Brain-Computer Interface Based Engagement Feedback in Virtual Reality Rehabilitation: Promoting Motor Cortex Activation
<p>Procedure diagram for experiment.</p> "> Figure 2
<p>The experimental setting and conditions. (<b>a</b>) A participant wearing the EEG device and HMD is performing the target tracking task with the controller in their hand. The EEG data are recorded and processed in real-time, and reveal the neurofeedback state according to whether the participant is attentively staring at the flickering target. (<b>b</b>) Three conditions (NoF, PF, and NF) were present: the NoF condition (upper) provided no feedback on tracking, while the PF and NF (lower) conditions included showering and blooming feedback with sound. (<b>c</b>) An example of a target trajectory. The target moves along an invisible circle-shaped track, and transitions into another adjacent cloned circle-shaped track when it changes direction. (<b>d</b>) The EEG electrodes are located on areas where the HMD straps do not pass, so that the EEG signal has minimal interference from body movements.</p> "> Figure 3
<p>Power spectrum density corresponding to the attentive and inattentive states in channels O1 and O2. The SSVEP peaks were observed in both states, but those in the attentive state were stronger.</p> "> Figure 4
<p>The performance outcomes. The tracking error (<b>left</b>) represents the distance between the target and the cursor, and the feedback ratio (<b>right</b>) represents the ratio of the amount of feedback provided during the tracking period. The error bar represents the standard error.</p> "> Figure 5
<p>The EEG outcomes. The SSVEP power (<b>left</b>), engagement index (<b>middle</b>), and Mu suppression on C3 (<b>right</b>) are the strongest in the NF condition, which shows significantly different results from the other two conditions. ° represents the trend toward significance; * and ** represent <span class="html-italic">p</span> < 0.05 and <span class="html-italic">p</span> < 0.01, respectively, after Bonferroni correction; and the error bars represent the standard error.</p> "> Figure 6
<p>The correlation results between the SSVEP (upper) or engagement index (lower) and Mu suppression on C3. The SSVEP showed a negative correlation tendency with Mu suppression in all three conditions, which was particularly significant in the NF condition, while the engagement index did not show any pattern. ° represents the trend toward significance, and * represents <span class="html-italic">p</span> < 0.05.</p> ">
Abstract
:1. Introduction
2. Materials and Methods
2.1. Participants
2.2. Ethics Statement
2.3. Experimental Procedures
2.4. BCI-VR Rehabilitation System and Program
2.5. Experimental Conditions
2.6. EEG Acquisition and Analysis
- Intervals of 10 s fixation + 10 s rest (repeated 10 times): this provides a balanced dataset of engaged and non-engaged states, ensuring that the classifier can accurately differentiate attentional shifts.
- A 3-minute total duration: this minimum duration is optimal for avoiding participant fatigue while gathering a sufficient training dataset [43].
- A 15 Hz flickering frequency: This was selected due to its reliably eliciting a strong and stable SSVEP response [30].
- Window length—0.5 s: balances artifact detection efficiency while avoiding unnecessary data.
- Window overlap—66%: ensures smooth transitions between close EEG segments, minimizing signal discontinuities.
- Method—Euclidean distance: ensures robustness in detecting large deviations in EEG signals.
- Standard deviation cutoff—5: removes significant artifacts while preserving needed brain activity.
