Discriminant Analysis of the Damage Degree Caused by Pine Shoot Beetle to Yunnan Pine Using UAV-Based Hyperspectral Images
<p>Location of the study area near the reservoir of Heilongtan in Shilin County, Yunnan Province, China. Four sample plots were set up in the study area with randomly selected samples from each plot for a total of 80 sample trees (sample plot 1: 23 trees, sample plot 2: 28 trees, sample plot 3: 16 trees, and sample plot 4: 13 trees).</p> "> Figure 2
<p>Unmanned aerial vehicle (UAV)-based hyperspectral acquisition equipment. (<b>a</b>) UHD S185, radiometric calibration. (<b>b</b>) The UAV took off and collected data.</p> "> Figure 3
<p>Preprocessing flow. (<b>a</b>) Image preprocessing flow. (<b>b</b>) RGB orthophoto image. (<b>c</b>) Correction hyperspectral image. (<b>d</b>) A local magnification of the hyperspectral image. Position and orientation system (POS); Red-Green-Blue (RGB); Region of interest (ROI).</p> "> Figure 4
<p>The canopy range of different damage degrees. (<b>A</b>) Healthy. (<b>B</b>) Mild damage. (<b>C</b>) Moderate damage. (<b>D</b>) Severe damage.</p> "> Figure 5
<p>The entrance and exit holes of Pine shoot beetles (PSBs) captured by the M200+Z30.</p> "> Figure 6
<p>Linear fitting of the measured and predicted values of Ground-DSR.</p> "> Figure 7
<p>The curves of Yunnan pine canopies with different degrees of damage. (<b>a</b>) Spectral reflectance curves and (<b>b</b>) first derivative curves.</p> "> Figure 8
<p>Spectral ratio curves of Yunnan pine canopy.</p> "> Figure 9
<p>Results of the one-way ANOVA of the wavelengths. (<b>A</b>) The original spectra. (<b>B</b>) The S-G spectra. (<b>C</b>) The first derivative. The data are presented as the mean ± standard error, a, b, c and d indicate that the damage degree is significantly different at this band (<span class="html-italic">p</span> < 0.05), while the same letter indicates that there is no significant difference.</p> "> Figure 10
<p>Results of the one-way ANOVA of the hyperspectral parameters. (<b>A</b>) Dr, SDy, SDb, and Db. (<b>B</b>) SDr, SDnir, and (Rg − Rr)/(Rg + Rr). (<b>C</b>) SR1, Rg/Rr, and SR2. a, b, c and d indicate that the damage degree is significantly different at this parameter (<span class="html-italic">p</span> < 0.05), while the same letter indicates that there is no significant difference.</p> "> Figure 11
<p>Linear fitting of the measured and predicted values. (<b>a</b>) The original spectral model. (<b>b</b>) The S-G spectral model. (<b>c</b>) The model of the first derivative. (<b>d</b>) The model of hyperspectral parameters.</p> ">
