Assessing the Versatility of Bioextraction to Preserve Waterlogged Wood
<p>Mean color variation (ΔE*) between before and after extraction for biologically (BT, green) and chemically (CT, blue) treated sets, compared with untreated (NT, grey) samples, with standard error. Black line indicates the threshold of eye-perceivable color variation (ΔE* = 5).</p> "> Figure 2
<p>Representative Raman spectra for sets biologically (green) and chemically (blue) treated, compared with untreated (grey) samples.</p> "> Figure 3
<p>PCA plot for all sets biologically (circle, BT) and chemically (square, CT) treated, compared with untreated (triangle, NT) samples, for the degradation variables pH, maximum water content (Umax) and ATR-FTIR ratio (R1).</p> ">
Abstract
:1. Introduction
2. Materials and Methods
2.1. Waterlogged Wood Samples
2.2. Selection of Complexing and Oxidizing Agents
2.3. Extraction Methods
2.4. Analytical Protocol
2.4.1. Colorimetry
2.4.2. pH
2.4.3. Maximum Water Content
- The determination of Maximum Water Content (Umax) gives the weight proportion of wood substance to water in a sample completely filled with water. Umax is expressed as the weight of the water as a percentage of the weight of the dry wood substance [39]. MWC can therefore be considered to be directly proportional to the amount of decay. According to Macchioni et al. [39], the comparison with the values for sound wood shows the decrease in density. WW can be classified into five classes, reflecting the state of degradation. The loss of substance is reflected by a corresponding increase of the MWC, but as the value does not include the original dry density of the wood, different samples with identical MWC can present different stage of degradation, due to different initial density [40]. This classification is therefore indicative and not absolute.
- Grade 0: Umax < 135%—absence of decay
- Grade 1: 135 < Umax < 225%—initial decay
- Grade 2: 225 < Umax < 350%—advanced decay
- Grade 3: 350 Umax < 500%—important decay
- Grade 4: Umax > 500%—high decay
2.4.4. Attenuated Total Reflectance Fourier Transformed Infrared Spectroscopy
2.4.5. Raman Spectroscopy
2.4.6. X-ray Fluorescence
2.5. Statistical Validation
3. Results
3.1. Samples Appearance
3.2. Wood Integrity
3.3. Efficiency of Extraction
4. Discussion
4.1. Iron Extraction Efficiency
4.2. Sulfur Extraction Efficiency
4.3. Innocuousness towards Wood Integrity
4.4. Representativity of Model Samples
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Winandy, J.E.; Rowell, R.M. 11 chemistry of wood strength. In Handbook of Wood Chemistry and Wood Composites; CRC Press: Boca Raton, FL, USA, 2005; Volume 303. [Google Scholar]
- Williams, R.S. Weathering of wood. In Handbook of Wood Chemistry and Wood Composites; CRC Press: Boca Raton, FL, USA, 2005; Volume 7, pp. 139–185. [Google Scholar]
- Ibach, R.E. Biological properties. In Handbook of Wood Chemistry and Wood Composites; CRC Press: Boca Raton, FL, USA, 2005; pp. 99–120. [Google Scholar]
- Wetherall, K.M.; Moss, R.M.; Jones, A.M.; Smith, A.D.; Skinner, T.; Pickup, D.M.; Goatham, S.W.; Chadwick, A.V.; Newport, R.J. Sulfur and iron speciation in recently recovered timbers of the Mary Rose revealed via X-ray absorption spectroscopy. J. Archaeol. Sci. 2008, 35, 1317–1328. [Google Scholar] [CrossRef]