2.7. Dependent Variables
2.7.1. Behavioral Measurement
- Performance
2.7.2. EEG Measurements
- SSVEP Power
- Mu suppression index
- Engagement Index
2.8. Statistical Analysis
3. Results
3.1. SSVEP Responses
3.2. Performance and Feedback
3.3. SSVEP and Engagement
3.4. Mu Suppression
3.5. Mu-SSVEP Correlation
4. Discussion
5. Conclusions and Future Work
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
VR | Virtual reality |
SSVEP | Steady-state visual evoked potential |
BCI | Brain-computer interface |
NoF | No feedback |
PF | Performance feedback |
NF | Neurofeedback |
References
- Marzola, P.; Melzer, T.; Pavesi, E.; Gil-Mohapel, J.; Brocardo, P.S. Exploring the Role of Neuroplasticity in Development, Aging, and Neurodegeneration. Brain Sci. 2023, 13, 1610. [Google Scholar] [CrossRef]
- Keci, A.; Tani, K.; Xhema, J. Role of Rehabilitation in Neural Plasticity. Open Access Maced. J. Med. Sci. 2019, 7, 1540–1547. [Google Scholar] [CrossRef] [PubMed]
- Baroncelli, L.; Braschi, C.; Spolidoro, M.; Begenisic, T.; Sale, A.; Maffei, L. Nurturing Brain Plasticity: Impact of Environmental Enrichment. Cell Death Differ. 2010, 17, 1092–1103. [Google Scholar] [CrossRef] [PubMed]
- Tedla, J.S.; Gular, K.; Reddy, R.S.; de Sá Ferreira, A.; Rodrigues, E.C.; Kakaraparthi, V.N.; Gyer, G.; Sangadala, D.R.; Qasheesh, M.; Kovela, R.K.; et al. Effectiveness of Constraint-Induced Movement Therapy (CIMT) on Balance and Functional Mobility in the Stroke Population: A Systematic Review and Meta-Analysis. Healthcare 2022, 10, 495. [Google Scholar] [CrossRef] [PubMed]
- Shamweel, H.; Gupta, N. Constraint-Induced Movement Therapy through Telerehabilitation for Upper Extremity Function in Stroke. J. Neurorestoratology 2024, 12, 100108. [Google Scholar] [CrossRef]
- Zotey, V.; Andhale, A.; Shegekar, T.; Juganavar, A. Adaptive Neuroplasticity in Brain Injury Recovery: Strategies and Insights. Cureus 2023, 15, e45873. [Google Scholar] [CrossRef] [PubMed]
- Ahmed, B.; Khan, S.; Lim, H.; Ku, J. Challenges and Opportunities of Gamified BCI and BMI on Disabled People Learning: A Systematic Review. Electronics 2025, 14, 491. [Google Scholar] [CrossRef]
- Sanford, S.; Liu, M.; Selvaggi, T.; Nataraj, R. Effects of Visual Feedback Complexity on the Performance of a Movement Task for Rehabilitation. J. Mot. Behav. 2021, 53, 243–257. [Google Scholar] [CrossRef] [PubMed]
- Song, J.-H. The Role of Attention in Motor Control and Learning. Curr. Opin. Psychol. 2019, 29, 261–265. [Google Scholar] [CrossRef] [PubMed]
- Milnik, A.; Nowak, I.; Müller, N.G. Attention-Dependent Modulation of Neural Activity in Primary Sensorimotor Cortex. Brain Behav. 2013, 3, 54–66. [Google Scholar] [CrossRef] [PubMed]
- Kamke, M.R.; Hall, M.G.; Lye, H.F.; Sale, M.V.; Fenlon, L.R.; Carroll, T.J.; Riek, S.; Mattingley, J.B. Visual Attentional Load Influences Plasticity in the Human Motor Cortex. J. Neurosci. 2012, 32, 7001–7008. [Google Scholar] [CrossRef]
- Stefan, K.; Wycislo, M.; Classen, J. Modulation of Associative Human Motor Cortical Plasticity by Attention. J. Neurophysiol. 2004, 92, 66–72. [Google Scholar] [CrossRef] [PubMed]
- Kamke, M.R.; Ryan, A.E.; Sale, M.V.; Campbell, M.E.J.; Riek, S.; Carroll, T.J.; Mattingley, J.B. Visual Spatial Attention Has Opposite Effects on Bidirectional Plasticity in the Human Motor Cortex. J. Neurosci. 2014, 34, 1475–1480. [Google Scholar] [CrossRef]