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Data Acquisition
2.3. Data Preprocessing
2.4. Spectral Reflectance of Individual Yunnan Pine Canopy
2.5. First Derivative and Spectral Parameters
2.6. Ground Survey and Individual Yunnan Pine Canopy Survey
2.7. Model Building and Accuracy Validation
3. Results
3.1. The Relationship between Canopy-DSR and Ground-DSR
3.2. Spectral Characteristics of the Damaged Yunnan Pine Canopy
3.3. Differential Analysis of Spectra in Yunnan Pine Canopy at Different Damage Degrees
3.4. Differential Analysis of Hyperspectral Parameters in Yunnan Pine Canopy at Different Damage Degrees
3.5. Screening of the Damage Degree-Sensitive Variables in Yunnan Pine Canopy
3.6. Modeling the Damage Degree of Yunnan Pine Canopy
3.7. Quantitative Discriminant Rules of the Damage Degree of the Yunnan Pine Canopy
4. Discussion
4.1. Spectral Characteristics of Damaged Yunnan Pine
4.2. Sensitive Band and Parameter Screening
4.3. Quantitative Discriminant Rule for the Damage Degree
4.4. Monitoring Infestation by Tomicus spp.
4.5. Outlook
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
Abbreviations
Canopy-DSR | damaged shoot ratio of the canopy |
DSR | damaged shoot ratio |
ENVI | Environment for Visualizing Images |
Ground-DSR | damaged shoot ratio of ground survey |
GSD | ground sampling distances |
LiDAR | Light Detection and Ranging |
MLR | Multivariate Linear Regression |
NDVI | Normalized Difference Vegetation Index |
NDVI705 | Red Edge Normalized Difference Vegetation Index |
one-way ANOVA | one-way analysis of variance |
POS | position and orientation system |
PRI | Photochemical Reflectance Index |
PSB | pine shoot beetle |
RGB | Red-Green-Blue |
ROI | region of interest |
S-G | Savitzky-Golay |
SR | Simple Ratio Index |
UAV | Unmanned Aerial Vehicle |
VIF | Variance Inflation Factor |
References
- Lin, Q.N.; Huang, H.G.; Wang, J.X.; Huang, K.; Liu, Y.Y. Detection of Pine Shoot Beetle (PSB) Stress on Pine Forests at Individual Tree Level using UAV-Based Hyperspectral Imagery and Lidar. Remote Sens. 2019, 11, 2540. [Google Scholar] [CrossRef] [Green Version]
- Ye, H.; Dang, C.L. Study on the harmful behavior of Tomicus piniperda on Pinus yunnanensis. J. Yunnan Univ. 1986, 8, 218–222. [Google Scholar]
- Byers, J.A. Simulation of the mate-finding behaviour of pine shoot beetles, Tomicus piniperda. Anim. Behav. 1991, 41, 649–660. [Google Scholar] [CrossRef]
- Yu, L.F.; Huang, J.X.; Zong, S.X.; Huang, H.G.; Luo, Y.Q. Detecting Shoot Beetle Damage on Yunnan Pine Using Landsat Time-Series Data. Forests 2018, 9, 39. [Google Scholar] [CrossRef] [Green Version]
- Ye, H. Occurrence, distribution and damages of Tomicus piniperda in Yunnan, southwestern China. J. Yunnan Univ. 1998, 20, 3–5. [Google Scholar]
- Huang, L.X.; Yang, L.; Meng, L.W.; Wang, J.Y.; Li, S.J.; Fu, X.P.; Du, X.Q.; Wu, D. Potential of Visible and Near-Infrared Hyperspectral Imaging for Detection of Diaphania pyloalis Larvae and Damage on Mulberry Leaves. Sensors 2018, 18, 2077. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Trujillo-Toro, J.; Navarro-Cerrillo, R.M. Analysis of Site-dependent Pinus halepensis Mill. Defoliation Caused by ‘Candidatus Phytoplasma pini’ through Shape Selection in Landsat Time Series. Remote Sens. 2019, 11, 1868. [Google Scholar] [CrossRef] [Green Version]
