A Novel Non-Line-of-Sight Error Mitigation Algorithm Using Double Extended Kalman Filter for Ultra-Wide Band Ranging Technology
<p>Markov process for the LOS/NLOS transition filter of the two cascaded filters.</p> "> Figure 2
<p>RCCA flowchart.</p> "> Figure 3
<p>System framework diagram.</p> "> Figure 4
<p>DEKF algorithm flowchart.</p> "> Figure 5
<p>NLOS model distribution.</p> "> Figure 6
<p>CA model: (<b>a</b>) RMSE comparison in the LOS environment; (<b>b</b>) CDF comparison in the LOS environment.</p> "> Figure 7
<p>CA model: (<b>a</b>) RMSE in two-state Markov chain LOS/NLOS environment S4; (<b>b</b>) CDF comparison in two-state Markov chain LOS/NLOS environment S4.</p> "> Figure 8
<p>The environment of the test office.</p> "> Figure 9
<p>(<b>a</b>) Trajectory in indoor office environment; (<b>b</b>) Test track in indoor office environment.</p> "> Figure 10
<p>CV model: (<b>a</b>) RMSE in LOS situation; (<b>b</b>) RMSE in 4-NLOS situation.</p> "> Figure 11
<p>CV model: RMSE in 1-NLOS changed to 2-NLOS situation.</p> ">
Abstract
:1. Introduction
2. System Model
2.1. Extended Kalman Filter Modeling
2.2. Measurement Errors Modeling
3. Residual Classification and Covariance Adjustment
4. Double Extended Kalman Filter Based on RCCA
- Prediction
- RCCA
- Estimation
- Prediction
- Estimation
Algorithm 1 Double-layer Extended Kalman filter algorithm |
|
5. Simulation Results and Experimental Verification
5.1. Simulation Environments and Settings
5.2. Performance Metrics
5.3. Simulation Result
- S1:
- S2:
- S3:
- S4:
5.4. Experimental Verification of Algorithm
5.5. Comparative Analysis of Algorithms
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Abbas, R.M.K.; Michael, M. The regulatory considerations and ethical dilemmas of location-based services (LBS): A literature review. Inf. Technol. People 2014, 27, 2–20. [Google Scholar] [CrossRef]
- Zou, D.; Meng, W.; Han, S.; He, K.; Zhang, Z. Toward Ubiquitous LBS: Multi-Radio Localization and Seamless Positioning. IEEE Wirel. Commun. 2016, 23, 107–113. [Google Scholar] [CrossRef]
- Niu, B.; Zhu, X.; Chi, H.; Li, H. Pseudo-Location Updating System for privacy-preserving location-based services. China Commun. 2013, 10, 1–12. [Google Scholar] [CrossRef]
- Sun, H.; Dong, M.; Chu, B.; Ao, M.; Chen, C.; Gu, S. Multi-Level High Precision LBS Architecture Based on GNSS CORS Network, A Case Study of HNCORS. IEEE Access 2019, 7, 185042–185054. [Google Scholar] [CrossRef]
- Choudhury, N.; Matam, R.; Mukherjee, M.; Lloret, J. LBS: A Beacon Synchronization Scheme With Higher Schedulability for IEEE 802.15.4 Cluster-Tree-Based IoT Applications. IEEE Internet Things J. 2019, 6, 8883–8896. [Google Scholar] [CrossRef]
- Sferlazza, A.; Zaccarian, L.; Garraffa, G.; D’Ippolito, F. Localization from Inertial Data and Sporadic Position Measurements. In Proceedings of the 21st IFAC World Congress, Berlin, Germany, 11–17 July 2020; Volume 53, pp. 5976–5981. [Google Scholar] [CrossRef]
- Barbieri, L.; Brambilla, M.; Pitic, R.; Trabattoni, A.; Mervic, S.; Nicoli, M. UWB Real-Time Location Systems for Smart Factory: Augmentation Methods and Experiments. In Proceedings of the 2020 IEEE 31st Annual International Symposium on Personal, Indoor and Mobile Radio Communications, London, UK, 31 August–3 September 2020; pp. 1–7. [Google Scholar] [CrossRef]
- Ye, H.; Yang, B.; Long, Z.; Dai, C. A Method of Indoor Positioning by Signal Fitting and PDDA Algorithm Using BLE AOA Device. IEEE Sens. J. 2022, 22, 7877–7887. [Google Scholar] [CrossRef]