- Maier, M.; Ballester, B.R.; Verschure, P.F.M.J. Principles of Neurorehabilitation After Stroke Based on Motor Learning and Brain Plasticity Mechanisms. Front. Syst. Neurosci. 2019, 13, 74. [Google Scholar] [CrossRef]
- Ros, T.; Munneke, M.A.M.; Ruge, D.; Gruzelier, J.H.; Rothwell, J.C. Endogenous Control of Waking Brain Rhythms Induces Neuroplasticity in Humans. Eur. J. Neurosci. 2010, 31, 770–778. [Google Scholar] [CrossRef]
- Sitaram, R.; Veit, R.; Stevens, B.; Caria, A.; Gerloff, C.; Birbaumer, N.; Hummel, F. Acquired Control of Ventral Premotor Cortex Activity by Feedback Training: An Exploratory Real-Time FMRI and TMS Study. Neurorehabil. Neural Repair 2012, 26, 256–265. [Google Scholar] [CrossRef] [PubMed]
- Cramer, S.C.; Sur, M.; Dobkin, B.H.; O’Brien, C.; Sanger, T.D.; Trojanowski, J.Q.; Rumsey, J.M.; Hicks, R.; Cameron, J.; Chen, D.; et al. Harnessing Neuroplasticity for Clinical Applications. Brain 2011, 134, 1591–1609. [Google Scholar] [CrossRef] [PubMed]
- Gu, C.; Lin, W.; He, X.; Zhang, L.; Zhang, M. IMU-Based Motion Capture System for Rehabilitation Applications: A Systematic Review. Biomim. Intell. Robot. 2023, 3, 100097. [Google Scholar] [CrossRef]
- Ramos-Murguialday, A.; Broetz, D.; Rea, M.; Läer, L.; Yilmaz, O.; Brasil, F.L.; Liberati, G.; Curado, M.R.; Garcia-Cossio, E.; Vyziotis, A.; et al. Brain-Machine Interface in Chronic Stroke Rehabilitation: A Controlled Study. Ann. Neurol. 2013, 74, 100–108. [Google Scholar] [CrossRef]
- Liu, Q.; Yang, X.; Chen, Z.; Zhang, W. Using Synchronized Eye Movements to Assess Attentional Engagement. Psychol. Res. 2023, 87, 2039–2047. [Google Scholar] [CrossRef] [PubMed]
- Grosse-Wentrup, M.; Schölkopf, B.; Hill, J. Causal Influence of Gamma Oscillations on the Sensorimotor Rhythm. Neuroimage 2011, 56, 837–842. [Google Scholar] [CrossRef] [PubMed]
- Johnson, L.; Burridge, J.H.; Demain, S.H. Internal and External Focus of Attention During Gait Re-Education: An Observational Study of Physical Therapist Practice in Stroke Rehabilitation. Phys. Ther. 2013, 93, 957–966. [Google Scholar] [CrossRef]
- Phuphanich, M.E.; Droessler, J.; Altman, L.; Eapen, B.C. Movement-Based Therapies in Rehabilitation. Phys. Med. Rehabil. Clin. N. Am. 2020, 31, 577–591. [Google Scholar] [CrossRef]
- Levordashka, A.; Stanton Fraser, D.; Gilchrist, I.D. Measuring Real-Time Cognitive Engagement in Remote Audiences. Sci. Rep. 2023, 13, 10516. [Google Scholar] [CrossRef] [PubMed]
- Forget, M.; Pertel, N. Le Enhancing Neuroplasticity and Promoting Brain Health at Work: The Role of Learning and Memory in Workplace Performance. In Learning and Memory; Heinbockel, T., Ed.; IntechOpen: Rijeka, Croatia, 2024. [Google Scholar]
- Rajashekar, D.; Boyer, A.; Larkin-Kaiser, K.A.; Dukelow, S.P. Technological Advances in Stroke Rehabilitation: Robotics and Virtual Reality. Phys. Med. Rehabil. Clin. N. Am. 2024, 35, 383–398. [Google Scholar] [CrossRef]
- Lee, H.Y.; Hyun, S.E.; Oh, B.-M. Rehabilitation for Impaired Attention in the Acute and Post-Acute Phase After Traumatic Brain Injury: A Narrative Review. Korean J. Neurotrauma 2023, 19, 20–31. [Google Scholar] [CrossRef] [PubMed]
