Forest Structure Estimation from a UAV-Based Photogrammetric Point Cloud in Managed Temperate Coniferous Forests
<p>Location of the study area. The municipal boundaries provided by ESRI Japan were used as the country border. The forest cover map was created by visual interpretation based on aerial photographs acquired by a lightweight unmanned aerial vehicle (UAV).</p> "> Figure 2
<p>Observed biophysical properties versus predicted biophysical properties from the best model of each of the canopy height models. A diagonal dotted line and a solid line indicate the 1:1 line and regression line between the predicted biophysical properties and observed biophysical properties, respectively.</p> ">
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Field Measurements
2.3. Remote Sensing Data
2.4. Remote Sensing Data
2.4.1. Processing of the UAV Photographs
2.4.2. Calculation of a Canopy Height Model (CHM) and Variable Extractions
2.4.3. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- White, J.C.; Coops, N.C.; Wulder, M.A.; Vastaranta, M.; Hilker, T.; Tompalski, P. Remote Sensing Technologies for Enhancing Forest Inventories: A Review. Can. J. Remote Sens. 2016, 42, 619–641. [Google Scholar] [CrossRef]
- Næsset, E. Airborne laser scanning as a method in operational forest inventory: Status of accuracy assessments accomplished in Scandinavia. Scand. J. For. Res. 2007, 22, 433–442. [Google Scholar] [CrossRef]
- Ioki, K.; Imanishi, J.; Sasaki, T.; Morimoto, Y.; Kitada, K. Estimating stand volume in broad-leaved forest using discrete-return LiDAR: Plot-based approach. Landsc. Ecol. Eng. 2010, 6, 29–36. [Google Scholar] [CrossRef] [Green Version]
- Næsset, E.; Økland, T. Estimating tree height and tree crown properties using airborne scanning laser in a boreal nature reserve. Remote Sens. Environ. 2002, 79, 105–115. [Google Scholar] [CrossRef]
- Wulder, M.A.; Bater, C.W.; Coops, N.C.; Hilker, T.; White, J.C. The role of LiDAR in sustainable forest management. For. Chron. 2008, 84. [Google Scholar] [CrossRef]
- Hird, N.J.; Montaghi, A.; McDermid, J.G.; Kariyeva, J.; Moorman, J.B.; Nielsen, E.S.; McIntosh, C.A. Use of Unmanned Aerial Vehicles for Monitoring Recovery of Forest Vegetation on Petroleum Well Sites. Remote Sens. 2017, 9. [Google Scholar] [CrossRef]
- Fonstad, M.A.; Dietrich, J.T.; Courville, B.C.; Jensen, J.L.; Carbonneau, P.E. Topographic structure from motion: A new development in photogrammetric measurement. Earth Surf. Process. Landf. 2013, 38, 421–430. [Google Scholar] [CrossRef]
- Snavely, N.; Seitz, S.M.; Szeliski, R. Modeling the world from Internet photo collections. Int. J. Comput. Vis. 2008, 80, 189–210. [Google Scholar] [CrossRef]
- White, J.C.; Wulder, M.A.; Vastaranta, M.; Coops, N.C.; Pitt, D.; Woods, M. The utility of image-based point clouds for forest inventory: A comparison with airborne laser scanning. Forests 2013, 4, 518–536. [Google Scholar] [CrossRef]
- Ota, T.; Ogawa, M.; Shimizu, K.; Kajisa, T.; Mizoue, N.; Yoshida, S.; Takao, G.; Hirata, Y.; Furuya, N.; Sano, T.; et al. Aboveground Biomass Estimation Using Structure from Motion Approach with Aerial Photographs in a Seasonal Tropical Forest. Forests 2015, 6, 3882–3898. [Google Scholar] [CrossRef]
- Bohlin, J.; Wallerman, J.; Fransson, J.E.S. Forest variable estimation using photogrammetric matching of digital aerial images in combination with a high-resolution DEM. Scand. J. For. Res. 2012, 27, 692–699. [Google Scholar] [CrossRef]
- Balenović, I.; Simic Milas, A.; Marjanović, H. A Comparison of Stand-Level Volume Estimates from Image-Based Canopy Height Models of Different Spatial Resolutions. Remote Sens. 2017, 9, 205. [Google Scholar] [CrossRef]
