Optimizing Spectral Libraries from Landsat Imagery for the Analysis of Habitat Richness Using MESMA
<p>Location of the study area in the Cantabrian Mountains, northwest of the Iberian Peninsula (the top-left panel shows the regional boundaries of Spain).</p> "> Figure 2
<p>Habitat types identified in study area: shrubland (S), forest (F), grassland (G), water (W), and rock and bare soil (R).</p> "> Figure 3
<p>Methodology flow chart. WMS: web map service; CNIG: National Geographic Information Centre; ITACyL: Agricultural Technological Institute of Castile and Leon; IES: iterative endmember selection; MESMA: multiple endmember spectral mixture analysis; RMSE: root mean square error.</p> "> Figure 4
<p>Distribution of the 50 plots that represent five habitat types in the study area: forest (F), shrubland (S), grassland (G), rock and bare soil (R), and water (W).</p> "> Figure 5
<p>Procedure for obtaining reference fractions from the sample of the 30 × 30 m plots for validation. By assigning an identifier to each entity, the fractions of each type of existing habitat were visually identified.</p> "> Figure 6
<p>Spectral signatures included in the optimized libraries (L1_IES, L2_IES, L3_IES, L4_IES, 1990_IES, 2000_IES, 2010_IES, and 2020_IES) obtained after IES analysis (water: 3 endmembers; forest: 9 endmembers; shrubland: 48 endmembers; grassland: 31 endmembers; rock and bare soil: 16 endmembers).</p> "> Figure 7
<p>The panel on the left shows the mean predicted RMSE values (±95% confidence intervals) depending on library size: the abscissa axis reflects the number of spectral signatures as the size of the spectral library, and the ordinate axis represents the predicted RMSE value. The panel on the right shows the mean predicted RMSE values (±95% confidence intervals) depending on library type: the abscissa axis reflects the type of spectral library (monotemporal, multitemporal with equitable distribution (Multitemporal_DE), or multitemporal with inequitable distribution (Multitemporal_DNE)).</p> "> Figure A1
<p>Distribution of validation plots in the study area.</p> ">
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Remotely Sensed and Ancillary Data
2.3. Methods
2.3.1. Image Preprocessing
2.3.2. Creation and Optimization of Spectral Libraries
2.3.3. MESMA Procedure: Obtaining Fraction Images
2.3.4. Validation
2.3.5. Analysis of the Performance of Spectral Libraries
3. Results
3.1. Spectral Libraries
3.2. MESMA Results and Optimal Spectral Libraries
3.3. Validation Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Appendix A
Class Model | 1990 | 2000 | 2010 | 2020 | ||||
---|---|---|---|---|---|---|---|---|
Pixels | Pixel (%) | Pixels | Pixel (%) | Pixels | Pixel (%) | Pixels | Pixel (%) | |
W | 28,864 | 0.70 | 36,038 | 0.88 | 31,290 | 0.76 | 16,821 | 0.41 |
F | 93,790 | 2.29 | 218,388 | 5.33 | 113,279 | 2.76 | 521,616 | 12.72 |
S | 1,012,843 | 24.71 | 882,808 | 21.54 | 1,268,155 | 30.94 | 741,478 | 18.09 |
G | 523,518 | 12.77 | 449,791 | 10.97 | 1,189,866 | 29.03 | 667,869 | 16.29 |
R | 124,014 | 3.03 | 82,457 | 2.01 | 104,392 | 2.55 | 49,638 | 1.21 |
W,F | 33,403 | 0.81 | 14,799 | 0.36 | 5678 | 0.14 | 164 | 0.00 |
W,S | 27,407 | 0.67 | 6944 | 0.17 | 4485 | 0.11 | 516 | 0.01 |
W,G | 29,347 | 0.72 | 6750 | 0.16 | 12,811 | 0.31 | 200 | 0.00 |
W,R | 1945 | 0.05 | 1521 | 0.04 | 4251 | 0.10 | 677 | 0.02 |
F,S | 494,704 | 12.07 | 482,799 | 11.78 | 248,272 | 6.06 | 631,954 | 15.42 |
F,G | 261,234 | 6.37 | 465,207 | 11.35 | 223,935 | 5.46 | 325,663 | 7.94 |
F,R | 235,712 | 5.75 | 317,045 | 7.73 | 27,639 | 0.67 | 45,591 | 1.11 |
