Total Iodine Quantification and In Vitro Bioavailability Study in Abalone (Haliotis discus hannai) Using Inductively Coupled Plasma Mass Spectrometry
<p>Representation of the Wando, the location where the abalone (Haliotis discus hannai) samples were collected.</p> "> Figure 2
<p>Digestion efficiency of iodine in abalone viscera and muscle after in vitro bioavailability test. ES and MAE mean European standard method and microwave-assisted extraction method, respectively.</p> "> Figure 3
<p>Absorption efficiency of iodine in abalone viscera and muscle after in vitro bioavailability test.</p> ">
Abstract
:1. Introduction
2. Materials and Methods
2.1. Reagents and Equipment
2.2. Samples
2.3. Sample Pretreatment Methods
2.4. Validation Methods
2.5. Iodine Determination
2.6. Recovery Test
2.7. In Vitro Bioavailability Study Procedure
2.8. Statistical Analysis
3. Results and Discussion
3.1. Optimization of ICP-MS Condition
3.2. Method Validation
3.2.1. Linearity
3.2.2. Limit of Determination
3.2.3. Accuracy
3.2.4. Precision
3.3. Iodine Determination in Abalone
3.4. Recovery
3.5. In Vitro Bioavailability Study
3.5.1. Preliminary Studies
3.5.2. Mass Balance Study
3.5.3. Digestion and Absorption Efficiencies
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Bullon, N.; Seyfoddin, A.; Alfaro, A.C. The role of aquafeeds in abalone nutrition and health: A comprehensive review. J. World Aquac. Soc. 2023, 54, 7–31. [Google Scholar] [CrossRef]
- Stone, D.A.; Bansemer, M.S.; Currie, K.L. Abalone nutrition. Dev. Aquac. Fish. Sci. 2023, 42, 9–44. [Google Scholar]
- Cook, P.A. The worldwide abalone industry. Mod. Econ. 2014, 5, 1181–1186. [Google Scholar] [CrossRef]
- Underwood, E. Trace Elements in Human and Animal Nutrition; Elsevier: Amsterdam, The Netherlands, 2012. [Google Scholar]
- Venturi, S.; Donati, F.M.; Venturi, A.; Venturi, M.; Grossi, L.; Guidi, A. Role of iodine in evolution and carcinogenesis of thyroid, breast and stomach. Adv. Clin. Path. 2000, 4, 11–18. [Google Scholar] [PubMed]
- Eckhoff, K.M.; Maage, A. Iodine content in fish and other food products from East Africa analyzed by ICP-MS. J. Food Compost. Anal. 1997, 10, 270–282. [Google Scholar] [CrossRef]
- Moreda-Piñeiro, A.; Romarís-Hortas, V.; Bermejo-Barrera, P. A review on iodine speciation for environmental, biological and nutrition fields. J. Anal. At. Spectrom. 2011, 26, 2107–2152. [Google Scholar] [CrossRef]
- Rose, M.; Miller, P.; Baxter, M.; Appleton, G.; Crews, H.; Croasdale, M. Bromine and iodine in 1997 UK total diet study samples. J. Environ. Manag. 2001, 3, 361–365. [Google Scholar] [CrossRef]
- WHO. Guideline: Fortification of Food-Grade Salt with Iodine for the Prevention and Control of Iodine Deficiency Disorders; World Health Organization: Geneva, Switzerland, 2014; pp. 1–54. [Google Scholar]
- Zimmermann, M.B.; Jooste, P.L.; Pandav, C.S. Iodine-deficiency disorders. Lancet 2008, 372, 1251–1262. [Google Scholar] [CrossRef] [PubMed]
- Delange, F. Iodine deficiency in Europe. Cas. Lek. Cesk. 1995, 134, 35–43. [Google Scholar]