- Rémazeilles, C.; Saheb, M.; Neff, D.; Guilminot, E.; Tran, K.; Bourdoiseau, J.-A.; Sabot, R.; Jeannin, M.; Matthiesen, H.; Dillmann, P.; et al. Microbiologically influenced corrosion of archaeological artefacts:Characterisation of iron(II) sulfides by Raman spectroscopy. J. Raman Spectrosc. 2010, 41, 1425–1433. [Google Scholar] [CrossRef]
- Björdal, C.G. Microbial degradation of waterlogged archaeological wood. J. Cult. Herit. 2012, 13, S118–S122. [Google Scholar] [CrossRef]
- Fors, Y.; Jalilehvand, F.; Risberg, E.D.; Björdal, C.; Phillips, E.; Sandström, M. Sulfur and iron analyses of marine archaeological wood in shipwrecks from the Baltic Sea and Scandinavian waters. J. Archaeol. Sci. 2012, 39, 2521–2532. [Google Scholar] [CrossRef]
- Nilsson, T.; Björdal, C. Culturing wood-degrading erosion bacteria. Int. Biodeterior. Biodegrad. 2008, 61, 3–10. [Google Scholar] [CrossRef]
- Sandström, M.; Jalilehvand, F.; Persson, I.; Gelius, U.; Frank, P.; Hall-Roth, I. Deterioration of the seventeenth-century warship Vasa by internal formation of sulphuric acid. Nature 2002, 415, 893–897. [Google Scholar] [CrossRef] [PubMed]
- Sandström, M.; Fors, Y.; Jalilehvand, F.; Damian, E.; Gelius, U. Analyses of sulfur and iron in marine-archaeological wood. In Proceedings of the Ninth ICOM Group on Wet Organic Archaeological Materials Conference, Copenhagen, Denmark, 7–11 June 2004; pp. 181–202. [Google Scholar]
- Florian, M.L.E. Deterioration of organic materials other than wood. In Conservation of Marine Archaeological Objects; Elsevier: Amsterdam, The Netherlands, 1987; pp. 21–54. [Google Scholar]
- Fors, Y.; Sandström, M. Sulfur and iron in shipwrecks cause conservation concerns. Chem. Soc. Rev. 2006, 35, 399–415. [Google Scholar] [CrossRef] [PubMed]
- Emery, J.A.; Schroeder, H.A. Iron-catalyzed oxidation of wood carbohydrates. Wood Sci. Technol. 1974, 8, 123–137. [Google Scholar] [CrossRef]
- Hrdlička, L.; Škulcová, A.; Ház, A. Degradation of lignin via Fenton reaction. In Proceedings of the 5th International Scientific Conference, Renewable Energy Sources, Tatranské Matliare, Slovakia, 20–22 May 2014. [Google Scholar]
- Monachon, M.; Albelda-Berenguer, M.; Lombardo, T.; Cornet, E.; Moll-Dau, F.; Schramm, J.; Schmidt-Ott, K.; Joseph, E. Evaluation of an alternative biotreatment for the extraction of harmful iron and sulfur species from waterlogged wood. Eur. Phys. J. Plus 2021, 136, 937. [Google Scholar] [CrossRef]
- Jensen, J.B. Vaccum freeze-drying managed by object temperature. In Proceedings of the 13th ICOM-Group on Wet Organic Archaeological Materials Conference, Florence, Italy, 16–21 May 2016; pp. 315–324. [Google Scholar]
- Almkvist, G.; Persson, I. Degradation of polyethylene glycol and hemicellulose in the Vasa. Holzforschung 2008, 62, 64–70. [Google Scholar] [CrossRef]
- Suryawanshi, D.G.; Bisaria, S.K. Removing metallic stains from paper objects using chelating agent EDTA. Restaur. Int. J. Preserv. Libr. Arch. Mater. 2005, 26, 276–285. [Google Scholar] [CrossRef]
- Almkvist, G.; Persson, I. Extraction of iron compounds from wood from the Vasa. Holzforschung 2006, 60, 678–684. [Google Scholar] [CrossRef]