- Yordanova, J.; Kolev, V.; Nicolardi, V.; Simione, L.; Mauro, F.; Garberi, P.; Raffone, A.; Malinowski, P. Attentional and Cognitive Monitoring Brain Networks in Long-Term Meditators Depend on Meditation States and Expertise. Sci. Rep. 2021, 11, 4909. [Google Scholar] [CrossRef]
- deBettencourt, M.T.; Cohen, J.D.; Lee, R.F.; Norman, K.A.; Turk-Browne, N.B. Closed-Loop Training of Attention with Real-Time Brain Imaging. Nat. Neurosci. 2015, 18, 470–475. [Google Scholar] [CrossRef]
- Li, M.; He, D.; Li, C.; Qi, S. Brain-Computer Interface Speller Based on Steady-State Visual Evoked Potential: A Review Focusing on the Stimulus Paradigm and Performance. Brain Sci. 2021, 11, 450. [Google Scholar] [CrossRef] [PubMed]
- Cheng, M.; Gao, X.; Gao, S.; Xu, D. Design and Implementation of a Brain-Computer Interface with High Transfer Rates. IEEE Trans. Biomed. Eng. 2002, 49, 1181–1186. [Google Scholar] [CrossRef] [PubMed]
- Han, X.; Lin, K.; Gao, S.; Gao, X. A Novel System of SSVEP-Based Human-Robot Coordination. J. Neural Eng. 2019, 16, 16006. [Google Scholar] [CrossRef]
- İşcan, Z.; Nikulin, V.V. Steady State Visual Evoked Potential (SSVEP) Based Brain-Computer Interface (BCI) Performance under Different Perturbations. PLoS ONE 2018, 13, e0191673. [Google Scholar] [CrossRef]
- Ordikhani-Seyedlar, M.; Sorensen, H.B.D.; Kjaer, T.W.; Siebner, H.R.; Puthusserypady, S. SSVEP-Modulation by Covert and Overt Attention: Novel Features for BCI in Attention Neuro-Rehabilitation. In Proceedings of the 2014 36th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, Chicago, IL, USA, 26–30 August 2014; Volume 2014, pp. 5462–5465. [Google Scholar] [CrossRef]
- Lim, H.; Kim, S.; Ku, J. Distraction Classification During Target Tracking Tasks Involving Target and Cursor Flickering Using EEGNet. IEEE Trans. Neural Syst. Rehabil. Eng. 2022, 30, 1113–1119. [Google Scholar] [CrossRef] [PubMed]
- Kim, M.G.; Lim, H.; Lee, H.S.; Han, I.J.; Ku, J.; Kang, Y.J. Brain-Computer Interface-Based Action Observation Combined with Peripheral Electrical Stimulation Enhances Corticospinal Excitability in Healthy Subjects and Stroke Patients. J. Neural Eng. 2022, 19, 036039. [Google Scholar] [CrossRef] [PubMed]
- Lim, H.; Ku, J. Flickering Exercise Video Produces Mirror Neuron System (MNS) Activation and Steady State Visually Evoked Potentials (SSVEPs). Biomed. Eng. Lett. 2017, 7, 281–286. [Google Scholar] [CrossRef]
- Choi, H.; Lim, H.; Kim, J.W.; Kang, Y.J.; Ku, J. Brain Computer Interface-Based Action Observation Game Enhances Mu Suppression in Patients with Stroke. Electronics 2019, 8, 1466. [Google Scholar] [CrossRef]
- Oldfield, R.C. The Assessment and Analysis of Handedness: The Edinburgh Inventory. Neuropsychologia 1971, 9, 97–113. [Google Scholar] [CrossRef] [PubMed]
- Drigas, A.; Sideraki, A. Brain Neuroplasticity Leveraging Virtual Reality and Brain–Computer Interface Technologies. Sensors 2024, 24, 5725. [Google Scholar] [CrossRef] [PubMed]
- Jin, W.; Zhu, X.; Qian, L.; Wu, C.; Yang, F.; Zhan, D.; Kang, Z.; Luo, K.; Meng, D.; Xu, G. Electroencephalogram-Based Adaptive Closed-Loop Brain-Computer Interface in Neurorehabilitation: A Review. Front. Comput. Neurosci. 2024, 18, 1431815. [Google Scholar] [CrossRef]