- Limchoowong, N.; Sricharoen, P.; Techawongstien, S.; Chanthai, S. An iodine supplementation of tomato fruits coated with an edible film of the iodide-doped chitosan. Food Chem. 2016, 200, 223–229. [Google Scholar] [CrossRef]
- Zimmermann, M.B. Iodine deficiency. Endocr. Rev. 2009, 30, 376–408. [Google Scholar] [CrossRef]
- Zimmermann, M.B.; Boelaert, K. Iodine deficiency and thyroid disorders. Lancet Diabetes Endocrinol. 2015, 3, 286–295. [Google Scholar] [CrossRef]
- Taylor, P.N.; Okosieme, O.E.; Dayan, C.M.; Lazarus, J.H. Therapy of endocrine disease: Impact of iodine supplementation in mild-to-moderate iodine deficiency: Systematic review and meta-analysis. Eur. J. Endocrinol. 2014, 170, R1–R15. [Google Scholar] [CrossRef] [PubMed]
- Diosady, L.L.; Alberti, J.O.; Mannar, M.G.V. Microencapsulation for iodine stability in salt fortified with ferrous fumarate and potassium iodide. Food Res. Int. 2002, 35, 635–642. [Google Scholar] [CrossRef]
- Hartwig, C.A.; Toralles, I.G.; Crizel, M.G.; Muller, A.L.H.; Picoloto, R.S.; Flores, E.M.M.; Mesko, M.F. Determination of bromine and iodine in shrimp and its parts by ICP-MS after decomposition using microwave-induced combustion. Anal. Methods 2014, 6, 7540–7546. [Google Scholar] [CrossRef]
- Romarís-Hortas, V.; Bermejo-Barrera, P.; Moreda-Piñeiro, J.; Moreda-Piñeiro, A. Speciation of the Bio-Available Iodine and Bromine Forms in Edible Seaweed by High Performance Liquid Chromatography Hyphenated with Inductively Coupled Plasma-Mass Spectrometry. Anal. Chim. Acta 2012, 745, 24–32. [Google Scholar] [CrossRef] [PubMed]
- Burgi, H. Iodine excess. Best Pract. Res. Clin. Endocrinol. Metab. 2010, 24, 107–115. [Google Scholar] [CrossRef] [PubMed]
- Roti, E.; Uberti, E.D. Iodine excess and hyperthyroidism. Thyroid 2001, 11, 493–500. [Google Scholar] [CrossRef]
- Shah, M.; Wuilloud, R.G.; Kannamkumarath, S.S.; Caruso, J.A. Iodine speciation studies in commercially available seaweed by coupling different chromatographic techniques with UV and ICP-MS detection. J. Anal. At. Spectrom. 2005, 20, 176–182. [Google Scholar] [CrossRef]
- Haldimann, M.; Zimmerli, B.; Als, C.; Gerber, H. Direct determination of urinary iodine by inductively coupled plasma mass spectrometry using isotope dilution with iodine-129. Clin. Chem. 1998, 44, 817–824. [Google Scholar] [CrossRef]
- Julshamn, K.; Dahl, L.; Eckhoff, K. Determination of iodine in seafood by inductively coupled plasma/mass spectrometry. J. Assoc. Off. Anal. Chem. 2001, 84, 1976–1983. [Google Scholar] [CrossRef]
- Huynh, D.; Zhou, S.J.; Gibson, R.; Palmer, L.; Muhlhausler, B. Validation of an optimized method for the determination of iodine in human breast milk by inductively coupled plasma mass spectrometry (ICPMS) after tetramethylammonium hydroxide extraction. J. Trace Elem. Med. Biol. 2015, 29, 75–82. [Google Scholar] [CrossRef]
- Judprasong, K.; Jongjaithet, N.; Chavasit, V. Comparison of methods for iodine analysis in foods. Food Chem. 2016, 193, 12–17. [Google Scholar] [CrossRef]