- Pecoraro, E.; Pelé-Meziani, C.; Macchioni, N.; Lemoine, G.; Guilminot, E.; Shen, D.; Pizzo, B. The removal of iron from waterlogged archaeological wood: Efficacy and effects on the room temperature wood properties. Wood Mater. Sci. Eng. 2022, 18, 672–689. [Google Scholar] [CrossRef]
- Almkvist, G. Iron Removal from Waterlogged Wood; Swedish University of Agricultural Sciences: Uppsala, Sweden, 2013. [Google Scholar]
- Fors, Y.; Richards, V. The effects of the ammonia neutralizing treatment on marine archaeological Vasa wood. Stud. Conserv. 2010, 55, 41–54. [Google Scholar] [CrossRef]
- Giorgi, R.; Chelazzi, D.; Baglioni, P. Nanoparticles of calcium hydroxide for wood conservation. The deacidification of the Vasa warship. Langmuir 2005, 21, 10743–10748. [Google Scholar] [CrossRef]
- Giorgi, R.; Chelazzi, D.; Baglioni, P. Conservation of acid waterlogged shipwrecks: Nanotechnologies for de-acidification. Appl. Phys. A 2006, 83, 567–571. [Google Scholar] [CrossRef]
- Schofield, E.J.; Sarangi, R.; Mehta, A.; Jones, A.M.; Smith, A.; Mosselmans, J.F.W.; Chadwick, A.V. Strontium carbonate nanoparticles for the surface treatment of problematic sulfur and iron in waterlogged archaeological wood. J. Cult. Herit. 2016, 18, 306–312. [Google Scholar] [CrossRef]
- Onawole, A.T.; Hussein, I.A.; Nimir, H.I.; Ahmed, M.E.M.; Saad, M.A. Molecular Design of Novel Chemicals for Iron Sulfide Scale Removal. J. Chem. 2021, 2021, 7698762. [Google Scholar] [CrossRef]
- Chaumat, G.; Zahnweh, D.; Martinez-Carballal, X.; Caillat, L.; Guiblain, T.; Dbeaurain, M. Development of curative and preventive treatments of waterlogged archaeological wood contaminated by pyrite. In Proceedings of the 14th ICOM-CC Wet Organic Archaeological Materials Conference, Portsmouth, UK, 20–24 May 2019. [Google Scholar]
- Monachon, M.; Albelda-Berenguer, M.; Lombardo, T.; Cornet, E.; Moll-Dau, F.; Schramm, J.; Schmidt-Ott, K.; Joseph, E. Evaluation of Bio-Based Extraction Methods by Spectroscopic Methods. Minerals 2020, 10, 203. [Google Scholar] [CrossRef]
- Lennie, A.R.; Redfern, S.A.T.; Schofield, P.F.; Vaughan, D.J. Synthesis and Rietveld crystal structure refinement of mackinawite, tetragonal FeS. Mineral. Mag. 1995, 59, 677–683. [Google Scholar] [CrossRef]
- Saha, R.; Saha, N.; Donofrio, R.S.; Bestervelt, L.L. Microbial siderophores: A mini review. J. Basic Microbiol. 2013, 53, 303–317. [Google Scholar] [CrossRef] [PubMed]
- Albelda-Berenguer, M.; Monachon, M.; Joseph, E. Siderophores: From natural roles to potential applications. Adv. Appl. Microbiol. 2019, 106, 193. [Google Scholar]
- Rapti, S.; Boyatzis, S.; Rivers, S.; Velios, A.; Pournou, A. Removing iron stains from wood and textile objects: Assessing gelled siderophores as novel green chelators. In Gels in the Conservation of Art; Archetype Books: London, UK, 2017. [Google Scholar]
- Rapti, S.; Rivers, S.; Pournou, A. Removing iron corrosion products from museum artefacts: Investigating the effectiveness of innovative green chelators. In Proceedings of the International Conference “Science in Technology”, SCinTE, Athens, Greece, 5–7 November 2015. [Google Scholar]
- De Serrano, L.O. Biotechnology of siderophores in high-impact scientific fields. Biomol. Concepts 2017, 8, 169–178. [Google Scholar] [CrossRef]
- Mahmoud, A.; Cézac, P.; Hoadley, A.F.A.; Contamine, F.; D’Hugues, P. A review of sulfide minerals microbially assisted leaching in stirred tank reactors. Int. Biodeterior. Biodegrad. 2017, 119, 118–146. [Google Scholar] [CrossRef]