- Balazy, R.; Hycza, T.; Kamińska, A.; Osińska-Skotak, K. Factors Affecting the Health Condition of Spruce Forests in Central European Mountains-Study Based on Multitemporal RapidEye Satellite Images. Forests 2019, 10, 943. [Google Scholar] [CrossRef] [Green Version]
- Bach, H.; Mauser, W. Atmospheric correction of hyperspectral data in terms of the determination of plant parameters. Proc. SPIE Int. Soc. Opt. Eng. 1994. [Google Scholar] [CrossRef]
- Pea, M.A.; Altmann, S.H. Use of satellite-derived hyperspectral indices to identify stress symptoms in an Austrocedrus chilensis forest infested by the aphid Cinara cupressi. Int. J. Pest Manag. 2009, 55, 197–206. [Google Scholar] [CrossRef]
- Yuan, Y.; Hu, X. Random Forest and Objected-Based Classification for Forest Pest Extraction from UAV Aerial Imagery. Int. Arch. Photogramm. 2016, 41, 1093–1098. [Google Scholar] [CrossRef]
- Wang, J.Q.; Wu, W.M.; Wang, T.W.; Cai, C.F. Estimation of leaf chlorophyll content and density in Populus euphratica based on hyperspectral characteristic variables. Spectrosc. Lett. 2018, 51, 485–495. [Google Scholar] [CrossRef]
- Ju, Y.W.; Pan, J.; Zhang, H.; Wang, X.T. Detection of Bursaphelenchus xylophilus infection in Pinus massoniana from hyperspectral data. Nematology 2014, 16, 1197–1207. [Google Scholar] [CrossRef]
- Xie, C.Q.; Yang, C.; He, Y. Hyperspectral imaging for classification of healthy and gray mold diseased tomato leaves with different infection severities. Comput. Electron. Agric. 2017, 135, 154–162. [Google Scholar] [CrossRef]
- Kong, W.; Zhang, C.; Huang, W.; Liu, F.; He, Y. Application of hyperspectral imaging to detect Sclerotinia sclerotiorum on oilseed rape stems. Sensors 2018, 18, 123. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ma, Y.; Huang, M.; Yang, B.; Zhu, Q. Automatic threshold method and optimal wavelength selection for insect-damaged vegetable soybean detection using hyperspectral images. Comput. Electron. Agric. 2014, 106, 102–110. [Google Scholar] [CrossRef]
- Coops, N.; Stanford, M.; Old, K.; Dudzinski, M. Assessment of Dothistroma Needle Blight of Pinus radiata Using Airborne Hyperspectral Imagery. Phytopathology 2003, 93, 1524–1532. [Google Scholar] [CrossRef] [Green Version]
- Zhang, N.; Zhang, X.L.; Yang, G.J.; Zhu, C.H.; Huo, L.N.; Feng, H.K. Assessment of defoliation during the Dendrolimus tabulaeformis Tsai et Liu disaster outbreak using UAV-based hyperspectral images. Remote Sens. Environ. 2018, 217, 323–339. [Google Scholar] [CrossRef]
- Näsi, R.; Honkavaara, E.; Lyytikäinen-Saarenmaa, P.; Blomqvist, M.; Litkey, P.; Hakala, T.; Viljanen, N.; Kantola, T.; Tanhuanpää, T.; Holopainen, M. Using UAV-Based Photogrammetry and Hyperspectral Imaging for Mapping Bark Beetle Damage at Tree-Level. Remote Sens. 2015, 7, 15467–15493. [Google Scholar] [CrossRef] [Green Version]
