A Robust Trajectory Multi-Bernoulli Filter for Superpositional Sensors
<p>The values of the measurement noise covariance parameters.</p> "> Figure 2
<p>The actual trajectories of multiple radiation sources and the estimated trajectories using the robust VB-TMB algorithm.</p> "> Figure 3
<p>GOSPA error of VB-TMB algorithm and GM-TMB algorithm under different parameters.</p> "> Figure 4
<p>The GOSPA distances for the VB-TMB algorithm under different L-scan lengths.</p> "> Figure 5
<p>Covariance estimation of the VB-TMB algorithm under low noise time-varying rates.</p> "> Figure 6
<p>Covariance estimation of the VB-TMB algorithm under high noise time-varying rates.</p> "> Figure 7
<p>GOSPA error of VB-HMB-CPHD algorithm, VB-TPHD algorithm, and VB-TMB algorithm.</p> "> Figure 8
<p>Covariance estimation errors of VB-HMB-CPHD algorithm, VB-TPHD algorithm, and VB-TMB algorithm.</p> ">
Abstract
:1. Introduction
2. Problem Formulation
2.1. Trajectory Set
2.2. Superpositional Sensor Model
2.3. Random Finite Set of Multi-Bernoulli Trajectories
3. Trajectory Multi-Bernoulli Filters for Superpositional Sensors
3.1. Prediction Step
3.2. Update Step
4. GM Implementations for the Trajectory Multi-Bernoulli Filters
4.1. Prediction Step
4.2. Update Step
5. Robust Trajectory Multi-Bernoulli Filters with Unknown Noise Covariance
5.1. Prediction Step
5.2. Update Step
5.3. L-Scan Implementations
Algorithm 1: Pseudocode for Gaussian mixture implementation of VB-TMB filter |
6. Simulation
6.1. Simulation Scene Setup
6.2. Simulation Results
7. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Kong, S.; Gan, L.; Wang, R.; Zhou, G. Target Tracking Algorithm of Radar and Infrared Sensor Based on Multi-Source Information Fusion. In Proceedings of the 2022 International Conference on Artificial Intelligence, Information Processing and Cloud Computing (AIIPCC), Kunming, China, 19–21 August 2022; pp. 389–392. [Google Scholar]
- Zhang, X.; Jiang, L. Stability of a Class of Nonlinear Stochastic Dynamic Systems. In Proceedings of the 2022 IEEE 6th Advanced Information Technology, Electronic and Automation Control Conference (IAEAC), Beijing, China, 3–5 October 2022; IEEE: Piscataway, NJ, USA, 2022; pp. 1117–1120. [Google Scholar]
- Vu, T. A new type of random finite set for multi-target tracking. In Proceedings of the 2016 IEEE International Conference on Multisensor Fusion and Integration for Intelligent Systems (MFI), Baden-Baden, Germany, 19–21 September 2016; pp. 534–539. [Google Scholar]
- Cong, Y. Research on Data Association Rules Mining Method Based on Improved Apriori Algorithm. In Proceedings of the 2020 International Conference on Big Data and Artificial Intelligence and Software Engineering (ICBASE), Bangkok, Thailand, 30 October–1 November 2020; pp. 373–376. [Google Scholar]
- Hu, Z.; Li, T. A Particle Bernoulli Filter Based on Gaussian Process Learning for Maneuvering Target Tracking. In Proceedings of the 2022 30th European Signal Processing Conference (EUSIPCO), Belgrade, Serbia, 29 August–2 September 2022; pp. 777–781. [Google Scholar]
- Li, Y.; Xiao, H.; Wu, H.; Hu, R.; Fu, Q. Labeled particle unresolved target PHD filter for multiple group target tracking. In Proceedings of the IET International Radar Conference 2015, Hangzhou, China, 14–16 October 2015; pp. 1–5. [Google Scholar]