- Vaclavkova, S.; Jørgensen, C.J.; Jacobsen, O.S.; Aamand, J.; Elberling, B. The Importance of Microbial Iron Sulfide Oxidation for Nitrate Depletion in Anoxic Danish Sediments. Aquat. Geochem. 2014, 20, 419–435. [Google Scholar] [CrossRef]
- Vaclavkova, S.; Schultz-Jensen, N.; Jacobsen, O.S.; Elberling, B.; Aamand, J. Nitrate-Controlled Anaerobic Oxidation of Pyrite by Thiobacillus Cultures. Geomicrobiol. J. 2015, 32, 412–419. [Google Scholar] [CrossRef]
- Pelé, C.; Guilminot, E.; Labroche, S.; Lemoine, G.; Baron, G. Iron removal from waterlogged wood: Extraction by electrophoresis and chemical treatments. Stud. Conserv. 2015, 60, 155–171. [Google Scholar] [CrossRef]
- Macchioni, N.; Capretti, C.; Sozzi, L.; Pizzo, B. Grading the decay of waterlogged archaeological wood according toanatomical characterisation. The case of the Fiavé site (N-E Italy). Int. Biodeterior. Biodegrad. 2013, 84, 54–64. [Google Scholar] [CrossRef]
- Salmén, L. Wood cell wall structure and organisation in relation to mechanics. In Plant Biomechanics; Springer: Berlin/Hamburg, Germany, 2018; pp. 3–19. [Google Scholar]
- Moosavinejad, S.M.; Madhoushi, M.; Vakili, M.; Rasouli, D. Evaluation of degradation in chemical compounds of wood in historical buildings using FT-IR and FT-Raman vibrational spectroscopy. Maderas. Cienc. Y Tecnol. 2019, 21, 381–392. [Google Scholar] [CrossRef]
- Pandey, K.K.; Pitman, A.J. FTIR studies of the changes in wood chemistry following decay by brown-rot and white-rot fungi. Int. Biodeterior. Biodegrad. 2003, 52, 151–160. [Google Scholar] [CrossRef]
- Pandey, K.K.; Theagar, K.S. Analysis of wood surfaces and ground wood by diffuse reflectance (DRIFT) and photoacoustic (PAS) Fourier transform infrared spectroscopic techniques. Eur. J. Wood Wood Prod. 1997, 55, 383–390. [Google Scholar] [CrossRef]
- Dobrică, I.; Bugheanu, P.; Stănculescu, I.; Ponta, C. FT-IR spectral data of wood used in Romanian. Analele Univ. Din Bucur. 2008, 1, 33–37. [Google Scholar]
- Macchioni, N.; Pecoraro, E.; Pizzo, B. The measurement of maximum water content (MWC) on waterlogged archaeological wood: A comparison between three different methodologies. J. Cult. Herit. 2018, 30, 51–56. [Google Scholar] [CrossRef]
- Buchelt, B.; Wagenführ, A. Evaluation of colour differences on wood surfaces. Eur. J. Wood Wood Prod. 2012, 70, 389–391. [Google Scholar] [CrossRef]
- Bouchard, M.; Smith, D.C. Catalogue of 45 reference Raman spectra of minerals concerning research in art history or archaeology, especially on corroded metals and coloured glass. Spectrochim. Acta-Part A Mol. Biomol. Spectrosc. 2003, 59, 2247–2266. [Google Scholar] [CrossRef] [PubMed]
- Rémazeilles, C.; Tran, K.; Guilminot, E.; Conforto, E.; Refait, P. Study of Fe(II) sulphides in waterlogged archaeological wood. Stud. Conserv. 2013, 58, 297–307. [Google Scholar] [CrossRef]
- El-Deen, S.S.; Hashem, A.M.; Abdel Ghany, A.E.; Indris, S.; Ehrenberg, H.; Mauger, A.; Julien, C.M. Anatase TiO2 nanoparticles for lithium-ion batteries. Ionics 2018, 24, 2925–2934. [Google Scholar] [CrossRef]
- Ostrooumov, M. Raman and Infrared Reflection Spectroscopic Study of Mineralogical Composition of Iron-Manganese Nodules (Pacific and Indian Oceans). Int. J. Exp. Spectrosc. Tech. 2017, 2, 1–12. [Google Scholar] [CrossRef]
