effect on recovery of dinotefuran and its metabolites in green tea during tandem mass spectrometry analysis. Food Chem. 2015, 168, 445–453. [Google Scholar] [CrossRef] [PubMed]
- Abdelwahed, M.H.; Khorshed, M.A.; Elmarsafy, A.M.; Elshabrawy, M.S.; Souaya, E.R. Polar reversed-phase liquid chromatography coupled with triple quadrupole mass spectrometer method for simple and rapid determination of maleic hydrazide residues in some fruits and vegetables. Food Anal. Methods 2021, 14, 172–185. [Google Scholar] [CrossRef]
- Kamal-Eldin, A.; Görgen, S.; Pettersson, J.; Lampi, A.M. Normal-phase high-performance liquid chromatography of tocopherols and tocotrienols: Comparison of different chromatographic columns. J. Chrom. A 2000, 881, 217–227. [Google Scholar] [CrossRef]
- Alechaga, É.; Moyano, E.; Galceran, M.T. Simultaneous analysis of kasugamycin and streptomycin in vegetables by liquid chromatography-tandem mass spectrometry. Anal. Methods 2015, 7, 3600–3607. [Google Scholar] [CrossRef]
- López, S.H.; Scholten, J.; Kiedrowska, B.; de Kok, A. Method validation and application of a selective multiresidue analysis of highly polar pesticides in food matrices using hydrophilic interaction liquid chromatography and mass spectrometry. J. Chromatogr. A 2019, 594, 93–104. [Google Scholar] [CrossRef]
- Kaczyński, P. Clean-up and matrix effect in LC-MS/MS analysis of food of plant origin for high polar herbicides. Food Chem. 2017, 230, 524–531. [Google Scholar] [CrossRef]
- Lopez, S.H.; Dias, J.; Mol, H.; de Kok, A. Selective multiresidue determination of highly polar anionic pesticides in plant-based milk, wine and beer using hydrophilic interaction liquid chromatography combined with tandem mass spectrometry. J. Chromatogr. A 2020, 1625, 461226. [Google Scholar] [CrossRef]
- López, S.H.; Dias, J.; de Kok, A. Analysis of highly polar pesticides and their main metabolites in animal origin matrices by hydrophilic interaction liquid chromatography and mass spectrometry. Food Control 2020, 115, 107289. [Google Scholar] [CrossRef]
- Alves, S.P.; Bessa, R.J. Comparison of two gas–liquid chromatograph columns for the analysis of fatty acids in ruminant meat. J. Chrom. A 2009, 1216, 5130–5139. [Google Scholar] [CrossRef]
- Gasparini, M.; Angelone, B.; Ferretti, E. Glyphosate and other highly polar pesticides in fruit, vegetables and honey using ion chromatography coupled with high resolution mass spectrometry: Method validation and its applicability in an official laboratory. J. Mass Spectrom. 2020, 55, e4624. [Google Scholar] [CrossRef] [PubMed]
- Adams, S.; Guest, J.; Dickinson, M.; Fussell, R.J.; Beck, J.; Schoutsen, F. Development and validation of ion chromatography–tandem mass spectrometry-based method for the multiresidue determination of polar ionic pesticides in food. J. Agric. Food Chem. 2017, 65, 7294–7304. [Google Scholar] [CrossRef]
- Goldberg, A.P. Comparison of columns for reversed-phase liquid chromatography. Anal. Chem. 1982, 54, 342–345. [Google Scholar] [CrossRef]
- Verdini, E.; Lattanzio, V.M.T.; Ciasca, B.; Fioroni, L.; Pecorelli, I. Improved Method for the Detection of Highly Polar Pesticides and Their Main Metabolites in Foods of Animal Origin: Method Validation and Application to Monitoring Programme. Separations 2023, 10, 44. [Google Scholar] [CrossRef]
- Knox, J.; Ross, P. Carbon-based packing materials for liquid chromatography: Structure, performance, and retention mechanisms. Adv. Chrom. 1997, 37, 73–119. [Google Scholar]
- Thermo Scientific. A Unique Solution for Difficult Separation, Application Notebook, Issue 1, 5 June 2009. Available online: https://assets.thermofisher.com/TFS-Assets/CMD/Application-Notes/ANGSCHYPERCARB0609-hypercarb_appnotebook.pdf (accessed on 23 September 2024).