- Ye, F.; Chen, R.; Guo, G.; Peng, X.; Liu, Z.; Huang, L. A Low-Cost Single-Anchor Solution for Indoor Positioning Using BLE and Inertial Sensor Data. IEEE Access 2019, 7, 162439–162453. [Google Scholar] [CrossRef]
- Yu, Y.; Chen, R.; Chen, L.; Zheng, X.; Wu, D.; Li, W.; Wu, Y. A Novel 3-D Indoor Localization Algorithm Based on BLE and Multiple Sensors. IEEE Internet Things J. 2021, 8, 9359–9372. [Google Scholar] [CrossRef]
- Xue, M.; Sun, W.; Yu, H.; Tang, H.; Lin, A.; Zhang, X.; Zimmermann, R. Locate the Mobile Device by Enhancing the WiFi-Based Indoor Localization Model. IEEE Internet Things J. 2019, 6, 8792–8803. [Google Scholar] [CrossRef]
- Wang, F.; Feng, J.; Zhao, Y.; Zhang, X.; Zhang, S.; Han, J. Joint Activity Recognition and Indoor Localization With WiFi Fingerprints. IEEE Access 2019, 7, 80058–80068. [Google Scholar] [CrossRef]
- Own, C.M.; Hou, J.; Tao, W. Signal Fuse Learning Method With Dual Bands WiFi Signal Measurements in Indoor Positioning. IEEE Access 2019, 7, 131805–131817. [Google Scholar] [CrossRef]
- Huang, C.H.; Lee, L.H.; Ho, C.C.; Wu, L.L.; Lai, Z.H. Real-Time RFID Indoor Positioning System Based on Kalman-Filter Drift Removal and Heron-Bilateration Location Estimation. IEEE Trans. Instrum. Meas. 2015, 64, 728–739. [Google Scholar] [CrossRef]
- Yu, H.Y.; Chen, J.J.; Hsiang, T.R. Design and Implementation of a Real-Time Object Location System Based on Passive RFID Tags. IEEE Sens. J. 2015, 15, 5015–5023. [Google Scholar] [CrossRef]
- Scherhäufl, M.; Pichler, M.; Stelzer, A. UHF RFID Localization Based on Evaluation of Backscattered Tag Signals. IEEE Trans. Instrum. Meas. 2015, 64, 2889–2899. [Google Scholar] [CrossRef]
- Kim, J.E.; Choi, J.H.; Kim, K.T. Robust Detection of Presence of Individuals in an Indoor Environment Using IR-UWB Radar. IEEE Access 2020, 8, 108133–108147. [Google Scholar] [CrossRef]
- Bottigliero, S.; Milanesio, D.; Saccani, M.; Maggiora, R. A Low-Cost Indoor Real-Time Locating System Based on TDOA Estimation of UWB Pulse Sequences. IEEE Trans. Instrum. Meas. 2021, 70, 5502211. [Google Scholar] [CrossRef]
- Silva, B.; Hancke, G.P. IR-UWB-Based Non-Line-of-Sight Identification in Harsh Environments: Principles and Challenges. IEEE Trans. Ind. Inform. 2016, 12, 1188–1195. [Google Scholar] [CrossRef]
- Luo, Y.; Law, C.L. Indoor Positioning Using UWB-IR Signals in the Presence of Dense Multipath with Path Overlapping. IEEE Trans. Wirel. Commun. 2012, 11, 3734–3743. [Google Scholar] [CrossRef]
- Yi, L.; Razul, S.G.; Lin, Z.; See, C.M. Target Tracking in Mixed LOS/NLOS Environments Based on Individual Measurement Estimation and LOS Detection. IEEE Trans. Wirel. Commun. 2014, 13, 99–111. [Google Scholar] [CrossRef]
- Liu, J.; Guo, G. Vehicle Localization During GPS Outages With Extended Kalman Filter and Deep Learning. IEEE Trans. Instrum. Meas. 2021, 70, 7503410. [Google Scholar] [CrossRef]
- Jiancheng, F.; Sheng, Y. Study on Innovation Adaptive EKF for In-Flight Alignment of Airborne POS. IEEE Trans. Instrum. Meas. 2011, 60, 1378–1388. [Google Scholar] [CrossRef]
- Jia, G.; Huang, Y.; Zhang, Y.; Chambers, J. A Novel Adaptive Kalman Filter With Unknown Probability of Measurement Loss. IEEE Signal Process. Lett. 2019, 26, 1862–1866. [Google Scholar] [CrossRef]
- Guangcai, W.; Xu, X.; Zhang, T. M-M Estimation-Based Robust Cubature Kalman Filter for INS/GPS Integrated Navigation System. IEEE Trans. Instrum. Meas. 2021, 70, 9501511. [Google Scholar] [CrossRef]
- Pak, J.M.; Ahn, C.K.; Shmaliy, Y.S.; Lim, M.T. Improving Reliability of Particle Filter-Based Localization in Wireless Sensor Networks via Hybrid Particle/FIR Filtering. IEEE Trans. Ind. Inform. 2015, 11, 1089–1098. [Google Scholar] [CrossRef]