- Lim, H.; Ku, J. A Brain-Computer Interface-Based Action Observation Game That Enhances Mu Suppression. IEEE Trans. Neural Syst. Rehabil. Eng. 2018, 26, 2290–2296. [Google Scholar] [CrossRef]
- Azadi Moghadam, M.; Maleki, A. Fatigue Factors and Fatigue Indices in SSVEP-Based Brain-Computer Interfaces: A Systematic Review and Meta-Analysis. Front. Hum. Neurosci. 2023, 17, 1248474. [Google Scholar] [CrossRef]
- Lotte, F.; Guan, C. Regularizing Common Spatial Patterns to Improve BCI Designs: Unified Theory and New Algorithms. IEEE Trans. Biomed. Eng. 2011, 58, 355–362. [Google Scholar] [CrossRef] [PubMed]
- Falcon-Caro, A.; Shirani, S.; Ferreira, J.F.; Bird, J.J.; Sanei, S. Formulation of Common Spatial Patterns for Multi-Task Hyperscanning BCI. IEEE Trans. Biomed. Eng. 2024, 71, 1950–1957. [Google Scholar] [CrossRef] [PubMed]
- Chang, C.-Y.; Hsu, S.-H.; Pion-Tonachini, L.; Jung, T.-P. Evaluation of Artifact Subspace Reconstruction for Automatic Artifact Components Removal in Multi-Channel EEG Recordings. IEEE Trans. Biomed. Eng. 2020, 67, 1114–1121. [Google Scholar] [CrossRef] [PubMed]
- Hyvärinen, A.; Oja, E. Independent Component Analysis: Algorithms and Applications. Neural Netw. 2000, 13, 411–430. [Google Scholar] [CrossRef] [PubMed]
- Cataldo, A.; Criscuolo, S.; De Benedetto, E.; Masciullo, A.; Pesola, M.; Schiavoni, R.; Invitto, S. A Method for Optimizing the Artifact Subspace Reconstruction Performance in Low-Density EEG. IEEE Sens. J. 2022, 22, 21257–21265. [Google Scholar] [CrossRef]
- Ronca, V.; Capotorto, R.; Di Flumeri, G.; Giorgi, A.; Vozzi, A.; Germano, D.; Di Virgilio, V.; Borghini, G.; Cartocci, G.; Rossi, D.; et al. Optimizing EEG Signal Integrity: A Comprehensive Guide to Ocular Artifact Correction. Bioengineering 2024, 11, 1018. [Google Scholar] [CrossRef] [PubMed]
- Tosti, B.; Corrado, S.; Mancone, S.; Di Libero, T.; Rodio, A.; Andrade, A.; Diotaiuti, P. Integrated Use of Biofeedback and Neurofeedback Techniques in Treating Pathological Conditions and Improving Performance: A Narrative Review. Front. Neurosci. 2024, 18, 1358481. [Google Scholar] [CrossRef]
- Tsai, P.-C.; Akpan, A.; Tang, K.-T.; Lakany, H. Brain-Computer Interfaces for Cognitive Enhancement in Older People—Challenges and Applications: A Systematic Review. BMC Geriatr. 2025, 25, 36. [Google Scholar] [CrossRef] [PubMed]
- Ordikhani-Seyedlar, M.; Lebedev, M.A.; Sorensen, H.B.D.; Puthusserypady, S. Neurofeedback Therapy for Enhancing Visual Attention: State-of-the-Art and Challenges. Front. Neurosci. 2016, 10, 352. [Google Scholar] [CrossRef]
- Sotoodeh, M.S.; Chien, S.H.-L.; Hadjikhani, N. Visual Attention Modulates Mu Suppression during Biological Motion Perception in Autistic Individuals. Eur. J. Neurosci. 2024, 60, 6668–6685. [Google Scholar] [CrossRef]
- Hobson, H.M.; Bishop, D.V.M. The Interpretation of Mu Suppression as an Index of Mirror Neuron Activity: Past, Present and Future. R. Soc. Open Sci. 2017, 4, 160662. [Google Scholar] [CrossRef] [PubMed]
- Aderinto, N.; AbdulBasit, M.O.; Olatunji, G.; Adejumo, T. Exploring the Transformative Influence of Neuroplasticity on Stroke Rehabilitation: A Narrative Review of Current Evidence. Ann. Med. Surg. 2023, 85, 4425–4432. [Google Scholar] [CrossRef] [PubMed]
- Corrado, S.; Tosti, B.; Mancone, S.; Di Libero, T.; Rodio, A.; Andrade, A.; Diotaiuti, P. Improving Mental Skills in Precision Sports by Using Neurofeedback Training: A Narrative Review. Sports 2024, 12, 70. [Google Scholar] [CrossRef] [PubMed]