- Leufroy, A.; Noel, L.; Bouisset, P.; Maillard, S.; Bernagout, S.; Xhaard, C.; de Vathaire, F.; Guerin, T. Determination of total iodine in French Polynesian foods: Method validation and occurrence data. Food Chem. 2015, 169, 134–140. [Google Scholar] [CrossRef]
- Shelor, C.P.; Dasgupta, P.K. Review of analytical methods for the quantification of iodine in complex matrices. Anal. Chim. Acta 2011, 702, 16–36. [Google Scholar] [CrossRef]
- Teas, J.; Pino, S.; Critchley, A.; Braverman, L.E. Variability of iodine content in common commercially available edible seaweeds. Thyroid 2004, 14, 836–841. [Google Scholar] [CrossRef]
- Hou, X.; Dahlgaard, H.; Rietz, B.; Jacobsen, U.; Nielsen, S.P.; Aarkrog, A. Determination of Chemical Species of Iodine in Seawater by Radiochemical Neuton Activation Analysis Combined with Ion-Exchange Preseparation. Anal. Chem. 1999, 71, 2745–2750. [Google Scholar] [CrossRef]
- Lee, J.; An, J.; Kim, J.-A.; Yoon, H.-O. Effectiveness of activated carbon disk for the analysis of iodine in water samples using wavelength dispersive X-ray fluorescence spectrometry. Chemosphere 2016, 142, 72–76. [Google Scholar] [CrossRef]
- Han, C.; Sun, J.; Cheng, H.; Liu, J.; Xu, Z. Speciation analysis of urine iodine by ion-pair reversed-phase liquid chromatography and inductively coupled plasma mass spectrometry. Anal. Methods 2014, 6, 5369–5375. [Google Scholar] [CrossRef]
- Nitschke, U.; Stengel, D.B. A new HPLC method for the detection of iodine applied to natural samples of edible seaweeds and commercial seaweed food products. Food Chem. 2015, 172, 326–334. [Google Scholar] [CrossRef]
- Schwehr, K.A.; Santschi, P.H. Sensitive determination of iodine species, including organo-iodine, for freshwater and seawater samples using high performance liquid chromatography and spectrophotometric detection. Anal. Chim. Acta 2003, 482, 59–71. [Google Scholar] [CrossRef]
- Niedobová, E.; Machát, J.; Kanický, V.; Otruba, V. Determination of iodine in enriched chlorella by ICP-OES in the VUV Region. Microchim. Acta 2005, 150, 103–107. [Google Scholar] [CrossRef]
- Romarís-Hortas, V.; García-Sartal, C.; Barciela-Alonso, M.C.; Moreda-Piñeiro, A.; Bermejo-Barrera, P. Characterization of Edible Seaweed Harvested on the Galician Coast (Northwestern Spain) Using Pattern Recognition Techniques and Major and Trace Element Data. J. Agric. Food Chem. 2010, 58, 1986–1992. [Google Scholar] [CrossRef]
- Fecher, P.A.; Goldmann, I.; Nagengast, A. Determination of iodine in food samples by inductively coupled plasma mass spectrometry after alkaline extraction. J. Anal. At. Spectrom. 1998, 13, 977–982. [Google Scholar] [CrossRef]
- Romarís-Hortas, V.; García-Sartal, C.; Barciela-Alonso, M.d.C.; Domínguez-González, R.; Moreda-Piñeiro, A.; Bermejo-Barrera, P. Bioavailability study using an in vitro method of iodine and bromine in edible seaweed. Food Chem. 2011, 124, 1747–1752. [Google Scholar] [CrossRef]
- PN-EN 15111; Foodstuffs—Determination of Trace Elements—Determination of Iodine by ICP-MS (Inductively Coupled Plasma Mass Spectrometry). Comite Europeen de Normalisation: Brussels, Belgium, 2007.