S,G | 392,637 | 9.58 | 368,166 | 8.98 | 554,261 | 13.52 | 585,146 | 14.27 |
S,R | 456,256 | 11.13 | 329,168 | 8.03 | 96,066 | 2.34 | 164,581 | 4.01 |
G,R | 332,023 | 8.10 | 338,040 | 8.25 | 189,882 | 4.63 | 253,017 | 6.17 |
W,F,S | - | - | - | - | 4 | 0.00 | 3 | 0.00 |
W,F,G | 22 | 0.00 | 5 | 0.00 | 3 | 0.00 | - | - |
W,F,R | 505 | 0.01 | 305 | 0.01 | 80 | 0.00 | 18 | 0.00 |
W,S,G | 25 | 0.00 | 3 | 0.00 | 1 | 0.00 | - | - |
W,S,R | 20 | 0.00 | 16 | 0.00 | 6 | 0.00 | 2 | 0.00 |
W,G,R | 39 | 0.00 | 22 | 0.00 | 33 | 0.00 | 4 | 0.00 |
F,S,G | 7 | 0.00 | 15 | 0.00 | 1 | 0.00 | 26 | 0.00 |
F,S,R | 31 | 0.00 | 32 | 0.00 | 2 | 0.00 | 4 | 0.00 |
F,G,R | 171 | 0.00 | 164 | 0.00 | 36 | 0.00 | 272 | 0.01 |
S,G,R | 259 | 0.01 | 340 | 0.01 | 63 | 0.00 | 308 | 0.01 |
TOTAL | 4,099,390 | 100 | 4,099,390 | 100 | 4,099,390 | 100 | 4,099,390 | 100 |
References
- Bakker, W.H.; Feringa, W.; Gieske, A.S.M.; Gorte, B.G.H.; Grabmaier, K.A.; Hecker, C.A.; Horn, J.A.; Huurneman, G.C.; Janssen, L.L.F.; Kerle, N.; et al. Principles of Remote Sensing, 4th ed.; The International Institute for Geo-Information Science and Earth Observation (ITC): Enschede, The Netherlands, 2009. [Google Scholar]
- Cabello, J.; Paruelo, J.M. La teledetección en estudios ecológicos. Ecosistemas 2008, 17, 1–3. [Google Scholar]
- Lu, D.; Weng, Q. A survey of image classification methods and techniques for improving classification performance. Int. J. Remote Sens. 2007, 28, 823–870. [Google Scholar] [CrossRef]
- Navalgund, R.R.; Jayaraman, V.; Roy, P.S. Remote sensing applications: An overview. Curr. Sci. 2007, 93, 1747–1766. [Google Scholar]
- Clerici, N.; Weissteiner, C.J.; Gerard, F. Exploring the use of MODIS NDVI-Based Phenology Indicators for Classifying Forest General Habitat Categories. Remote Sens. 2012, 4, 1781–1803. [Google Scholar] [CrossRef] [Green Version]
- Erinjery, J.J.; Singh, M.; Kent, R. Mapping and assessment of vegetation types in the tropical rainforests of the Western Ghats using multispectral Sentinel-2 and SAR Sentinel-1 satellite imagery. Remote Sens. Environ. 2018, 216, 345–354. [Google Scholar] [CrossRef]
- Kerr, J.T.; Ostrovsky, M. From space to species: Ecological applications for remote sensing. Ecol. Evol. 2003, 18, 299–305. [Google Scholar] [CrossRef]
- Abburu, S.; Babu Golla, S. Satellite Image Classification Methods and Techniques: A Review. Int. J. Comput. Appl. 2015, 119, 20–25. [Google Scholar] [CrossRef]
- Somers, B.; Asner, G.P.; Tits, L.; Coppin, P. Endmember variability in Spectral Mixture Analysis: A review. Remote Sens. Environ. 2011, 115, 1603–1616. [Google Scholar] [CrossRef]
- Fernández-García, V.; Marcos, E.; Fernández-Guisuraga, J.M.; Fernández-Manso, A.; Quintano, C.; Suárez-Seoane, S.; Calvo, L. Multiple Endmember Spectral Mixture Analysis (MESMA) Applied to the Study of Habitat Diversity in the Fine-Grained Landscapes of the Cantabrian Mountains. Remote Sens. 2021, 13, 979. [Google Scholar] [CrossRef]
- Roberts, D.A.; Smith, M.O.; Adams, J.B. Green Vegetation, Nonphotosynthetic Vegetation, and Soils in AVIRIS Data. Remote Sens. Environ. 1993, 44, 255–269. [Google Scholar] [CrossRef]
- Roberts, D.A.; Ustin, S.L.; Ogunjemiyo, S.; Greenberg, J.; Dobrowski, S.Z.; Chen, J.; Hinckley, T.M. Spectral and Structural Measures of Northwest Forest Vegetation at Leaf to Landscape Scales. Ecosystems 2004, 7, 545–562. [Google Scholar] [CrossRef]
- Sonnentag, O.; Chen, J.M.; Roberts, D.A.; Talbot, J.; Halligan, K.Q.; Govind, A. Mapping tree and shrub leaf area indices in an ombrotrophic peatland through multiple endmember spectral unmixing. Remote Sens. Environ. 2007, 109, 342–360. [Google Scholar] [CrossRef]