- Ostrooumov, M.; Gogichaishvili, A. Raman and Infrared reflection spectroscopic study of pre-Columbian Mesoamerican pottery. Eur. J. Mineral. 2013, 25, 895–905. [Google Scholar] [CrossRef]
- Agarwal, U.P.; Ralph, S.A. FT-Raman Spectroscopy of Wood: Identifying Contributions of Lignin and Carbohydrate Polymers in the Spectrum of Black Spruce (Picea mariana). Appl. Spectrosc. 1997, 51, 1648–1655. [Google Scholar] [CrossRef]
- Henrik-Klemens, Å.; Bengtsson, F.; Björdal, C.G. Raman spectroscopic investigation of iron-tannin precipitates in waterlogged archaeological oak. Stud. Conserv. 2022, 67, 237–247. [Google Scholar] [CrossRef]
- Wiedenhoeft, A.C.; Miller, R.B. Structure and Function of Wood. In Handbook of Wood Chemistry and Wood Composites; CRC Press: Boca Raton, FL, USA, 2005. [Google Scholar]
- Scalbert, A.; Monties, B.; Favre, J.-M. Polyphenols of Quercus robur: Adult tree and in vitro grown calli and shoots. Phytochemistry 1988, 27, 3483–3488. [Google Scholar] [CrossRef]
- Grattan, D.W. Waterlogged wood. In Conservation of Marine Archaeological Objects; Elsevier: Amsterdam, The Netherlands, 1987; pp. 55–67. [Google Scholar]
- Kreber, B. Understanding Wood Discoloration Helps Maximize Wood Profits; Western Dry Kiln Association: Corvallis, OR, USA, 1994. [Google Scholar]
- Remazeilles, C.; Meunier, L.; Lévêque, F.; Plasson, N.; Conforto, E.; Crouzet, M.; Refait, P.; Caillat, L. Post-treatment Study of Iron/Sulfur-containing Compounds in the Wreck of Lyon Saint-Georges 4 (Second Century ACE). Stud. Conserv. 2020, 65, 28–36. [Google Scholar] [CrossRef]
- Brunning, R.; Watson, J. Waterlogged Wood: Guidelines on the Recording, Sampling, Conservation, and Curation of Waterlogged Wood; CiNii: London, UK, 2010. [Google Scholar]
- Perron, N.R.; Brumaghim, J.L. A review of the antioxidant mechanisms of polyphenol compounds related to iron binding. Cell Biochem. Biophys. 2009, 53, 75–100. [Google Scholar] [CrossRef]
- Sandström, M.; Jalilehvand, F.; Damian, E.; Fors, Y.; Gelius, U.; Jones, M.; Salomé, M. Sulfur accumulation in the timbers of King Henry VIII’s warship Mary Rose: A pathway in the sulfur cycle of conservation concern. Proc. Natl. Acad. Sci. USA 2005, 102, 14165–14170. [Google Scholar] [CrossRef] [PubMed]
- Almkvist, G.; Norbakhsh, S.; Bjurhager, I.; Varmuza, K. Prediction of tensile strength in iron-contaminated archaeological wood by FT-IR spectroscopy-a study of degradation in recent oak and Vasa oak. Holzforschung 2016, 70, 855–865. [Google Scholar] [CrossRef]
- Fors, Y.; Nilsson, T.; Risberg, E.D.; Sandström, M.; Torssander, P. Sulfur accumulation in pinewood (Pinus sylvestris) induced by bacteria in a simulated seabed environment: Implications for marine archaeological wood and fossil fuels. Int. Biodeterior. Biodegrad. 2008, 62, 336–347. [Google Scholar] [CrossRef]
- Preston, J.; Smith, A.D.; Schofield, E.J.; Chadwick, A.V.; Jones, M.A.; Watts, J.E.M. The effects of Mary Rose conservation treatment on iron oxidation processes and microbial communities contributing to acid production in marine archaeological timbers. PLoS ONE 2014, 9, e84169. [Google Scholar] [CrossRef]