- Yang, F.-Y.; Jiang, S.-J.; Sahayam, A.C. Combined Use of HPLC–ICP-MS and Microwave-Assisted Extraction for the Determination of Cobalt Compounds in Nutritive Supplements. Food Chem. 2014, 147, 215–219. [Google Scholar] [CrossRef]
- AOAC International. Guidelines for Standard Method Performance Requirements AOAC Official Methods of Analysis; Appendix F; AOAC International: Rockville, MD, USA, 2016. [Google Scholar]
- Codex Alimentarius Commission; Joint FAO/WHO Food Standards Programme; World Health Organization. Codex Alimentarius Commission: 25th Procedural Manual; Food & Agriculture Organization: Rome, Italy, 2016. [Google Scholar]
- Harmonisation, I.C. Validation of analytical procedures: Text and methodology. In ICH Harmonised Tripartite Guideline, Proceedings of the International Conference on Harmonisation of Technical Requirements for Registration of Pharmaceuticals for Human Use, San Diego, CA, USA, 2 June 2014; Somatek Inc.: San Diego, CA, USA, 2014. [Google Scholar]
- Domínguez-González, R.; Romarís-Hortas, V.; García-Sartal, C.; Moreda-Piñeiro, A.; Barciela-Alonso, M.; Bermejo-Barrera, P. Evaluation of an in vitro method to estimate trace elements bioavailability in edible seaweeds. Talanta 2010, 82, 1668–1673. [Google Scholar] [CrossRef]
- Pacquette, L.H.; Levenson, A.M.; Thompson, J.J.; Dowell, D. Total iodine in infant formula and nutritional products by inductively coupled plasma/mass spectrometry: First Action 2012.14. J. AOAC. Int. 2013, 96, 798–801. [Google Scholar] [CrossRef]
- Sullivan, D.; Zywicki, R.; Dowell, D. Total Iodine in Infant Formula and Adult/Pediatric Nutritional Formula Using Inductively Coupled Plasma-Mass Spectrometry: AOAC Official First Action 2012.15. J. AOAC. Int. 2013, 96, 493–496. [Google Scholar] [CrossRef]
- ISO/IEC Guide 98-3:2008; Uncertainty of Measurement—Part 3: Guide to the Expression of Uncertainty in Measurement (GUM:1995). ISO: Geneva, Switzerland, 2008.
- Marinho-Soriano, E.; Fonseca, P.C.; Carneiro, M.A.A.; Moreira, W.S.C. Seasonal variation in the chemical composition of two tropical seaweeds. Bioresour. Technol. 2006, 97, 2402–2406. [Google Scholar] [CrossRef]
- Amachi, S. Microbial contribution to global iodine cycling: Volatilization, accumulation, reduction, oxidation, and sorption of iodine. Microbes Environ. 2008, 23, 269–276. [Google Scholar] [CrossRef] [PubMed]
- Haro-Vicente, J.F.; Martínez-Graciá, C.; Ros, G. Optimisation of in vitro measurement of available iron from different fortificants in citric fruit juices. Food Chem. 2006, 98, 639–648. [Google Scholar] [CrossRef]
ICP-MS Parameters | |
---|---|
Operating conditions | |
RF power | 1550 W |
RF matching | 1.8 V |
Sample depth | 8.0 mm |
Carrier gas | |
Argon (Ar) | 1.1 L min−1 |
Helium (He) | 4.3 mL min−1 |
Nebulizer pump | 0.10 rps |
S/C temp. | 2.0 °C |
Sample cone | Nickel, 1.0 mm orifice |
Skimmer cone | Nickel, 0.75 mm orifice |
Sample load time | |