- Lausch, A.; Heurich, M.; Gordalla, D.; Dobner, H. Forecasting potential bark beetle outbreaks based on spruce forest vitality using hyperspectral remote-sensing techniques at different scales. Forest Ecol. Manag. 2013, 308, 76–89. [Google Scholar] [CrossRef]
- Meiforth, J.J.; Buddenbaum, H.; Hill, J.; Shepherd, J. Monitoring of Canopy Stress Symptoms in New Zealand Kauri Trees Analysed with AISA Hyperspectral Data. Remote Sens. 2020, 12, 926. [Google Scholar] [CrossRef] [Green Version]
- Zarco-Tejada, P.J.; Hornero, A.; Beck, P.S.A.; Kattenborn, T.; Kempeneers, P.; Hernández-Clemente, R. Chlorophyll content estimation in an open-canopy conifer forest with Sentinel-2A and hyperspectral imagery in the context of forest decline. Remote Sens. Environ. 2019, 223, 320–335. [Google Scholar] [CrossRef]
- Yang, G.J.; Li, C.C.; Wang, Y.J.; Yuan, H.H.; Feng, H.K.; Xu, B.; Yang, X.D. The DOM generation and precise radiometric calibration of a UAV-mounted miniature snapshot hyperspectral imager. Remote Sens. 2017, 9, 642. [Google Scholar] [CrossRef] [Green Version]
- Savitzky, A.; Golay, M.J.E. Smoothing and Differentiation of Data by Simplified Least Squares Procedures. Anal. Chem. 1964, 36, 1627–1639. [Google Scholar] [CrossRef]
- Xu, Z.H.; Liu, J.; Yu, K.Y.; Gong, C.H.; Xie, W.J.; Tang, M.Y.; La, R.W.; Li, Z.L. Spectral Features Analysis of Pinus massoniana with Pest of Dendrolimus punctatus Walker and Levels Detection. Spectrosc. Spect. Anal. 2013, 33, 428–433. [Google Scholar] [CrossRef]
- Merzlyak, M.N.; Gitelson, A.A.; Chivkunova, O.B.; Rakitin, V.Y. Non-destructive optical detection of pigment changes during leaf senescence and fruit ripening. Physiol. Plant. 2010, 106, 135–141. [Google Scholar] [CrossRef] [Green Version]
- Liu, M.Y.; Shi, L.; Ma, Y.Q.; Zhang, Z.H.; Liu, X.L.; Yao, J.; Du, T. Correlation Analysis of Different Hazard Periods of Tomicus spp. Based on Hyperspectral Features and Photosynthetic Parameters. For. Res. 2020, 33, 118–127. [Google Scholar] [CrossRef]
- Yuan, L.; Zhang, J.C.; Zhao, J.L.; Huang, W.J. Differentiation of Yellow Rust and Powdery Mildew in Winter Wheat and Retrieving of Disease Severity Based on Leaf Level Spectral Analysis. Spectrosc. Spect. Anal. 2013, 33, 1608–1614. [Google Scholar] [CrossRef]
- Das, P.K.; Laxman, B.; Rao, S.V.C.K.; Seshasai, M.V.R.; Dadhwal, V.K. Monitoring of bacterial leaf blight in rice using ground-based hyperspectral and LISS IV satellite data in Kurnool, Andhra Pradesh, India. Int. J. Pest Manag. 2015, 61, 359–368. [Google Scholar] [CrossRef]
- Gong, P.; Pu, R.; Heald, R.C. Analysis of in situ hyperspectral data for nutrient estimation of giant sequoia. Int. J. Remote Sens. 2002, 23, 1827–1850. [Google Scholar] [CrossRef]
- Wu, T.; Ni, S.X.; Li, Y.M.; Zhou, X.X.; Chen, J. Monitoring of the Damage Intensity Extent by Oriental Migratory Locust Using of Hyper-spectra Data Measured at Ground Surface. Int. J. Remote Sens. 2007, 11, 103–108. [Google Scholar]
- Nansen, C.; Elliott, N. Remote Sensing and Reflectance Profiling in Entomology. Annu. Rev. Entomol. 2016, 61, 139–158. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Aparicio, T.; Villanua, I. Multivariate linear regression model. In Computer-Aided Introduction to Econometrics; Springer: Berlin/Heidelberg, Germany, 2003; pp. 45–120. [Google Scholar] [CrossRef]