- Beller, H.R.; Chain, P.S.G.; Letain, T.E.; Chakicherla, A.; Larimer, F.W.; Richardson, P.M.; Coleman, M.A.; Wood, A.P.; Kelly, D.P. The genome sequence of the obligately chemolithoautotrophic, facultatively anaerobic bacterium Thiobacillus denitrificans. J. Bacteriol. 2006, 188, 1473–1488. [Google Scholar] [CrossRef]
- Schippers, A.; Jorgensen, B.B. Biogeochemistry of pyrite and iron sulfide oxidation in marine sediments. Geochim. Cosmochim. Acta 2002, 66, 85–92. [Google Scholar] [CrossRef]
- Kelly, D.P.; Wood, A.P. Confirmation of Thiobacillus denitrificans as a species of the genus Thiobacillus, in the β-subclass of the Proteobacteria, with strain NCIMB 9548 as the type strain. Int. J. Syst. Evol. Microbiol. 2000, 50, 547–550. [Google Scholar] [CrossRef]
- Torrentó, C.; Cama, J.; Urmeneta, J.; Otero, N.; Soler, A. Denitrification of groundwater with pyrite and Thiobacillus denitrificans. Chem. Geol. 2010, 278, 80–91. [Google Scholar] [CrossRef]
- Berenguer, M.A.; Monachon, M.; Jacquet, C.; Junier, P.; Rémazeilles, C.; Schofield, E.J.; Joseph, E. Biological oxidation of sulfur compounds in artificially degraded wood. Int. Biodeterior. Biodegrad. 2018, 141, 62–70. [Google Scholar] [CrossRef]
- Yan, R.; Kappler, A.; Muehe, E.M.; Knorr, K.-H.; Horn, M.A.; Poser, A.; Lohmayer, R.; Peiffer, S. Effect of reduced sulfur species on chemolithoautotrophic pyrite oxidation with nitrate. Geomicrobiol. J. 2019, 36, 19–29. [Google Scholar] [CrossRef]
- MacLeod, I.D.; Kenna, C. Degradation of archaeological timbers by pyrite: Oxidation of iron and sulphur species. In Proceedings of the 4th ICOM-Group on Wet Organic Archaeological Materials Conference, Bremerhaven, Germany, 20–24 August 1990; pp. 133–142. [Google Scholar]
- Passier, H.F.; Böttcher, M.E.; De Lange, G.J. Sulphur enrichment in organic matter of eastern Mediterranean sapropels: A study of sulphur isotope partitioning. Aquat. Geochem. 1999, 5, 99–118. [Google Scholar] [CrossRef]
- Damste, J.S.S.; De Leeuw, J.W. Analysis, structure and geochemical significance of organically-bound sulphur in the geosphere: State of the art and future research. Org. Geochem. 1990, 16, 1077–1101. [Google Scholar] [CrossRef]
- Aluri, E.R.; Reynaud, C.; Bardas, H.; Piva, E.; Cibin, G.; Mosselmans, J.F.W.; Chadwick, A.V.; Schofield, E.J. The Formation of Chemical Degraders during the Conservation of a Wooden Tudor Shipwreck. Chempluschem 2020, 85, 1632–1638. [Google Scholar] [CrossRef] [PubMed]
- Mortensen, M.N.; Chaumat, G.; Gambineri, F.; Kutzke, H.; Łucejko, J.J.; Modugno, C.M.A.; Modugno, F.; Tamburini, D.; Taube, M. Climatically induced degradation processes in conserved archaeological wood studied by time-lapse photography. Stud. Conserv. 2019, 64, 115–123. [Google Scholar] [CrossRef]
- Gargano, E.M.; Mangiatordi, G.F.; Weber, I.; Goebel, C.; Alberga, D.; Nicolotti, O.; Ruess, W.; Wierlacher, S. Persulfate Reaction in a Hair-Bleaching Formula: Unveiling the Unconventional Reactivity of 1, 13-Diamino-4, 7, 10-Trioxatridecane. ChemistryOpen 2018, 7, 319–322. [Google Scholar] [CrossRef]
- Anipsitakis, G.P.; Dionysiou, D.D. Radical generation by the interaction of transition metals with common oxidants. Environ. Sci. Technol. 2004, 38, 3705–3712. [Google Scholar] [CrossRef]
- Norvell, W.A. Equilibria of metal chelates in soil solution. In Micronutrients in Agriculture; Soil Science Association of America: Madison, WI, USA, 1972. [Google Scholar]