- Cheng, M.-Y.; Yu, C.-L.; An, X.; Wang, L.; Tsai, C.-L.; Qi, F.; Wang, K.-P. Evaluating EEG Neurofeedback in Sport Psychology: A Systematic Review of RCT Studies for Insights into Mechanisms and Performance Improvement. Front. Psychol. 2024, 15, 1331997. [Google Scholar] [CrossRef] [PubMed]
- Jueptner, M.; Stephan, K.M.; Frith, C.D.; Brooks, D.J.; Frackowiak, R.S.; Passingham, R.E. Anatomy of Motor Learning. I. Frontal Cortex and Attention to Action. J. Neurophysiol. 1997, 77, 1313–1324. [Google Scholar] [CrossRef] [PubMed]
- Rushworth, M.F.; Krams, M.; Passingham, R.E. The Attentional Role of the Left Parietal Cortex: The Distinct Lateralization and Localization of Motor Attention in the Human Brain. J. Cogn. Neurosci. 2001, 13, 698–710. [Google Scholar] [CrossRef]
- Rowe, J.; Friston, K.; Frackowiak, R.; Passingham, R. Attention to Action: Specific Modulation of Corticocortical Interactions in Humans. Neuroimage 2002, 17, 988–998. [Google Scholar] [CrossRef]
- Binkofski, F.; Fink, G.R.; Geyer, S.; Buccino, G.; Gruber, O.; Shah, N.J.; Taylor, J.G.; Seitz, R.J.; Zilles, K.; Freund, H.-J. Neural Activity in Human Primary Motor Cortex Areas 4a and 4p Is Modulated Differentially by Attention to Action. J. Neurophysiol. 2002, 88, 514–519. [Google Scholar] [CrossRef] [PubMed]
- Johansen-Berg, H.; Matthews, P.M. Attention to Movement Modulates Activity in Sensori-Motor Areas, Including Primary Motor Cortex. Exp. Brain Res. 2002, 142, 13–24. [Google Scholar] [CrossRef] [PubMed]
- Rodríguez, M.; Muñiz, R.; González, B.; Sabaté, M. Hand Movement Distribution in the Motor Cortex: The Influence of a Concurrent Task and Motor Imagery. Neuroimage 2004, 22, 1480–1491. [Google Scholar] [CrossRef]
- Hunt, C.; Paez, A.; Folmar, E. The Impact of Attentional Focus on the Treatment of Musculoskeletal and Movement Disorders. Int. J. Sports Phys. Ther. 2017, 12, 901–907. [Google Scholar] [CrossRef] [PubMed]
- Wulf, G.; Prinz, W. Directing Attention to Movement Effects Enhances Learning: A Review. Psychon. Bull. Rev. 2001, 8, 648–660. [Google Scholar] [CrossRef]
- Wulf, G.; Shea, C.; Lewthwaite, R. Motor Skill Learning and Performance: A Review of Influential Factors. Med. Educ. 2010, 44, 75–84. [Google Scholar] [CrossRef]
- Zentgraf, K.; Lorey, B.; Bischoff, M.; Zimmermann, K.; Stark, R.; Munzert, J. Neural Correlates of Attentional Focusing during Finger Movements: A FMRI Study. J. Mot. Behav. 2009, 41, 535–541. [Google Scholar] [CrossRef] [PubMed]
- De Brouwer, A.J.; Areshenkoff, C.N.; Rashid, M.R.; Flanagan, J.R.; Poppenk, J.; Gallivan, J.P. Human Variation in Error-Based and Reinforcement Motor Learning Is Associated with Entorhinal Volume. Cereb. Cortex 2022, 32, 3423–3440. [Google Scholar] [CrossRef] [PubMed]
- Seidler, R.D.; Kwak, Y.; Fling, B.W.; Bernard, J.A. Neurocognitive Mechanisms of Error-Based Motor Learning. Adv. Exp. Med. Biol. 2013, 782, 39–60. [Google Scholar] [CrossRef] [PubMed]
- Sigrist, R.; Rauter, G.; Riener, R.; Wolf, P. Augmented Visual, Auditory, Haptic, and Multimodal Feedback in Motor Learning: A Review. Psychon. Bull. Rev. 2013, 20, 21–53. [Google Scholar] [CrossRef] [PubMed]