- Vastaranta, M.; Wulder, M.A.; White, J.C.; Pekkarinen, A.; Tuominen, S.; Ginzler, C.; Kankare, V.; Holopainen, M.; Hyyppä, J.; Hyyppä, H. Airborne laser scanning and digital stereo imagery measures of forest structure: Comparative results and implications to forest mapping and inventory update. Can. J. Remote Sens. 2013, 39, 382–395. [Google Scholar] [CrossRef]
- Matese, A.; Toscano, P.; Di Gennaro, S.F.; Genesio, L.; Vaccari, F.P.; Primicerio, J.; Belli, C.; Zaldei, A.; Bianconi, R.; Gioli, B. Intercomparison of UAV, Aircraft and Satellite Remote Sensing Platforms for Precision Viticulture. Remote Sens. 2015, 7, 2971–2990. [Google Scholar] [CrossRef]
- Salamí, E.; Barrado, C.; Pastor, E. UAV Flight Experiments Applied to the Remote Sensing of Vegetated Areas. Remote Sens. 2014, 6, 11051–11081. [Google Scholar] [CrossRef] [Green Version]
- Tang, L.; Shao, G. Drone remote sensing for forestry research and practices. J. For. Res. 2015, 26, 791–797. [Google Scholar] [CrossRef]
- Puliti, S.; Ørka, H.O.; Gobakken, T.; Næsset, E. Inventory of small forest areas using an unmanned aerial system. Remote Sens. 2015, 7, 9632–9654. [Google Scholar] [CrossRef] [Green Version]
- Torresan, C.; Berton, A.; Carotenuto, F.; Di Gennaro, S.F.; Gioli, B.; Matese, A.; Miglietta, F.; Vagnoli, C.; Zaldei, A.; Wallace, L. Forestry applications of UAVs in Europe: A review. Int. J. Remote Sens. 2016, 38, 2427–2447. [Google Scholar]
- Goodbody, T.R.H.; Coops, N.C.; Marshall, P.L.; Tompalski, P.; Crawford, P. Unmanned aerial systems for precision forest inventory purposes: A review and case study. For. Chron. 2017, 93, 71–81. [Google Scholar] [CrossRef]
- Wallace, L.; Lucieer, A.; Malenovský, Z.; Turner, D.; Vopěnka, P. Assessment of Forest Structure Using Two UAV Techniques: A Comparison of Airborne Laser Scanning and Structure from Motion (SfM) Point Clouds. Forests 2016, 7, 62. [Google Scholar] [CrossRef]
- Birdal, A.C.; Avdan, U.; Türk, T. Estimating tree heights with images from an unmanned aerial vehicle. Geomat. Nat. Hazards Risk 2017, 1–13. [Google Scholar] [CrossRef]
- Dandois, J.P.; Ellis, E.C. High spatial resolution three-dimensional mapping of vegetation spectral dynamics using computer vision. Remote Sens. Environ. 2013, 136, 259–276. [Google Scholar] [CrossRef]
- Zarco-Tejada, P.J.; Diaz-Varela, R.; Angileri, V.; Loudjani, P. Tree height quantification using very high resolution imagery acquired from an unmanned aerial vehicle (UAV) and automatic 3D photo-reconstruction methods. Eur. J. Agron. 2014, 55, 89–99. [Google Scholar] [CrossRef]
- Dandois, J.; Olano, M.; Ellis, E. Optimal Altitude, Overlap, and Weather Conditions for Computer Vision UAV Estimates of Forest Structure. Remote Sens. 2015, 7, 13895–13920. [Google Scholar] [CrossRef]
- Lisein, J.; Pierrot-Deseilligny, M.; Bonnet, S.; Lejeune, P. A photogrammetric workflow for the creation of a forest canopy height model from small unmanned aerial system imagery. Forests 2013, 4, 922–944. [Google Scholar] [CrossRef]
- Tonolli, S.; Dalponte, M.; Neteler, M.; Rodeghiero, M.; Vescovo, L.; Gianelle, D. Fusion of airborne LiDAR and satellite multispectral data for the estimation of timber volume in the Southern Alps. Remote Sens. Environ. 2011, 115, 2486–2498. [Google Scholar] [CrossRef]
- Popescu, S.C.; Wynne, R.H.; Scrivani, J.A. Fusion of small-footprint lidar and multispectral data to estimate plot-level volume and biomass in deciduous and pine forests in Virginia, USA. For. Sci. 2004, 50, 551–565. [Google Scholar]
- Luo, S.; Wang, C.; Xi, X.; Pan, F.; Peng, D.; Zou, J.; Nie, S.; Qin, H. Fusion of airborne LiDAR data and hyperspectral imagery for aboveground and belowground forest biomass estimation. Ecol. Indic. 2017, 73, 378–387. [Google Scholar] [CrossRef]
- Näslund, M. Skogsforsöksastaltens gallringsforsök i tallskog. Medd. Statens Skogsforsöksanstalt 1936, 29, 1–169. [Google Scholar]
- Forest Agency of Japan Timber volume table (Western Japan). Forestry Investigation Committee: Tokyo, Japan, 1970.