- Ahwiadi, M.; Wang, W. An Adaptive Particle Filter Technique for System State Estimation and Prognosis. IEEE Trans. Instrum. Meas. 2020, 69, 6756–6765. [Google Scholar] [CrossRef]
- Fisch, A.T.M.; Eckley, I.A.; Fearnhead, P. Innovative and Additive Outlier Robust Kalman Filtering With a Robust Particle Filter. IEEE Trans. Signal Process. 2022, 70, 47–56. [Google Scholar] [CrossRef]
- Ullah, I.; Shen, Y.; Su, X.; Esposito, C.; Choi, C. A Localization Based on Unscented Kalman Filter and Particle Filter Localization Algorithms. IEEE Access 2020, 8, 2233–2246. [Google Scholar] [CrossRef]
- Hao, Z.; Li, B.; Dang, X. An improved Kalman filter positioning method in NLOS environment. China Commun. 2019, 16, 84–99. [Google Scholar] [CrossRef]
- Ke, W.; Wu, L. Mobile Location with NLOS Identification and Mitigation Based on Modified Kalman Filtering. Sensors 2011, 11, 1641–1656. [Google Scholar] [CrossRef]
- Ho, T.J. Robust Localization in Cellular Networks via Reinforced Iterative M-Estimation and Fuzzy Adaptation. IEEE Trans. Wirel. Commun. 2022, 21, 4269–4281. [Google Scholar] [CrossRef]
- Olejniczak, A.; Blaszkiewicz, O.; Cwalina, K.K.; Rajchowski, P.; Sadowski, J. LOS and NLOS identification in real indoor environment using deep learning approach. Digit. Commun. Netw. 2024, 10, 1305–1312. [Google Scholar] [CrossRef]
- Wang, G.; Li, S.; Cheng, P.; Vucetic, B.; Li, Y. ToF-Based NLoS Indoor Tracking With Adaptive Ranging Error Mitigation. IEEE Trans. Signal Process. 2024, 72, 4855–4870. [Google Scholar] [CrossRef]
- Jiang, C.; Shen, J.; Chen, S.; Chen, Y.; Liu, D.; Bo, Y. UWB NLOS/LOS classification using deep learning method. IEEE Commun. Lett. 2020, 24, 2226–2230. [Google Scholar] [CrossRef]
- Zarchan, P. Fundamentals of Kalman Filtering: A Practical Approach; Progress in Astronautics and Aeronautics; AIAA: New York, NY, USA, 2005; Volume 208. [Google Scholar]
- Reif, K.; Unbehauen, R. The extended Kalman filter as an exponential observer for nonlinear systems. IEEE Trans. Signal Process. 1999, 47, 2324–2328. [Google Scholar] [CrossRef]
- Cui, W.; Li, B.; Zhang, L.; Meng, W. Robust Mobile Location Estimation in NLOS Environment Using GMM, IMM, and EKF. IEEE Syst. J. 2019, 13, 3490–3500. [Google Scholar] [CrossRef]
- Yi, L.; Razul, S.G.; Lin, Z.; See, C.M. Target tracking in mixed LOS/NLOS environments based on individual TOA measurement detection. In Proceedings of the 2010 IEEE Sensor Array and Multichannel Signal Processing Workshop, Jerusalem, Israel, 4–7 October 2010; pp. 153–156. [Google Scholar] [CrossRef]
- Cao, B.; Wang, S.; Ge, S.; Ma, X.; Liu, W. A Novel Mobile Target Localization Approach for Complicate Underground Environment in Mixed LOS/NLOS Scenarios. IEEE Access 2020, 8, 96347–96362. [Google Scholar] [CrossRef]
- Flueratoru, L.; Wehrli, S.; Magno, M.; Lohan, E.S.; Niculescu, D. High-Accuracy Ranging and Localization With Ultrawideband Communications for Energy-Constrained Devices. IEEE Internet Things J. 2022, 9, 7463–7480. [Google Scholar] [CrossRef]
- Shikur, B.Y.; Weber, T. Posterior CRLB for tracking a mobile station in NLOS multipath environments. In Proceedings of the 2013 IEEE International Conference on Acoustics, Speech and Signal Processing, Vancouver, BC, Canada, 26–31 May 2013; pp. 5175–5179. [Google Scholar] [CrossRef]
- Huang, J.; Wan, Q. The CRLB for WSNs location estimation in NLOS environments. In Proceedings of the 2010 International Conference on Communications, Circuits and Systems (ICCCAS), Chengdu, China, 28–30 July 2010; pp. 83–86. [Google Scholar] [CrossRef]