- Somers, B.; Asner, G.P. Multi-temporal hyperspectral mixture analysis and feature selection for invasive species mapping in rainforests. Remote Sens. Environ. 2013, 136, 14–27. [Google Scholar] [CrossRef]
- Borsoi, R.A.; Imbiriba, T.; Moreira Bermúdez, J.C.; Richard, C. Deep Generative Models for Library Augmentation in Multiple Endmember Spectral Mixture Analysis. IEEE Geosci. Remote Sens. Lett. 2021, 18, 1831–1835. [Google Scholar] [CrossRef]
- Roth, K.L.; Dennison, P.E.; Roberts, D.A. Comparing endmember selection techniques for accurate mapping of plant species and land cover using imaging spectrometer data. Remote Sens. Environ. 2012, 127, 139–152. [Google Scholar] [CrossRef]
- Dennison, P.E.; Roberts, D.A. Endmember selection for multiple endmember spectral mixture analysis using endmember average RMSE. Remote Sens. Environ. 2003, 87, 123–135. [Google Scholar] [CrossRef]
- Dennison, P.E.; Halligan, K.Q.; Roberts, D.A. A comparison of error metrics and constraints for multiple endmember spectral mixture analysis and spectral angle mapper. Remote Sens. Environ. 2004, 93, 359–367. [Google Scholar] [CrossRef]
- Roberts, D.A.; Dennison, P.E.; Gardner, M.E.; Hetzel, Y.; Ustin, S.L.; Lee, C.T. Evaluation of the potential of Hyperion for fire danger assessment by comparison to the Airborne Visible/Infrared Imaging Spectrometer. IEEE Trans. Geosci. Remote Sens. 2003, 41, 1297–1310. [Google Scholar] [CrossRef]
- Tane, Z.; Roberts, D.; Veraverbeke, S.; Casas, A.; Ramirez, C.; Ustin, S. Evaluating Endmember and Band Selection Techniques for Multiple Endmember Spectral Mixture Analysis using Post-Fire Imaging Spectroscopy. Remote Sens. 2018, 10, 389. [Google Scholar] [CrossRef] [Green Version]
- Roberts, D.A.; Gardner, M.; Church, R.; Ustin, S.; Scheer, G.; Green, R.O. Mapping Chaparral in the Santa Monica Mountains using Multiple Endmember Spectral Mixture Models. Remote Sens. Environ. 1998, 65, 267–279. [Google Scholar] [CrossRef]
- Asner, G.P.; Lobell, D.B. A Biogeophysical Approach for Automated SWIR Unmixing of Soils and Vegetation. Remote Sens. Environ. 2000, 74, 99–112. [Google Scholar] [CrossRef]
- Bateson, C.A.; Asner, G.P.; Wessman, C.A. Endmember Bundles: A New Approach to Incorporating Endmember Variability into Spectral Mixture Analysis. IEEE Trans. Geosci. Remote Sens. 2000, 38, 1083–1094. [Google Scholar] [CrossRef]
- Fernández-Manso, A.; Quintano, C.; Roberts, D.A. Burn severity influence on post-fire vegetation cover resilience from Landsat MESMA fraction images time series in Mediterranean forest ecosystems. Remote Sens. Environ. 2016, 184, 112–123. [Google Scholar] [CrossRef]
- Quintano, C.; Fernández-Manso, A.; Roberts, D.A. Multiple Endmember Spectral Mixture Analysis (MESMA) to map burn severity levels from Landsat images in Mediterranean countries. Remote Sens. Environ. 2013, 136, 76–88. [Google Scholar] [CrossRef]
- Quintano, C.; Fernández-Manso, A.; Roberts, D.A. Burn severity mapping from Landsat MESMA fraction images and Land Surface Temperature. Remote Sens. Environ. 2017, 190, 83–95. [Google Scholar] [CrossRef]
- Digital Climatic Atlas of the Iberian Peninsula: Methodology and Applications in Bioclimatology and Geobotany. Available online: https://www.https://opengis.grumets.cat/wms/iberia/english/en_model.htm (accessed on 10 July 2021).
- Open Source Geospatial Foundation Project. Available online: http://qgis.osgeo.org (accessed on 10 March 2021).