- Agisoft PhotoScan. Available online: http://www.agisoft.com (accessed on 22 May 2017).
- Agisoft, L.L.C. Agisoft Photoscan User Manual; Professional Edition, Version 1.2; Agisoft: St. Petersburg, Russia, 2016; Available online: http://www.agisoft.com/pdf/photoscan-pro_1_2_en.pdf (accessed on 6 July 2017).
- Dalponte, M.; Ørka, H.O.; Ene, L.T.; Gobakken, T.; Næsset, E. Tree crown delineation and tree species classification in boreal forests using hyperspectral and ALS data. Remote Sens. Environ. 2014, 140, 306–317. [Google Scholar] [CrossRef]
- Näsi, R.; Honkavaara, E.; Lyytikäinen-Saarenmaa, P.; Blomqvist, M.; Litkey, P.; Hakala, T.; Viljanen, N.; Kantola, T.; Tanhuanpää, T.; Holopainen, M. Using UAV-based photogrammetry and hyperspectral imaging for mapping bark beetle damage at tree-level. Remote Sens. 2015, 7, 15467–15493. [Google Scholar] [CrossRef]
- Ota, T.; Kajisa, T.; Mizoue, N.; Yoshida, S.; Takao, G.; Hirata, Y.; Furuya, N.; Sano, T.; Ponce-Hernandez, R.; Ahmed, O.S.; et al. Estimating aboveground carbon using airborne LiDAR in Cambodian tropical seasonal forests for REDD+ implementation. J. For. Res. 2015, 20, 484–492. [Google Scholar] [CrossRef]
- R Core Team R: A Language and Environment for Statistical Computing. Available online: https://www.r-project.org/ (accessed on 26 May 2017).
- Kachamba, J.D.; Ørka, O.H.; Gobakken, T.; Eid, T.; Mwase, W. Biomass Estimation Using 3D Data from Unmanned Aerial Vehicle Imagery in a Tropical Woodland. Remote Sens. 2016, 8. [Google Scholar] [CrossRef]
- Dalponte, M.; Bruzzone, L.; Gianelle, D. Tree species classification in the Southern Alps based on the fusion of very high geometrical resolution multispectral/hyperspectral images and LiDAR data. Remote Sens. Environ. 2012, 123, 258–270. [Google Scholar] [CrossRef]
- Næsset, E. Estimation of above-and below-ground biomass in boreal forest ecosystems. In International Society of Photogrammetry and Remote Sensing. International Archives of Photogrammetry, Remote Sensing and Spatial Information Sciences; Thies, M., Kock, B., Spiecker, H., Weinacker, H., Eds.; International Society of Photogrammetry and Remote Sensing (ISPRS): Freiburg, Germany, 2004; pp. 145–148. [Google Scholar]
Dominant Tree Type | The Number of Plots | V (m3/ha) | HL (m) | HA (m) | HM (m) | ||||
---|---|---|---|---|---|---|---|---|---|
Mean | SD | Mean | SD | Mean | SD | Mean | SD | ||
Sugi | 9 | 712.37 | 142.20 | 18.67 | 2.06 | 18.17 | 2.07 | 21.91 | 1.98 |
Hinoki | 11 | 491.75 | 249.36 | 15.67 | 5.25 | 15.21 | 5.13 | 18.50 | 5.92 |
Ground-Control Points | X Error (m) | Y Error (m) | Z Error (m) | Total Error (m) |
---|---|---|---|---|
1 | 1.15 | 5.19 | −1.42 | 5.50 |
2 | 0.48 | 0.26 | −0.07 | 0.55 |
3 | −3.26 | −1.08 | −3.87 | 5.17 |
4 | 0.92 | −0.15 | 0.44 | 1.03 |
5 | 2.19 | −0.54 | −0.26 | 2.27 |
6 | −1.01 | −0.81 | 0.15 | 1.30 |
7 | 0.81 | −1.89 | −0.85 | 2.23 |