- Restek. Separate a Wide Variety of Polar Analytes with a Novel Hybrid Stationary Phase, 2021. Available online: https://www.restek.com/global/it/articles/raptor-polar-x-separate-a-wide-variety-of-polar-analytes-with-a-novel-hybrid-stationary-phase?srsltid=AfmBOoojPbmAvPKzgOkouw92QkH5Q67D7Qf9Kevlyo7rw7xPu3462KeG (accessed on 23 September 2024).
- Anastassiades, M.; Wachtler, A.-K.; Kolberg, D.I.; Eichhorn, E.; Benkenstein, A.; Zechmann, S.; Mack, D.; Barth, A.; Wildgrube, C.; Sigalov, I.; et al. Quick Method for the Analysis of Highly Polar Pesticides in Food Involving Extraction with Acidified Methanol and LC- or IC-MS/MS Measurement—II. Food of Animal Origin (QuPPe-AO-Method)—Version 3.2. Available online: https://www.eurl-pesticides.eu/userfiles/file/meth_QuPPe_AO_V3_2.pdf (accessed on 23 September 2024).
- Lattanzio, V.M.T.; Ciasca, B.; Verdini, E.; von Holst, C.; Pecorelli, I. Polar pesticides in food of animal origin: Interlaboratory validation to evaluate method fitness-for-purpose of official control. Food Add. Cont. Part A 2023, 40, 1345–1356. [Google Scholar] [CrossRef]
- Andrić, F.; Héberger, K. How to compare separation selectivity of high-performance liquid chromatographic columns properly? J. Chrom. A 2017, 1488, 45–56. [Google Scholar] [CrossRef]
- European Commission: Joint Research Centre; Robouch, P.; Stroka, J.; Haedrich, J.; Schaechtele, A.; Wenzl, T. Guidance Document on the Estimation of LOD and LOQ for Measurements in the Field of Contaminants in Feed and Food; Publications Office: Luxembourg, 2016. [Google Scholar] [CrossRef]
- Anastassiades, M.; Schäfer, A.-K.; Kolberg, D.I.; Eichhorn, E.; Dias, H.; Benkenstein, A.; Zechmann, S.; Mack, D.; Wildgrube, C.; Barth, A.; et al. Quick Method for the Analysis of Highly Polar Pesticides in Food Involving Extraction with Acidified Methanol and LC- or IC-MS/MS Measurement—I. Food of Plant Origin (QuPPe-PO-Method)—Version 12. Available online: https://www.eurl-pesticides.eu/userfiles/file/EurlSRM/EurlSrm_meth_QuPPe_PO_V12_2.pdf (accessed on 23 September 2024).
- Schwartz, N. When Should I Use LC Passivation Solution. Available online: https://www.restek.com/global/it/chromablography/when-should-i-use-lc-passivation-solution (accessed on 23 September 2024).