- Pearson, K. Determination of the Coefficient of Correlation. Science 1909, 30, 23–25. [Google Scholar] [CrossRef] [PubMed]
- Zhou, S.; Cheng, J.L.; Huang, M.X.; Zhou, L.Q. Assessing Reclamation Levels of Coastal Saline Lands with Integrated Stepwise Discriminant Analysis and Laboratory Hyperspectral Data. Pedosphere 2006. [Google Scholar] [CrossRef]
- Dukes, J.S.; Pontius, J.; Orwig, D.; Garnas, J.R.; Rodgers, V.L.; Brazee, N.; Cooke, B.; Theoharides, K.A.; Stange, E.E.; Harrington, R. Responses of insect pests, pathogens, and invasive plant species to climate change in the forests of northeastern North America: What can we predict? This article is one of a selection of papers from NE Forests 2100: A Synthesis of Climate Change Impacts on Forests of the Northeastern US and Eastern Canada. Can. J. For. Res. 2009, 39, 231–248. [Google Scholar] [CrossRef]
- Duan, Z.Y.; Yang, Z.Y.; Wang, J.M.; He, Y.H. Artificial Rearing and Living Habits Observation in the Latent Phase of Pine Shoot Beetle, Tomicus yunnanensis. For. Res. 2013, 26, 389–392. [Google Scholar] [CrossRef]
- Marcone, C.; Franco-Lara, L.; Toševski, I. Major phytoplasma diseases of forest and urban trees. In Phytoplasmas: Plant Pathogenic Bacteria-I; Springer: Singapore, 2018; pp. 287–312. [Google Scholar] [CrossRef]
- Wu, N.; Liu, J.A.; Zhou, G.Y.; Yan, R.K.; Dong, W.T. Inversion Anthracnose Disease Indices of Chinese Fir Based on Hyperspectral Derivative Indices. Sci. Silvae Sin. 2012, 48, 94–98. [Google Scholar] [CrossRef]
- Silva, C.R.; Olthoff, A.E.; de la Mata, J.A.D.; Alonso, A.P. Remote monitoring of forest insect defoliation. A review. For. Syst. 2013, 22, 377–391. [Google Scholar] [CrossRef] [Green Version]
- Ariana, D.P.; Lu, R. Hyperspectral waveband selection for internal defect detection of pickling cucumbers and whole pickles. Comput. Electron. Agric. 2010, 74, 137–144. [Google Scholar] [CrossRef]
- Wallays, C.; Missotten, B.; De Baerdemaeker, J.; Saeys, W. Hyperspectral waveband selection for on-line measurement of grain cleanness. Biosyst. Eng. 2009, 104, 1–7. [Google Scholar] [CrossRef]
- Luo, W.; Du, Y.Z.; Zhang, H.L. Discrimination of Varieties of Cabbage with Near Infrared Spectra Based on Principal Component Analysis and Successive Projections Algorithm. Spectrosc. Spect. Anal. 2016, 36, 3536–3541. [Google Scholar] [CrossRef]
- Li, S.; Zheng, Z.; Wang, Y.; Chang, C.; Yu, Y. A new hyperspectral band selection and classification framework based on combining multiple classifiers. Pattern Recogn. Lett. 2016, 83, 152–159. [Google Scholar] [CrossRef]
- Ma, Y.; Zhu, L. A review on dimension reduction. Int. Stat. Rev. 2013, 81, 134–150. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ganaa, E.D.; Abeo, T.A.; Wang, L.J.; Song, H.P.; Shen, X.J. Robust deflated principal component analysis via multiple instance factorings for dimension reduction in remote sensing images. J. Appl. Remote Sens. 2020, 14, 032608. [Google Scholar] [CrossRef]