- Ford, K.R.; DiCesare, C.A.; Myer, G.D.; Hewett, T.E. Real-Time Biofeedback to Target Risk of Anterior Cruciate Ligament Injury: A Technical Report for Injury Prevention and Rehabilitation. J. Sport Rehabil. 2015, 24, 2013-0138. [Google Scholar] [CrossRef]
- Biasiucci, A.; Leeb, R.; Iturrate, I.; Perdikis, S.; Al-Khodairy, A.; Corbet, T.; Schnider, A.; Schmidlin, T.; Zhang, H.; Bassolino, M.; et al. Brain-Actuated Functional Electrical Stimulation Elicits Lasting Arm Motor Recovery after Stroke. Nat. Commun. 2018, 9, 2421. [Google Scholar] [CrossRef]
- Sebastián-Romagosa, M.; Cho, W.; Ortner, R.; Murovec, N.; Von Oertzen, T.; Kamada, K.; Allison, B.Z.; Guger, C. Brain-Computer Interface Treatment for Motor Rehabilitation of Upper Extremity of Stroke Patients—A Feasibility Study. Front. Neurosci. 2020, 14, 591435. [Google Scholar] [CrossRef] [PubMed]
- Niazi, I.K.; Mrachacz-Kersting, N.; Jiang, N.; Dremstrup, K.; Farina, D. Peripheral Electrical Stimulation Triggered by Self-Paced Detection of Motor Intention Enhances Motor Evoked Potentials. IIEEE Trans. Neural Syst. Rehabil. Eng. 2012, 20, 595–604. [Google Scholar] [CrossRef]
- Jochumsen, M.; Navid, M.S.; Rashid, U.; Haavik, H.; Niazi, I.K. EMG- Versus EEG-Triggered Electrical Stimulation for Inducing Corticospinal Plasticity. IIEEE Trans. Neural Syst. Rehabil. Eng. 2019, 27, 1901–1908. [Google Scholar] [CrossRef]
- Ibanez, J.; Serrano, J.I.; del Castillo, M.D.; Monge, E.; Molina, F.; Rivas, F.M.; Alguacil, I.; Miangolarra, J.C.; Pons, J.L. Upper-Limb Muscular Electrical Stimulation Driven by EEG-Based Detections of the Intentions to Move: A Proposed Intervention for Patients with Stroke. In Proceedings of the 2014 36th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, Chicago, IL, USA, 26–30 August 2014; Volume 2014, pp. 1646–1649. [Google Scholar] [CrossRef]
- McGie, S.C.; Zariffa, J.; Popovic, M.R.; Nagai, M.K. Short-Term Neuroplastic Effects of Brain-Controlled and Muscle-Controlled Electrical Stimulation. Neuromodulation 2015, 18, 233–240. [Google Scholar] [CrossRef] [PubMed]
Characteristic | Value |
---|---|
Sample Size | 18 |
Gender | 8 Male, 10 Female |
Age (Mean ± SD) | 27.33 ± 2.45 |
Hand Dominance | All Right-Handed (Confirmed by Edinburgh Handedness Inventory) |
Neurological Conditions | None |
Prior BCI Experience | None |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lim, H.; Ahmed, B.; Ku, J. Brain-Computer Interface Based Engagement Feedback in Virtual Reality Rehabilitation: Promoting Motor Cortex Activation. Electronics 2025, 14, 827. https://doi.org/10.3390/electronics14050827
Lim H, Ahmed B, Ku J. Brain-Computer Interface Based Engagement Feedback in Virtual Reality Rehabilitation: Promoting Motor Cortex Activation. Electronics. 2025; 14(5):827. https://doi.org/10.3390/electronics14050827
Chicago/Turabian StyleLim, Hyunmi, Bilal Ahmed, and Jeonghun Ku. 2025. "Brain-Computer Interface Based Engagement Feedback in Virtual Reality Rehabilitation: Promoting Motor Cortex Activation" Electronics 14, no. 5: 827. https://doi.org/10.3390/electronics14050827
APA StyleLim, H., Ahmed, B., & Ku, J. (2025). Brain-Computer Interface Based Engagement Feedback in Virtual Reality Rehabilitation: Promoting Motor Cortex Activation. Electronics, 14(5), 827. https://doi.org/10.3390/electronics14050827