Brand Name | Producer | Stationary Phase | Length (mm) | Internal Diameter (mm) | Particles (μm) |
---|---|---|---|---|---|
Hypercarb | Thermo | PGC 1 | 100 | 2.1 | 5 |
Raptor Polar | Restek | Hybrid Phase | 30 | 2.1 | 2.7 |
Anionic Polar Pesticide | Waters | Diethylamine | 100 | 2.1 | 5 |
Analyte | Exp N° | Scan Type | Product of | Accumulation Time (Sec) | TOF MS Range (Da) | DP | CE |
---|---|---|---|---|---|---|---|
All | 1 | TOF MS | - | 0.05 | 79–227 | −50 | −10 |
AMPA | 2 | Product Ion | 110 | 0.1 | 50–115 | −30 | −33 |
Cyanuric Acid | 3 | Product Ion | 128 | 0.05 | 30–130 | −50 | −24 |
4 | Product Ion | 128.01 | 0.05 | 30–130 | −50 | −12 | |
Etephon | 5 | Product Ion | 143 | 0.05 | 50–150 | −20 | −9 |
6 | Product Ion | 143.01 | 0.1 | 50–150 | −20 | −24 | |
Fosetyl-Al | 7 | Product Ion | 109 | 0.05 | 40–115 | −40 | −14 |
8 | Product Ion | 109.01 | 0.05 | 40–115 | −40 | −10 | |
Glufosinate | 9 | Product Ion | 180 | 0.05 | 40–185 | −50 | −22 |
Glyphosate | 10 | Product Ion | 168 | 0.05 | 40–175 | −45 | −15 |
11 | Product Ion | 168.01 | 0.05 | 40–175 | −45 | −24 | |
HEPA | 12 | Product Ion | 125 | 0.05 | 40–130 | −50 | −26 |
13 | Product Ion | 125.01 | 0.05 | 40–130 | −50 | −74 | |
Maleic Hydrazide | 14 | Product Ion | 111 | 0.1 | 70–115 | −70 | −20 |
MPP | 15 | Product Ion | 151 | 0.05 | 50–160 | −30 | −15 |
16 | Product Ion | 151.01 | 0.05 | 50–160 | −30 | −48 | |
N-Acetyl Glufosinate | 17 | Product Ion | 222 | 0.05 | 50–230 | −50 | −27 |
18 | Product Ion | 222.01 | 0.05 | 50–230 | −50 | −65 | |
N-Acetyl Glyphosate | 19 | Product Ion | 210 | 0.05 | 130–220 | −50 | −20 |
20 | Product Ion | 210.01 | 0.05 | 50–220 | −50 | −40 |
Column | Hypercarb | Raptor Polar X | APP | |
---|---|---|---|---|
Conditioning/Passivation | Yes | X | X | |
No | X | |||
Points | 0 | 0 | 5 |
Column | Hypercarb | Raptor Polar X | APP | |||
---|---|---|---|---|---|---|
Analyte | Peak | Score | Peak | Score | Peak | Score |
AMPA | UAAP | 6 | UAAP | 6 | UASP | 8 |
Glyphosate | DAAP | 2 | DAAP | 2 | UASP | 8 |
Etephon | UASP | 4 | UASP | 4 | UASP | 4 |
Glufosinate Ammonium | UASP | 4 | UASP | 4 | UASP | 4 |
MPP | UASP | 4 | UASP | 4 | UASP | 4 |
N-Acetyl Glufosinate | UASP | 4 | UASP | 4 | UASP | 4 |
N-Acetyl Glyphosate 1 | DAAP | 1 | N.A. | 0 | DASP | 2 |
HEPA | UASP | 4 | UASP | 4 | UASP | 4 |
Cyanuric Acid 1 | UASP | 4 | N.A. | 0 | UASP | 4 |
Maleic Hydrazide | UASP | 4 | UASP | 4 | UASP | 4 |
Fosetyl Al | UASP | 4 | UASP | 4 | UASP | 4 |
Total Points | 41 | 36 | 50 |
Analyte | RSD | Hypercarb | Raptor Polar X | APP | |||
---|---|---|---|---|---|---|---|
Value | Points | Value | Points | Value | Points | ||
Glyphosate | Area | 8.1 | 4 | 29.6 | 2 | 31.5 | 0 |