- Liu, F.; Xiong, L. Survey on text clustering algorithm. In Proceedings of the 2011 IEEE 2nd International Conference on Software Engineering and Service Science, Beijing, China, 15–17 July 2011; pp. 901–904. [Google Scholar]
- Zhang, Z.; Sun, J.; Lu, X. A Multi-Sensor Multi-Target Tracker Based on Labeled MS-CPHD Filter. In Proceedings of the 2021 14th International Congress on Image and Signal Processing, BioMedical Engineering and Informatics (CISP-BMEI), Shanghai, China, 23–25 October 2021; pp. 1–5. [Google Scholar]
- Hauschildt, D. Gaussian mixture implementation of the cardinalized probability hypothesis density filter for superpositional sensors. In Proceedings of the 2011 International Conference on Indoor Positioning and Indoor Navigation, Guimaraes, Portugal, 21–23 September 2011; pp. 1–8. [Google Scholar]
- Thouin, F.; Nannuru, S.; Coates, M. Multi-target tracking for measurement models with additive contributions. In Proceedings of the 14th International Conference on Information Fusion, Chicago, IL, USA, 5–8 July 2011; pp. 1–8. [Google Scholar]
- Nannuru, S.; Thouin, F.; Mahler, R. Computationally-Tractable Approximate PHD and CPHD Filters for Superpositional Sensors. IEEE J. Sel. Top. Signal Process. 2013, 7, 410–420. [Google Scholar] [CrossRef]
- García-Fernández, Á.F.; Svensson, L.; Morelande, M.R. Multiple Target Tracking Based on Sets of Trajectories. IEEE Trans. Aerosp. Electron. Syst. 2020, 56, 1685–1707. [Google Scholar] [CrossRef]
- Li, G.; Wei, P.; Li, Y.; Chen, Y. A Labeled multi-Bernoulli Filter for Multisource DOA Tracking. In Proceedings of the 2019 International Conference on Control, Automation and Information Sciences (ICCAIS), Chengdu, China, 23–26 October 2019; pp. 1–6. [Google Scholar]
- Tahir, N.; Boudraa, M.; Lamini, E.; Ouchdi, A. One-dimensional Gaussian Density Function Segmentation Based on Piecewise Linear Approximation. In Proceedings of the 2023 International Conference on Advances in Electronics, Control and Communication Systems (ICAECCS), Blida, Algeria, 6–7 March 2023; pp. 1–6. [Google Scholar]
- García-Fernández, Á.F.; Svensson, L.; Williams, J.L.; Xia, Y.; Granström, K. Trajectory multi-Bernoulli filters for multi-target tracking based on sets of trajectories. In Proceedings of the 2020 IEEE 23rd International Conference on Information Fusion (FUSION), Rustenburg, South Africa, 6–9 July 2020; pp. 1–8. [Google Scholar]
- García-Fernández, Á.F.; Svensson, L. Trajectory PHD and CPHD filters. IEEE Trans. Signal Process. 2019, 67, 5702–5714. [Google Scholar] [CrossRef]
- Mahler, R.P.S. Advances in Statistical Multisource-Multitarget Information Fusion; National Defence Industry Press: Beijing, China, 2017. [Google Scholar]
- Nannuru, S.; Coates, M. Multi-Bernoulli filter for superpositional sensors. In Proceedings of the 16th International Conference on Information Fusion, Istanbul, Turkey, 9–12 July 2013; IEEE: Piscataway, NJ, USA, 2013; pp. 1632–1637. [Google Scholar]
- Cohen, L. Generalization of Campbell’s theorem to nonstationary noise. In Proceedings of the 2014 22nd European Signal Processing Conference (EUSIPCO), Lisbon, Portugal, 1–5 September 2014; pp. 2415–2419. [Google Scholar]
- Wang, B.; Xu, X.; Sun, K. Power System Transient Stability Analysis Using High-Order Taylor Expansion Systems. In Proceedings of the 2019 IEEE Texas Power and Energy Conference (TPEC), College Station, TX, USA, 7–8 February 2019; pp. 1–5. [Google Scholar]