- Liu, Y.; Xiao, H.; Hao, Y.; Ye, L.; Jiang, X.; Wang, H.; Sun, X. Diagnosis of Citrus Greening using Raman Spectroscopy-Based Pattern Recognition. J. Appl. Spectrosc. 2020, 87, 150–158. [Google Scholar] [CrossRef]
- Song, Z.W.; Zhang, B.X.; Feng, H.Q.; Zhu, S.M.; Hu, L.N.; Brydegaard, M.; Li, Y.Y.; Malmqvist, E.; Svanberg, K.; Zhao, G.Y.; et al. Application of lidar remote sensing of insects in agricultural entomology on the Chinese scene. J. Appl. Entomol. 2019, 144, 1–9. [Google Scholar] [CrossRef]
Damage Degree | Healthy | Mild Damage | Moderate Damage | Severe Damage |
---|---|---|---|---|
Damaged shoot ratio (DSR, %) | <10 | 10~20 | 21~50 | >51 |
Parameters | Value | Parameters | Value |
---|---|---|---|
Wavelength range | 450–950 nm | Digital resolution | 12 bit |
Sampling interval | 4 nm | Cube resolution | 1.0 megapixels |
Spectral resolution | 8 nm at 532 nm | Field of view | 20° |
Spectral channels | 125 | Imaging speed | 5 Cubes/s |
Weight | 470 g | Spectral throughput | 2500 spectra/cube |
Variable Categories | Variable Definitions and Formulas | References | |
---|---|---|---|
Vegetation indexes | [27] | ||
[28] | |||
[29] | |||
[27] | |||
[28] | |||
[27] | |||
Hyperspectral parameters | Reflectance parameters | Rg (Green mountain): Maximum reflectance in the wavelength range of 520–560 nm | [30] |
Rr (Red valley): Minimum reflectance in the wavelength range of 640–680 nm | [30] | ||
[31] | |||
[31] | |||
Rg/Rr | [31] | ||
D/H | [31] | ||
(Rg − Rr)/(Rg + Rr) | [31] | ||
(D − H)/(D + H) | [31] | ||
First derivative parameters | Db: The maximum value of the first derivative in the blue edge region (470–520 nm) | [30] | |
Dy: The maximum value of the first derivative spectra in the yellow edge region (560–590 nm) | [30] | ||
Dr: The maximum value of the first derivative spectra in the red-edge region (660–740 nm) | [31] | ||
Dnir: The maximum value of the first derivative spectra in near-infrared region (760–950 nm) | [31] | ||
SDb: The sum of the first derivative values in the blue edge region | [30] | ||
SDy: The sum of the first derivative values in the yellow edge region | [30] | ||
SDr: The sum of the first derivative values in the red-edge region | [30] | ||
SDnir: The sum of the first derivative values in the near-infrared region | [31] | ||
SDr/SDb | [31] | ||
SDr/SDy | [31] | ||
SDnir/SDb | [31] | ||
SDnir/SDr | [31] | ||
(SDr − SDb)/(SDr + SDb) | [31] | ||
(SDr − SDy)/(SDr + SDy) | [31] |
Sample Number | Damage Degree | Ground-DSR | Canopy-DSR | Longitude | Latitude |
---|---|---|---|---|---|
1-001 | Healthy | 0.05 | 0 | 103.33114 | 24.76616 |
1-002 | Healthy | 0.03 | 0 | 103.33245 | 24.76626 |
2-016 | Mild damage | 0.12 | 0.19 | 103.33352 | 24.76843 |
4-013 | Severe damage | 0.93 | 1 | 103.33764 | 24.77149 |
Regression Equation of Ground-DSR | Fitting Accuracy | Prediction Accuracy | Bias | ||||
---|---|---|---|---|---|---|---|
R2 | RMSE | rRMSE | R2 | RMSE | rRMSE | ||
y = 0.007 + 1.005x | 0.989 | 0.032 | 0.098 | 0.992 | 0.033 | 0.072 | <0.001 |
The Original Spectra | The S-G Spectra | The First Derivative | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Band | PCC | Tolerance | VIF | Band | PCC | Tolerance | VIF | Band | PCC | Tolerance | VIF |