8 | −0.48 | −0.63 | 0.90 | 1.20 |
9 | 1.16 | −0.30 | −0.01 | 1.20 |
10 | −1.53 | 1.68 | 1.87 | 2.94 |
11 | −0.49 | −1.77 | 3.14 | 3.64 |
RMSE | 1.47 | 1.89 | 1.71 | 2.94 |
Dependent Variables | Independent Variable | Selected Variables | R2 | AdjR2 | RMSE | Relative RMSE | BIC |
---|---|---|---|---|---|---|---|
V | h | h90 | 0.71 | 0.70 | 131.74 | 22.29 | 7.14 |
RGB | RGBG, sd | 0.26 | 0.21 | 291.80 | 49.37 | 58.99 | |
h + RGB | h90, RGBB, sd | 0.68 | 0.64 | 143.15 | 24.22 | 9.95 | |
h + dtype | h90, dtype | 0.78 | 0.75 | 118.30 | 20.02 | 2.99 | |
RGB + dtype | RGBB, sd, dtype | 0.20 | 0.11 | 303.16 | 51.29 | 53.01 | |
h + RGB + dtype | h90, RGBR, sd, dtype | 0.80 | 0.76 | 112.97 | 19.11 | 3.83 | |
HL | h | h90 | 0.93 | 0.92 | 1.21 | 7.08 | −41.14 |
RGB | RGBB, sd | 0.23 | 0.19 | 4.31 | 25.29 | 19.73 | |
h + RGB | h90, RGBB, mean | 0.94 | 0.92 | 1.19 | 7.00 | −39.41 | |
h + dtype | h90, dtype | 0.92 | 0.93 | 1.13 | 6.65 | −42.56 | |
RGB + dtype | RGBB, sd, dtype | 0.90 | 0.10 | 4.69 | 27.57 | 22.73 | |
h + RGB + dtype | h90, RGBG, mean, dtype | 0.93 | 0.92 | 1.15 | 6.7 | −39.71 | |
HA | h | h90 | 0.91 | 0.91 | 1.31 | 7.92 | −35.96 |
RGB | RGBB, sd | 0.21 | 0.16 | 4.30 | 25.97 | 21.12 | |
h + RGB | h90, RGBB, mean | 0.92 | 0.91 | 1.25 | 7.53 | −35.26 | |
h + dtype | h70, dtype | 0.90 | 0.91 | 1.24 | 7.50 | −34.12 | |
RGB + dtype | RGBB, sd, dtype | 0.89 | 0.08 | 4.62 | 27.96 | 24.11 | |
h + RGB + dtype | h90, RGBB, mean, dtype | 0.92 | 0.91 | 1.24 | 7.51 | −34.29 | |
HM | h | h90 | 0.93 | 0.92 | 1.32 | 6.61 | −42.74 |
RGB | RGBB, sd | 0.26 | 0.22 | 4.62 | 23.05 | 14.92 | |
h + RGB | h90, RGBR, mean | 0.94 | 0.92 | 1.32 | 6.57 | −40.37 | |
h + dtype | h90, dtype | 0.92 | 0.93 | 1.24 | 6.17 | −44.89 | |
RGB + dtype | RGBB, sd, dtype | 0.90 | 0.13 | 5.04 | 25.17 | 17.91 | |
h + RGB + dtype | h90, RGBR, mean, dtype | 0.93 | 0.94 | 1.13 | 5.63 | −44.30 |
© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ota, T.; Ogawa, M.; Mizoue, N.; Fukumoto, K.; Yoshida, S. Forest Structure Estimation from a UAV-Based Photogrammetric Point Cloud in Managed Temperate Coniferous Forests. Forests 2017, 8, 343. https://doi.org/10.3390/f8090343
Ota T, Ogawa M, Mizoue N, Fukumoto K, Yoshida S. Forest Structure Estimation from a UAV-Based Photogrammetric Point Cloud in Managed Temperate Coniferous Forests. Forests. 2017; 8(9):343. https://doi.org/10.3390/f8090343
Chicago/Turabian StyleOta, Tetsuji, Miyuki Ogawa, Nobuya Mizoue, Keiko Fukumoto, and Shigejiro Yoshida. 2017. "Forest Structure Estimation from a UAV-Based Photogrammetric Point Cloud in Managed Temperate Coniferous Forests" Forests 8, no. 9: 343. https://doi.org/10.3390/f8090343
APA StyleOta, T., Ogawa, M., Mizoue, N., Fukumoto, K., & Yoshida, S. (2017). Forest Structure Estimation from a UAV-Based Photogrammetric Point Cloud in Managed Temperate Coniferous Forests. Forests, 8(9), 343. https://doi.org/10.3390/f8090343