- RStudio: Integrated Development for R. Boston, MA: RSTUDIO, PBC. Available online: https://rstudio.com/ (accessed on 1 March 2021).
- Spectral Library QGIS Plugin (Version 1.1.3). Available online: https://bitbucket.org/kul-reseco/spectral-libraries (accessed on 1 March 2021).
- Dudley, K.L.; Dennison, P.E.; Roth, K.L.; Roberts, D.A.; Coates, A.R. A multi-temporal spectral library approach for mapping vegetation species across spatial and temporal phenological gradients. Remote Sens. Environ. 2015, 167, 121–134. [Google Scholar] [CrossRef]
- Cohen, J. A coefficient of agreement for nominal scales. Educ. Psychol. Meas. 1960, 20, 37–46. [Google Scholar] [CrossRef]
- Dennison, P.E.; Roberts, D.A. The effects of vegetation phenology on endmember selection and species mapping in southern California chaparral. Remote Sens. Environ. 2003, 87, 295–309. [Google Scholar] [CrossRef]
- MESMA QGIS Plugin (Version 1.0.8). Available online: https://bitbucket.org/kul-reseco/mesma (accessed on 1 March 2021).
- Bates, D.; Mächler, M.; Bolker, B.M.; Walker, S.C. Fitting linear mixed-effects models using lme4. arXiv 2014, arXiv:1406.5823. [Google Scholar]
- Package ‘sjPlot’. Available online: https://cran.r-project.org/web/packages/sjPlot/index.html (accessed on 1 March 2021).
- Degerickx, J.; Okujeni, A.; Iordache, M.D.; Hermy, M.; van der Linden, S.; Somers, B. A Novel Spectral Library Pruning Technique for Spectral Unmixing of Urban Land Cover. Remote Sens. 2017, 9, 565. [Google Scholar] [CrossRef] [Green Version]
- Powel, R.L.; Roberts, D.A.; Dennison, P.E.; Hess, L.L. Sub-pixel mapping of urban land cover using multiple endmember spectral mixture analysis: Manaus, Brazil. Remote Sens. Environ. 2007, 106, 253–267. [Google Scholar] [CrossRef]
- Song, C. Spectral mixture analysis for subpixel vegetation fractions in the urban environment: How to incorporate endmember variability? Remote Sens. Environ. 2005, 95, 248–263. [Google Scholar] [CrossRef]
- Roth, K.L.; Roberts, D.A.; Dennison, P.E.; Alonzo, M.; Peterson, S.H.; Beland, M. Differentiating plant species within and across diverse ecosystems with imaging spectroscopy. Remote Sens. Environ. 2015, 167, 135–151. [Google Scholar] [CrossRef]
- Somers, B.; Verbesselt, J.; Ampe, E.M.; Sims, N.; Verstraeten, W.W.; Coppin, P. Spectral mixture analysis to monitor defoliation in mixed-aged Eucalyptus globulus Labill plantations in southern Australia using Landsat 5-TM and EO-1 Hyperion data. Int. J. Appl. Earth Obs. Geoinf. 2010, 12, 270–277. [Google Scholar] [CrossRef]
- Liu, C.; Shi, J.; Liu, X.; Shi, Z.; Zhu, J. Subpixel Mapping of Surface Water in the Tibetan Plateau with MODIS Data. Remote Sens. 2020, 12, 1154. [Google Scholar] [CrossRef]
Library Group | Spectral Library | Composition (Sensor) | Composition (Year) | Size (Endmembers) | Size after IES (Endmembers) |
---|---|---|---|---|---|
MULTITEMPORALWITH INEQUITABLE DISTRIBUTION | L1 | 75% TM 25% OLI | 25% 1990 25% 2000 25% 2010 25% 2020 | 1000 | 35 |
L3 | 400 | 24 | |||
MULTITEMPORAL WITH EQUITABLE DISTRIBUTION | L2 | 50% TM 50% OLI | 50% 1990, 2000 & 2010 50% 2020 | 500 | 27 |
L4 | 200 | 14 | |||