774 | −0.895 ** | <0.001 | 3230.847 | 774 | −0.895 ** | <0.001 | 2556.225 | 698 | −0.875 ** | 0.006 | 154.402 |
778 | −0.896 ** | <0.001 | 8201.209 | 778 | −0.895 ** | <0.001 | 142,212.548 | 702 | −0.899 ** | 0.001 | 669.673 |
782 | −0.895 ** | <0.001 | 7197.148 | 782 | −0.895 ** | <0.001 | 9926.257 | 706 | −0.914 ** | 0.001 | 976.484 |
786 | −0.895 ** | <0.001 | 9905.203 | 786 | −0.895 ** | <0.001 | 176,513.343 | 710 | −0.921 ** | 0.001 | 1108.016 |
790 | −0.895 ** | <0.001 | 3117.318 | 790 | −0.895 ** | <0.001 | 6018.624 | 714 | −0.922 ** | 0.001 | 850.018 |
794 | −0.896 ** | <0.001 | 14,842.297 | 794 | −0.896 ** | <0.001 | 60,787.606 | 718 | −0.919 ** | 0.001 | 683.963 |
798 | −0.897 ** | <0.001 | 3659.827 | 798 | −0.897 ** | <0.001 | 51,612.218 | 722 | −0.906 ** | 0.002 | 607.944 |
802 | −0.896 ** | <0.001 | 16,819.991 | 802 | −0.897 ** | <0.001 | 4077.492 | 726 | −0.888 ** | 0.002 | 413.520 |
806 | −0.896 ** | <0.001 | 5105.823 | 806 | −0.896 ** | <0.001 | 75,617.265 | 730 | −0.874 ** | 0.004 | 222.503 |
810 | −0.895 ** | <0.001 | 3302.066 | 810 | −0.895 ** | <0.001 | 2483.072 | 734 | −0.851 ** | 0.024 | 41.300 |
Method | Band | Fisher Discriminant Function | Accuracy | |||
---|---|---|---|---|---|---|
Healthy | Mild Damage | Moderate Damage | Severe Damage | |||
The original spectra | R798 | 590.800 | 510.114 | 439.481 | 335.998 | 71.30% |
(constant) | −81.925 | −61.429 | −45.953 | −27.436 | ||
The S-G spectra | RS-G798 | 589.695 | 509.072 | 439.010 | 335.408 | 71.30% |
(constant) | −81.735 | −61.266 | −45.918 | −27.380 | ||
The first derivative | D714 | 29,055.047 | 23,456.192 | 19,216.080 | 13,381.829 | 80.00% |
(constant) | −72.215 | −47.548 | −32.367 | −16.411 |
Method | Step | Variable | PCC |
---|---|---|---|
The original spectra | 1 | R798 | −0.897 ** |
2 | R690 | −0.274 * | |
The S-G spectra | 1 | RS-G802 | −0.897 ** |
2 | RS-G690 | −0.275 ** | |
The first derivative | 1 | D714 | −0.922 ** |
2 | D650 | 0.694 ** | |
Hyperspectral parameters | 1 | Dr | −0.924 ** |
Method | Band | Fisher’s Discriminant Function | Modeling Accuracy | Cross-Validation | |||
---|---|---|---|---|---|---|---|
Healthy | Mild Damage | Moderate Damage | Severe Damage | ||||
The original spectra | R690 | −539.930 | −322.091 | −227.446 | −98.199 | 83.80% | 82.50% |
R798 | 788.055 | 627.785 | 522.575 | 371.874 | |||
(constant) | −93.288 | −65.472 | −47.969 | −27.812 | |||
The S-G spectra | RS-G690 | −544.965 | −327.158 | −233.401 | −100.343 | 82.50% | 78.80% |
RS-G802 | 794.239 | 633.431 | 528.802 | 375.697 | |||
(constant) | −93.823 | −65.918 | −48.486 | −28.076 | |||
The first derivative | D650 | −15,686.086 | −13,897.181 | −14,131.453 | 6483.093 | 85.00% | 85.00% |
D714 | 28,460.216 | 22,929.199 | 18,680.203 | 13,627.674 | |||
(constant) | −72.911 | −48.095 | −32.932 | −16.530 | |||
Hyperspectral parameters | Dr | 31,819.500 | 25,766.666 | 21,463.581 | 15,099.681 | 86.30% | 83.80% |
(constant) | −79.503 | −52.610 | −36.930 | −18.977 |
Model | Regression Equation | Fitting Accuracy | Prediction Accuracy | Bias | ||||