- Farkas, E.; Enyedy, É.A.; Csóka, H. A comparison between the chelating properties of some dihydroxamic acids, desferrioxamine B and acetohydroxamic acid. Polyhedron 1999, 18, 2391–2398. [Google Scholar] [CrossRef]
- Sullivan, S.; Mackay, R. Archaeological Sites: Conservation and Management; Getty Publications: Los Angeles, CA, USA, 2012; Volume 5. [Google Scholar]
- Matthiesen, H.; Eriksen, A.M.H.; Hollesen, J.; Collins, M. Bone degradation at five Arctic archaeological sites: Quantifying the importance of burial environment and bone characteristics. J. Archaeol. Sci. 2021, 125, 105296. [Google Scholar] [CrossRef]
- Lucejko, J.J.; Tamburini, D.; Zborowska, M.; Babiński, L.; Modugno, F.; Colombini, M.P. Oak wood degradation processes induced by the burial environment in the archaeological site of Biskupin (Poland). Herit. Sci. 2020, 8, 44. [Google Scholar] [CrossRef]
- Babiński, L.; Zborowska, M.; Gajewska, J.; Waliszewska, B.; Prądzyński, W. Decomposition of the contemporary oak wood (Quercus sp.) in conditions of the wet archaeological site in Biskupin. Folia For. Pol. 2006, 37, 9–21. [Google Scholar]
- Tamburini, D.; Łucejko, J.J.; Zborowska, M.; Modugno, F.; Cantisani, E.; Mamoňová, M.; Colombini, M.P. The short-term degradation of cellulosic pulp in lake water and peat soil: A multi-analytical study from the micro to the molecular level. Int. Biodeterior. Biodegrad. 2017, 116, 243–259. [Google Scholar] [CrossRef]
- Monachon, M.; Albelda-Berenguer, M.; Pelé, C.; Cornet, E.; Guilminot, E.; Rémazeilles, C.; Joseph, E. Characterization of model samples simulating degradation processes induced by iron and sulfur species on waterlogged wood. Microchem. J. 2020, 155, 104756. [Google Scholar] [CrossRef]
Genus | Type of Wood | Location | Sets |
---|---|---|---|
Oak (Quercus sp.) | Hardwood | Saint-Lupien, Rezé, Nantes, FR | O-AA |
Hölzer campus, Lake Biel, Biel, CH | O-ADB | ||
Bevaix, Neuchâtel, CH | O-SNM | ||
Taüffelen, Lake Biel, Biel, CH | M-AA | ||
Taüffelen, Lake Biel, Biel, CH | M-ADB | ||
Pine (Pinus sp.) | Softwood | Hölzer campus, Lake Biel, Biel, CH | FP-ADB |
DRASSM (unidentified site), Nantes, FR | SP-AA | ||
Beech (Fagus sp.) | Hardwood | Taüffelen, Lake Biel, Biel, CH | B-ADB |
Lime (Tilia sp.) | Hardwood | Opera, Zurich, CH | L-SNM |
Genus | Burial Environment | Treatment Applied |
---|---|---|
Oak Pine Beech Lime | Lacustrine Marine | BT (biological) CT (chemical) NT (untreated) |
Set | Treatment | pH | Umax | R1 |
---|---|---|---|---|
B-ADB | Ref | 6.96 (±0.1) | 4 | 0.52 (±0.1) |
BT | 5.71 (±0.2) | 4 | 0.47 (±0.1) | |
CT | 3.23 (±0.1) | 4 | 0.48 (±0.1) | |
NT | 6.40 (±0.3) | 4 | 0.81 (±0.1) | |
FP-ADB | Ref | 6.47 (±0.4) | 4 | 0.38 (±0.1) |
BT | 5.12 (±0.2) | 4 | 0.41 (±0.1) | |
CT | 2.55 (±0.2) | 4 | 0.47 (±0.1) | |
NT | 5.86 (±0.2) | 4 | 0.40 (±0.1) | |
L-SNM | Ref | 6.61 (±0.1) | 2 | 0.57 (±0.2) |
BT | 6.60 (±0.2) | 2 | 0.57 (±0.1) | |
CT | 3.37 (±0.2) | 4 | 0.46 (±0.1) | |
NT | 5.77 (±0.4) | 2 | 0.53 (±0.1) | |
M-AA | Ref | 5.51 (±0.3) | 4 | 0.25 (±0.1) |
BT | 5.81 (±0.3) | 4 | 0.41 (±0.1) | |
CT | 2.76 (±0.0) | 4 | 0.39 (±0.1) | |
NT | 4.58 (±0.1) | 4 | 0.31 (±0.1) | |
M-ADB | Ref | 6.87 (±0.2) | 1 | 0.68 (±0.1) |
BT | 6.19 (±0.2) | 1 | 0.63 (±0.2) | |
CT | 3.31 (±0.4) | 1 | 0.89 (±0.2) | |