MONOTEMPORAL | 1990 | 100% TM | 100% 1990 | 250 | 14 |
2000 | 100% 2000 | 13 | |||
2010 | 100% 2010 | 13 | |||
2020 | 100% OLI | 100% 2020 | 17 |
Library | Kappa 1 Endmember | Kappa 5 Endmembers (1 Per Class) | Final Kappa | Endmembers | Endmembers of Each Class | Sensor | Endmembers % | ||||
---|---|---|---|---|---|---|---|---|---|---|---|
W | F | S | G | R | |||||||
L1_IES | 0.17 | 0.76 | 0.91 | 35 | - | 2 | 15 | 3 | 7 | TM | 77 |
1 | - | 2 | 4 | 1 | OLI | 23 | |||||
L2_IES | 0.17 | 0.76 | 0.91 | 27 | - | 1 | 6 | 2 | 1 | TM | 37 |
1 | - | 6 | 5 | 5 | OLI | 63 | |||||
L3_IES | 0.17 | 0.78 | 0.95 | 24 | - | 2 | 10 | 4 | 3 | TM | 80 |
1 | - | 3 | 1 | - | OLI | 21 | |||||
L4_IES | 0.17 | 0.77 | 0.93 | 14 | - | - | 3 | - | 1 | TM | 29 |
1 | 1 | 3 | 4 | 1 | OLI | 71 | |||||
1990_IES | 0.17 | 0.76 | 0.93 | 14 | 1 | 1 | 4 | 5 | 3 | TM | 100 |
2000_IES | 0.17 | 0.78 | 0.90 | 13 | 1 | 2 | 4 | 3 | 3 | TM | 100 |
2010_IES | 0.17 | 0.88 | 0.93 | 13 | 1 | 2 | 3 | 4 | 3 | TM | 100 |
2020_IES | 0.17 | 0.78 | 0.95 | 17 | 1 | 2 | 6 | 4 | 4 | OLI | 100 |
% of Classified Pixels | |||||
---|---|---|---|---|---|
LIBRARY | 1990 | 2000 | 2010 | 2020 | |
L1_IES | 98.49 | 96.95 | 99.39 | 97.29 | |
L2_IES | 98.77 | 97.6 | 99.39 | 97.71 | |
L3_IES | 98.67 | 97.32 | 99.01 | 97.44 | |
L4_IES | 97.56 | 95.33 | 98.52 | 95.71 | |
MONOTEMPORAL | 97.87 | 97.78 | 97.75 | 97.36 | |
CLASS | Water | 0.84 | 1.47 | 0.77 | 0.68 |
Forest | 21.68 | 27.85 | 23.35 | 33.68 | |
Shrubland | 31.7 | 24.44 | 37.48 | 26.51 | |
Grassland | 29.4 | 28.09 | 26.74 | 26.11 | |
Rock and bare soil | 16.38 | 18.15 | 11.66 | 13.01 |
LIBRARIES | Monotemporal_IES | L1_IES | L2_IES | L3_IES | L4_IES | |
0.303 ± 0.089 | 0.307 ± 0.094 | 0.318 ± 0.096 | 0.327 ± 0.107 | 0.352 ± 0.109 | ||
CLASSES | Water | Forest | Shrubland | Grassland | Rock and Bare Soil | |
YEAR | 1990 | 0.12 ± 0.02 | 0.30 ± 0.03 | 0.49 ± 0.04 | 0.43 ± 0.04 | 0.26 ± 0.01 |
2000 | 0.26 ± 0.01 | 0.23 ± 0.03 | 0.41 ± 0.06 | 0.43 ± 0.07 | 0.33 ± 0.02 | |
2010 | 0.22 ± 0.02 | 0.31 ± 0.06 | 0.45 ± 0.05 | 0.42 ± 0.05 | 0.29 ± 0.01 | |
2020 | 0.25 ± 0.01 | 0.24 ± 0.03 | 0.35 ± 0.06 | 0.39 ± 0.06 | 0.26 ± 0.01 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Compains Iso, L.; Fernández-Manso, A.; Fernández-García, V. Optimizing Spectral Libraries from Landsat Imagery for the Analysis of Habitat Richness Using MESMA. Forests 2022, 13, 1824. https://doi.org/10.3390/f13111824
Compains Iso L, Fernández-Manso A, Fernández-García V. Optimizing Spectral Libraries from Landsat Imagery for the Analysis of Habitat Richness Using MESMA. Forests. 2022; 13(11):1824. https://doi.org/10.3390/f13111824
Chicago/Turabian StyleCompains Iso, Leyre, Alfonso Fernández-Manso, and Víctor Fernández-García. 2022. "Optimizing Spectral Libraries from Landsat Imagery for the Analysis of Habitat Richness Using MESMA" Forests 13, no. 11: 1824. https://doi.org/10.3390/f13111824
APA StyleCompains Iso, L., Fernández-Manso, A., & Fernández-García, V. (2022). Optimizing Spectral Libraries from Landsat Imagery for the Analysis of Habitat Richness Using MESMA. Forests, 13(11), 1824. https://doi.org/10.3390/f13111824