---|---|---|---|---|---|---|---|---|
R2 | RMSE | rRMSE | R2 | RMSE | rRMSE | |||
The original spectra | y = 5.224 + 27.346R690 − 24.592R798 | 0.864 | 0.416 | 0.277 | 0.822 | 0.472 | 0.315 | −0.068 |
The S-G spectra | y = 5.231 + 27.360RS-G690 − 24.623RS-G802 | 0.862 | 0.419 | 0.279 | 0.827 | 0.465 | 0.310 | −0.067 |
The first derivative | y = 4.855 + 1098.028D650 − 896.053D714 | 0.861 | 0.420 | 0.280 | 0.821 | 0.474 | 0.316 | −0.051 |
Hyperspectral parameters | y = 5.123 − 1010.441Dr | 0.862 | 0.420 | 0.280 | 0.824 | 0.469 | 0.313 | −0.047 |
Model | Value | Healthy | Mild Damage | Moderate Damage | Severe Damage |
---|---|---|---|---|---|
The original spectra | Average | 0.190 | 1.123 | 1.850 | 2.838 |
Threshold value | <0.657 | (0.657,1.486) | (1.486,2.344) | ≥2.344 | |
The S-G spectra | Average | 0.192 | 1.119 | 1.850 | 2.838 |
Threshold value | <0.655 | (0.655,1.484) | (1.484,2.344) | ≥2.344 | |
The first derivative | Average | 0.239 | 1.084 | 1.784 | 2.893 |
Threshold value | <0.661 | (0.661,1.434) | (1.434,2.339) | ≥2.339 | |
Hyperspectral parameters | Average | 0.219 | 1.109 | 1.807 | 2.867 |
Threshold value | <0.664 | (0.664,1.458) | (1.458,2.337) | ≥2.337 |
Model | Damage Degree | Healthy | Mild | Moderate | Severe | Test Accuracy | Overall Accuracy |
---|---|---|---|---|---|---|---|
The original spectra | Healthy | 6 | 0 | 0 | 0 | 100.00% | 87.50% |
Mild | 0 | 6 | 0 | 0 | 100.00% | ||
Moderate | 0 | 1 | 5 | 0 | 83.33% | ||
Severe | 0 | 0 | 2 | 4 | 66.67% | ||
The S-G spectra | Healthy | 6 | 0 | 0 | 0 | 100.00% | 83.33% |
Mild | 0 | 6 | 0 | 0 | 100.00% | ||
Moderate | 0 | 2 | 4 | 0 | 66.67% | ||
Severe | 0 | 0 | 2 | 4 | 66.67% | ||
The first derivative | Healthy | 6 | 0 | 0 | 0 | 100.00% | 79.17% |
Mild | 0 | 6 | 0 | 0 | 100.00% | ||
Moderate | 0 | 2 | 4 | 0 | 66.67% | ||
Severe | 0 | 0 | 3 | 3 | 50.00% | ||
Hyperspectral parameters | Healthy | 6 | 0 | 0 | 0 | 100.0% | 83.33% |
Mild | 0 | 6 | 0 | 0 | 100.0% | ||
Moderate | 0 | 1 | 5 | 0 | 83.33% | ||
Severe | 0 | 0 | 3 | 3 | 50.00% |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, M.; Zhang, Z.; Liu, X.; Yao, J.; Du, T.; Ma, Y.; Shi, L. Discriminant Analysis of the Damage Degree Caused by Pine Shoot Beetle to Yunnan Pine Using UAV-Based Hyperspectral Images. Forests 2020, 11, 1258. https://doi.org/10.3390/f11121258
Liu M, Zhang Z, Liu X, Yao J, Du T, Ma Y, Shi L. Discriminant Analysis of the Damage Degree Caused by Pine Shoot Beetle to Yunnan Pine Using UAV-Based Hyperspectral Images. Forests. 2020; 11(12):1258. https://doi.org/10.3390/f11121258
Chicago/Turabian StyleLiu, Mengying, Zhonghe Zhang, Xuelian Liu, Jun Yao, Ting Du, Yunqiang Ma, and Lei Shi. 2020. "Discriminant Analysis of the Damage Degree Caused by Pine Shoot Beetle to Yunnan Pine Using UAV-Based Hyperspectral Images" Forests 11, no. 12: 1258. https://doi.org/10.3390/f11121258
APA StyleLiu, M., Zhang, Z., Liu, X., Yao, J., Du, T., Ma, Y., & Shi, L. (2020). Discriminant Analysis of the Damage Degree Caused by Pine Shoot Beetle to Yunnan Pine Using UAV-Based Hyperspectral Images. Forests, 11(12), 1258. https://doi.org/10.3390/f11121258