Uptake | 30 s |
Stabilize | 40 s |
Wash out | Ultrapure water for 40 s 1.0% TMAH for 40 s |
Acquisition parameters | |
Monitored signals | m/z 127 (127I), m/z 125 (125Te) |
Integration time/mass | 0.09 s (127I), 0.09 s (125Te) |
Repetitions | 3 |
Linearity | Range (µg/L) | Iodine Concentration Levels (0, 1, 5, 10, 20, 100) | |
---|---|---|---|
Limit of determination (n = 10) | ES (3) | MAE (4) | |
LOD (1) (ng/g) | 0.11 | 0.11 | |
LOQ (2) (ng/g) | - | 5.4 | |
Accuracy (n = 7) | ERM—BB422 (fish muscle) | ||
ES | MAE | ||
Certified values (mg/kg) | 1.4 ± 0.42 | ||
Found values (mg/kg) | 1.5 ± 0.10 | 1.6 ± 0.066 | |
Precision (n = 7) | Parameters | ERM—BB422 (fish muscle) | |
ES | MAE | ||
RSDr (%) | 6.7 | 4.0 | |
pRSDR (%) | 15.0 | 14.8 | |
HorRat | 0.45 | 0.27 |
Pretreatment Method | Sample | Concentration (µg/g) |
ES (1) | AV (3) | 74 ± 2.2 |
AM (4) | 17 ± 0.77 | |
MAE (2) | AV | 76 ± 1.0 |
AM | 17 ± 0.51 |
Sample | Recovery (%) | ||
---|---|---|---|
ES (3) | MAE (4) | ||
Low spike solution (5 µg/L) | Fish muscle (ERM—BB422) | 102.4 ± 2.2 | 106.0 ± 1.8 |
AV (1) | 99.2 ± 3.6 | 99.9 ± 3.0 | |
AM (2) | 104.0 ± 5.0 | 101.2 ± 5.7 | |
High spike solution (10 µg/L) | Fish muscle (ERM—BB422) | 94.5 ± 3.8 | 100.1 ± 1.9 |
AV | 98.3 ± 2.4 | 97.5 ± 2.3 | |
AM | 101.2 ± 3.7 | 97.6 ± 3.5 |
Samples | Initial pH | Final pH | |
---|---|---|---|
Dialysate pH | Residual Fraction pH | ||
Method Blank | 7.50 | 7.7 ± 0.09 | 8.0 ± 0.22 |
AV (1) | 7.50 | 7.2 ± 0.04 | 6.8 ± 0.09 |
AM (2) | 7.50 | 7.3 ± 0.03 | 6.9 ± 0.03 |
Linearity | Dialysate | Residual Fraction | |
---|---|---|---|
Limit of determination (mg/kg) | LOD (1) | 0.87 | 0.21 |
LOQ (2) | 14 | 31 |
Dialysate | Residual Fraction | Sum | Total Concentration | ||
---|---|---|---|---|---|
ES (3) | MAE (4) | ||||
AV (1) | 13 ± 1.5 | 20.4 ± 0.68 | 34 ± 1.7 | 74 ± 2.2 | 76 ± 1.0 |
AM (2) | 9.1 ± 3.4 | 5.6 ± 1.2 | 15 ± 2.9 | 17 ± 0.77 | 17 ± 0.51 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Doh, H.; Lee, M.H. Total Iodine Quantification and In Vitro Bioavailability Study in Abalone (Haliotis discus hannai) Using Inductively Coupled Plasma Mass Spectrometry. Foods 2024, 13, 1400. https://doi.org/10.3390/foods13091400
Doh H, Lee MH. Total Iodine Quantification and In Vitro Bioavailability Study in Abalone (Haliotis discus hannai) Using Inductively Coupled Plasma Mass Spectrometry. Foods. 2024; 13(9):1400. https://doi.org/10.3390/foods13091400
Chicago/Turabian StyleDoh, Hansol, and Min Hyeock Lee. 2024. "Total Iodine Quantification and In Vitro Bioavailability Study in Abalone (Haliotis discus hannai) Using Inductively Coupled Plasma Mass Spectrometry" Foods 13, no. 9: 1400. https://doi.org/10.3390/foods13091400
APA StyleDoh, H., & Lee, M. H. (2024). Total Iodine Quantification and In Vitro Bioavailability Study in Abalone (Haliotis discus hannai) Using Inductively Coupled Plasma Mass Spectrometry. Foods, 13(9), 1400. https://doi.org/10.3390/foods13091400