- Zhao, Y.; Fan, X.; Xu, C.Z.; Li, X. ER-CRLB: An Extended Recursive Cramér–Rao Lower Bound Fundamental Analysis Method for Indoor Localization Systems. IEEE Trans. Veh. Technol. 2017, 66, 1605–1618. [Google Scholar] [CrossRef]
0.1 | 0.01 | 0.09 |
0.25 | 0.02 | 0.06 |
0.5 | 0.05 | 0.05 |
0.75 | 0.06 | 0.02 |
Steps of the Algorithm | MAC Computational Complexity |
---|---|
Calculate the prediction state | |
Calculate the residual of prediction and measurements | + |
Judge the range of | + |
Adjust the | + |
Calculate the prediction variance | + + |
Calculate the | + + |
Bring the adjusted and into (35) to obtain the Kalman gain of the first KF | |
Output the distance state and the estimation error variance | + |
Calculate the prediction state and covariance and | + |
Calculate the Kalman gain of the second EKF | + + + + |
Update the state and output | + + |
Update the estimation error variance and output | + + |
Noise Situation | Tracking Results: Average RMSE/m | |||
---|---|---|---|---|
DEKF | EKF | IMED-KF | M-REKF | |
LOS | 0.022 | 0.017 | 0.181 | 2.227 |
S1 | 0.023 | 0.228 | 0.232 | 2.245 |
S2 | 0.027 | 0.926 | 3.385 | 2.327 |
S3 | 0.052 | 1.453 | 8.647 | 2.408 |
S4 | 0.054 | 1.868 | 11.934 | 2.467 |
Alogrithm | Mean Value/m | Confidence Interval | ||||
---|---|---|---|---|---|---|
Comparison Time Line | Comparison Time Line | |||||
1/3 | 2/3 | Final | 1/3 | 2/3 | Final | |
DEKF | 3.2628 | 4.7504 | 6.4073 | [3.2166,3.3091] | [4.6926,4.8082] | [6.3506,6.4585] |
EKF | 1.9671 | 3.1457 | 5.8684 | [1.4389,2.4953] | [2.7987,3.4928] | [5.3568,6.3800] |
IMED-KF | 3.1209 | 2.3843 | 12.3286 | [1.3761,4.8657] | [−4.6303,9.3989] | [−1.1058,25.7630] |
M-REKF | 3.1209 | 2.3843 | 12.3286 | [1.3761,4.8657] | [−4.6303,9.3989] | [−1.1058,25.7630] |
NLOS Number | Tracking Results/m | |
---|---|---|
DEKF | EKF | |
LOS | tracking | tracking |
1-NLOS | tracking | tracking |
2-NLOS | tracking | tracking |
3-NLOS | tracking | tracking |
4-NLOS | tracking | tracking |
Algorithm | Accuracy | Complexity | LOS/NLOS Noise Support | CV/CA Model Scalability |
---|---|---|---|---|
DEKF | High | High | Best Support | Best Scalability |
EKF | Moderate | Low | Poorly Support | Good Scalability |
IMED-KF | Moderate | Moderate | Limited Support | Limited Scalability |
M-REKF | High | Moderate | Limited Supprot | Limited Scalability |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xu, S.; Liu, Q.; Lin, M.; Wang, Q.; Chen, K. A Novel Non-Line-of-Sight Error Mitigation Algorithm Using Double Extended Kalman Filter for Ultra-Wide Band Ranging Technology. Electronics 2025, 14, 483. https://doi.org/10.3390/electronics14030483
Xu S, Liu Q, Lin M, Wang Q, Chen K. A Novel Non-Line-of-Sight Error Mitigation Algorithm Using Double Extended Kalman Filter for Ultra-Wide Band Ranging Technology. Electronics. 2025; 14(3):483. https://doi.org/10.3390/electronics14030483
Chicago/Turabian StyleXu, Sheng, Qianyun Liu, Min Lin, Qing Wang, and Kaile Chen. 2025. "A Novel Non-Line-of-Sight Error Mitigation Algorithm Using Double Extended Kalman Filter for Ultra-Wide Band Ranging Technology" Electronics 14, no. 3: 483. https://doi.org/10.3390/electronics14030483
APA StyleXu, S., Liu, Q., Lin, M., Wang, Q., & Chen, K. (2025). A Novel Non-Line-of-Sight Error Mitigation Algorithm Using Double Extended Kalman Filter for Ultra-Wide Band Ranging Technology. Electronics, 14(3), 483. https://doi.org/10.3390/electronics14030483