RT | 2.1 | 4 | 2.7 | 4 | 4.3 | 4 | |
Glufosinate Ammonium | Area | 14.2 | 3 | 17.2 | 3 | 13.8 | 3 |
RT | 1.2 | 4 | 2.1 | 4 | 1.6 | 4 | |
N-Acetyl Glufosinate | Area | 20.9 | 2 | 17.2 | 3 | 29.6 | 2 |
RT | 0.8 | 4 | 0.8 | 4 | 1.6 | 4 | |
Total Points | 21 | 20 | 17 |
Column | Hypercarb | Raptor Polar X | APP | |||
---|---|---|---|---|---|---|
Analyte | LOD Value (ng/g) | Score | LOD Value (ng/g) | Score | LOD Value (ng/g) | Score |
AMPA | 1.38 | 3 | 0.82 | 5 | 0.99 | 4 |
Glyphosate | 0.95 | 3 | 0.53 | 5 | 0.80 | 4 |
Etephon | 0.27 | 5 | 0.70 | 4 | 1.04 | 3 |
Glufosinate Ammonium | 0.12 | 5 | 0.81 | 4 | 1.61 | 3 |
MPP | 0.23 | 4 | 0.80 | 3 | 0.17 | 5 |
N-Acetyl Glufosinate | 0.33 | 5 | 0.90 | 3 | 0.51 | 4 |
N-Acetyl Glyphosate 1 | 0.90 | 4 | N.A. | 0 | 1.59 | 5 |
HEPA | 0.25 | 4 | 0.50 | 3 | 0.16 | 5 |
Cyanuric Acid 1 | 0.79 | 4 | N.A. | 0 | 1.21 | 3 |
Maleic Hydrazide 1 | 0.64 | 4 | N.A. | 0 | 0.83 | 3 |
Fosetyl Al | 0.03 | 5 | 0.39 | 4 | 1.77 | 3 |
Total Points | 46 | 31 | 42 |
Column | Hypercarb | Raptor Polar X | APP | ||||||
---|---|---|---|---|---|---|---|---|---|
Analyte | RT | k | Score | RT | k | Score | RT | k | Score |
AMPA | 1.76 | 0.60 | 0 | 1.85 | 7.45 | 1 | 1.97 | 3.47 | 1 |
Glyphosate | 5.33 | 3.84 | 1 | 6.52 | 21.95 | 0 | 4.18 | 8.47 | 1 |
Etephon | 13.02 | 10.81 | 0 | 5.57 | 24.47 | 0 | 7.04 | 14.97 | 0 |
Glufosinate Ammonium | 3.71 | 2.37 | 1 | 2.94 | 12.48 | 0 | 2.40 | 4.44 | 1 |
MPP | 10.35 | 8.39 | 1 | 3.95 | 17.06 | 0 | 2.96 | 5.72 | 1 |
N-Acetyl Glufosinate | 14.64 | 12.28 | 0 | 10.18 | 45.54 | 0 | 3.67 | 7.34 | 1 |
N-Acetyl Glyphosate 1 | 17.86 | 16.20 | 0 | -- | -- | -- | 17.08 | 37.74 | 0 |
HEPA | 5.66 | 4.14 | 1 | 4.83 | 21.09 | 0 | 4.44 | 9.08 | 1 |
Cyanuric Acid 1 | 11.25 | 9.21 | 1 | -- | -- | -- | 0.81 | 0.85 | 0 |
Maleic Hydrazide | 11.04 | 9.02 | 1 | 0.35 | 0.41 | 0 | 0.93 | 1.11 | 1 |
Fosetyl Al | 11.54 | 9.47 | 1 | 7.76 | 27.93 | 0 | 10.19 | 22.12 | 0 |
Total Points | 7 | 1 | 7 |
Analyte | RSD Value | Hypercarb | Raptor Polar X | APP | |||
---|---|---|---|---|---|---|---|
Value | Score | Value | Score | Value | Score | ||
AMPA | RT | 1.9 | 2 | 1.5 | 3 | 0.3 | 4 |
Symmetry | 26.5 | 2 | 23.5 | 3 | 9.9 | 4 | |
Glyphosate | RT | 5.8 | 3 | 14.7 | 2 | 1.7 | 4 |
Symmetry | 38.8 | 2 | 27.9 | 3 | 13.0 | 4 | |
Etephon | RT | 3.2 | 3 | 13.5 | 2 | 1.0 | 4 |
Symmetry | 16.3 | 3 | 20.1 | 2 | 13.5 | 4 | |
Glufosinate Ammonium | RT | 2.4 | 4 | 6.1 | 2 | 3.8 | 3 |
Symmetry | 23.7 | 4 | 24.3 | 3 | 40.4 | 2 | |
MPP | RT | 4.8 | 3 | 14.4 | 2 | 2.1 | 4 |
Symmetry | 26.6 | 2 | 14.7 | 3 | 11.3 | 4 | |
N-Acetyl Glufosinate | RT | 4.8 | 3 | 24.5 | 2 | 1.8 | 4 |
Symmetry | 33 | 3 | 43.5 | 2 | 18.5 | 4 | |
N-Acetyl Glyphosate 1 | RT | 3.78 | 3 | -- | -- | 0.9 | 4 |