NT | 6.11 (±0.4) | 1 | 0.60 (±0.2) | |
O-AA | Ref | 6.75 (±0.3) | 4 | 0.37 (±0.1) |
BT | 6.36 (±0.5) | 4 | 0.36 (±0.2) | |
CT | 2.92 (±0.2) | 4 | 0.47 (±0.2) | |
NT | 6.42 (±0.4) | 4 | 0.35 (±0.1) | |
O-ADB | Ref | 6.27 (±0.2) | 3 | 0.69 (±0.2) |
BT | 5.67 (±0.3) | 4 | 0.45 (±0.1) | |
CT | 2.77 (±0.1) | 4 | 1.00 (±0.3) | |
NT | 5.80 (±0.2) | 4 | 0.50 (±0.1) | |
O-SNM | Ref | 6.48 (±0.1) | 2 | 0.61 (±0.2) |
BT | 6.32 (±0.1) | 3 | 0.63 (±0.2) | |
CT | 3.11 (±0.1) | 3 | 0.45 (±0.2) | |
NT | 5.79 (±0.5) | 2 | 0.65 (±0.2) | |
SP-AA | Ref | 2.50 (±0.2) | 4 | 0.39 (±0.2) |
BT | 5.88 (±0.3) | 4 | 0.47 (±0.1) | |
CT | 2.39 (±0.1) | 4 | 0.52 (±0.1) | |
NT | 2.50 (±0.1) | 4 | 0.50 (±0.2) |
Set | Treatment | Iron Extraction Rate (%) | Sulfur Extraction Rate (%) |
---|---|---|---|
B-ADB | BT | 23.55 (±5.8) | 21.15 (±6.7) |
CT | 27.48 (±5.9) | 0.00 (±0.0) | |
FP-ADB | BT | 51.28 (±19.3) | 15.54 (±6.7) |
CT | 52.34 (±0.3) | 10.49 (±1.6) | |
L-SNM | BT | 47.98 (±20.8) | 24.42 (±8.5) |
CT | 67.58 (±2.6) | 8.98 (±1.9) | |
M-AA | BT | 96.13 (±2.4) | 80.44 (±7.8) |
CT | 70.55 (±28.1) | 68.71 (±17.3) | |
M-ADB | BT | 50.69 (±25.7) | 27.47 (±5.9) |
CT | 54.95 (±15.4) | 0.00 (±0.0) | |
O-AA | BT | 66.67 (±22.4) | 41.76 (±11.0) |
CT | 54.37 (±23.1) | 10.71 (±7.5) | |
O-ADB | BT | 54.22 (±19.5) | 16.29 (±7.5) |
CT | 61.10 (±11.4) | 15.73 (±2.2) | |
O-SNM | BT | 36.77 (±4.8) | 15.97 (±2.7) |
CT | 34.80 (±12.0) | 0.00 (±0.0) | |
SP-AA | BT | 65.04 (±19.3) | 28.55 (±10.3) |
CT | 52.34 (±0.3) | 18.11 (±6.5) |
Species | Effect | Sum Sq | Mean Sq | df | F Value | p-Value |
---|---|---|---|---|---|---|
Iron | Genus (a) | 20,338 | 6779 | 3 | 3.661 | 0.0149 |
Treatment (b) | 10 | 10 | 1 | 0.006 | 0.9407 | |
Environment (c) | 13,146 | 13,146 | 1 | 7.095 | 0.0090 | |
a × b | 11,129 | 376 | 3 | 0.203 | 0.8939 | |
a × c | 7806 | 7806 | 1 | 4.802 | 0.0307 | |
b × c | 800 | 800 | 1 | 0.432 | 0.51267 | |
Sulfur | Genus (a) | 1670 | 557 | 3 | 1.454 | 0.231 |
Treatment (b) | 5965 | 5965 | 1 | 1.556 | 0.2150 | |
Environment (c) | 5424 | 5424 | 1 | 1.415 | 0.2369 | |
a × b | 2750 | 917 | 3 | 0.223 | 0.880 | |
a × c | 11,236 | 11,236 | 1 | 2.879 | 0.0928 | |
b × c | 10,639 | 10,639 | 1 | 2.776 | 0.0987 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Monachon, M.; Pelé-Meziani, C.; Ganesan, S.; de Weck, S.; Moll-Dau, F.; Schramm, J.; Schmidt-Ott, K.; Joseph, E. Assessing the Versatility of Bioextraction to Preserve Waterlogged Wood. Forests 2023, 14, 1656. https://doi.org/10.3390/f14081656
Monachon M, Pelé-Meziani C, Ganesan S, de Weck S, Moll-Dau F, Schramm J, Schmidt-Ott K, Joseph E. Assessing the Versatility of Bioextraction to Preserve Waterlogged Wood. Forests. 2023; 14(8):1656. https://doi.org/10.3390/f14081656
Chicago/Turabian StyleMonachon, Mathilde, Charlène Pelé-Meziani, Sathiyanarayanan Ganesan, Sabine de Weck, Friederike Moll-Dau, Janet Schramm, Katharina Schmidt-Ott, and Edith Joseph. 2023. "Assessing the Versatility of Bioextraction to Preserve Waterlogged Wood" Forests 14, no. 8: 1656. https://doi.org/10.3390/f14081656
APA StyleMonachon, M., Pelé-Meziani, C., Ganesan, S., de Weck, S., Moll-Dau, F., Schramm, J., Schmidt-Ott, K., & Joseph, E. (2023). Assessing the Versatility of Bioextraction to Preserve Waterlogged Wood. Forests, 14(8), 1656. https://doi.org/10.3390/f14081656