Symmetry | 13.8 | 3 | -- | -- | 62.4 | 4 | |
HEPA | RT | 5.2 | 3 | 11.2 | 2 | 1.5 | 4 |
Symmetry | 18.2 | 2 | 13.3 | 3 | 8.6 | 4 | |
Cyanuric Acid 1 | RT | 3.3 | 3 | -- | -- | 0.9 | 4 |
Symmetry | 9.6 | 4 | -- | -- | 11.2 | 3 | |
Maleic Hydrazide | RT | 3.3 | 3 | 4.4 | 2 | 1.8 | 4 |
Symmetry | 13.2 | 3 | 25.5 | 2 | 10.3 | 4 | |
Fosetyl Al | RT | 2.6 | 3 | 11.7 | 2 | 0.7 | 4 |
Symmetry | 12.2 | 3 | 11.6 | 4 | 15.9 | 2 | |
Total Points | 64 | 44 | 82 |
Analyte | Hypercarb | Raptor Polar X | APP | |||
---|---|---|---|---|---|---|
Detection | Score | Detection | Score | Detection | Score | |
AMPA | X | 1 | X | 1 | X | 1 |
Glyphosate | X | 1 | X | 1 | X | 1 |
Etephon | X | 1 | X | 1 | X | 1 |
Glufosinate | X | 1 | X | 1 | X | 1 |
MPP | X | 1 | X | 1 | X | 1 |
N-Acetyl Glufosinate | X | 1 | X | 1 | X | 1 |
N-Acetyl Glyphosate | X | 1 | -- | 0 | X | 1 |
HEPA | X | 1 | X | 1 | X | 1 |
Cyanuric Acid | X | 1 | -- | 0 | X | 1 |
Maleic Hydrazide | X | 1 | X | 1 | X | 1 |
Fosetyl Al | X | 1 | X | 1 | X | 1 |
Total Points | 11 | 9 | 11 |
Analyte | Hypercarb | Raptor Polar X | APP | |||
---|---|---|---|---|---|---|
Detection | Score | Detection | Score | Detection | Score | |
Bialaphos | -- | 0 | X | 0.5 | X | 0.5 |
Bromate | X | 0.5 | -- | 0 | -- | 0 |
Bromide | X | 0.5 | -- | 0 | X | 0.5 |
Chlorate | X | 0.5 | -- | 0 | X | 0.5 |
Desmethyl-Dismethoate | -- | 0 | X | 0.5 | -- | 0 |
Perchlorate | X | 0.5 | -- | 0 | X | 0.5 |
Phosphonic Acid | X | 0.5 | -- | 0 | X | 0.5 |
Thiocyanate | X | 0.5 | -- | 0 | -- | 0 |
Trifluoroacetic Acid | -- | 0 | -- | 0 | X | 0.5 |
Total Points | 3 | 1 | 3 |
Total Points | ||
---|---|---|
Hypercarb | Raptor Polar X | Anionic Polar Pesticide |
193 | 142 | 207 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Verdini, E.; Pacini, T.; Orsini, S.; Sdogati, S.; Pecorelli, I. Chromatographic Comparison of Commercially Available Columns for Liquid Chromatography in Polar Pesticide Detection and Quantification Using a Score-Based Methodology. Foods 2024, 13, 3131. https://doi.org/10.3390/foods13193131
Verdini E, Pacini T, Orsini S, Sdogati S, Pecorelli I. Chromatographic Comparison of Commercially Available Columns for Liquid Chromatography in Polar Pesticide Detection and Quantification Using a Score-Based Methodology. Foods. 2024; 13(19):3131. https://doi.org/10.3390/foods13193131
Chicago/Turabian StyleVerdini, Emanuela, Tommaso Pacini, Serenella Orsini, Stefano Sdogati, and Ivan Pecorelli. 2024. "Chromatographic Comparison of Commercially Available Columns for Liquid Chromatography in Polar Pesticide Detection and Quantification Using a Score-Based Methodology" Foods 13, no. 19: 3131. https://doi.org/10.3390/foods13193131