- Ahlawat, A.; Nagarajan, S. Study of Estimating Dynamic State Jacobian Matrix and Dynamic System State Matrix Based on PMU. In Proceedings of the 2020 IEEE International Conference on Computing, Power and Communication Technologies (GUCON), Greater Noida, India, 2–4 October 2020; pp. 614–618. [Google Scholar]
- Wang, J.; Jing, Z.; Dong, P.; Cheng, J. A Variational Bayesian Labeled Multi-Bernoulli Filter for Tracking with Inverse Wishart Distribution. In Proceedings of the 2018 21st International Conference on Information Fusion (FUSION), Cambridge, UK, 10–13 July 2018; pp. 219–225. [Google Scholar]
- Li, W.; Jia, Y.; Du, J.; Zhang, J. PHD filter for multi-target tracking with glint noise. Signal Process. 2014, 94, 48–56. [Google Scholar] [CrossRef]
- Sarkka, S.; Nummenmaa, A. Recursive noise adaptive Kalman filtering by variational Bayesian approximations. IEEE Trans. Automat. Contr. 2009, 54, 596–600. [Google Scholar] [CrossRef]
- Huan, Z.; Pengzhou, Z.; Zeyang, G. K-means Text Dynamic Clustering Algorithm Based on KL Divergence. In Proceedings of the 2018 IEEE/ACIS 17th International Conference on Computer and Information Science (ICIS), Singapore, 6–8 June 2018; pp. 659–663. [Google Scholar]
- Li, Y.; Xi, C.; Coates, M.; Bo, Y. Sequential monte carlo radio-frequency tomographic tracking. In Proceedings of the 2011 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), Prague, Czech Republic, 22–27 May 2011; pp. 3976–3979. [Google Scholar]
- Li, Z.; Braun, T.; Zhao, X.; Zhao, Z.; Hu, F.; Liang, H. A narrow-band indoor positioning system by fusing time and received signal strength via ensemble learning. IEEE Access 2018, 6, 9936–9950. [Google Scholar] [CrossRef]
- Patwari, N.; Agrawal, P. Effects of correlated shadowing: Connectivity, localization, and RF tomography. In Proceedings of the 2008 International Conference on Information Processing in Sensor Networks (IPSN 2008), St. Louis, MO, USA, 22–24 April 2008; IEEE: Piscataway, NJ, USA, 2008; pp. 82–93. [Google Scholar]
- Lei, Q.; Zhang, H.; Sun, H.; Tang, L. A new elliptical model for device-free localization. Sensors 2016, 16, 577. [Google Scholar] [CrossRef] [PubMed]
- Vo, B.N.; Singh, S.; Doucet, A. Sequential Monte Carlo methods for multitarget filtering with random finite sets. IEEE Trans. Aerosp. Electron. Syst. 2005, 41, 1224–1245. [Google Scholar]
- Xu, W.; Zhang, H.; Li, G.; Li, W. Vardiational Bayesian Hybrid Multi-Bernoulli and CPHD Filters for Superpositional Sensors. Electronics 2023, 12, 2083. [Google Scholar] [CrossRef]
- García-Fernández, Á.F.; Hernandez, M.; Maskell, S. An analysis on metric-driven multi-target sensor management: GOSPA versus OSPA. In Proceedings of the 2021 IEEE 24th International Conference on Information Fusion (FUSION), Sun City, South Africa, 1–4 November 2021; pp. 1–8. [Google Scholar]
Algorithm | Trajectory GOSPA |
---|---|
GM-TMB ( = 70) | 13.75 |
GM-TMB ( = ) | 6.25 |
GM-TMB ( = 10) | 20.04 |
VB-TMB | 6.35 |
Algorithm | Trajectory GOSPA |
---|---|
VB-TMB (L = 1) | 9.96 |
VB-TMB (L = 2) | 7.94 |
VB-TMB (L = 3) | 7.32 |
VB-TMB(L = 4) | 7.13 |
Algorithm | Trajectory GOSPA |
---|---|
VB-HMB-CPHD | 13.19 |
VB-TPHD | 9.35 |
VB-TMB | 6.36 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, H.; Luo, W.; Zhou, X.; Mu, H.; Gao, L.; Wang, X. A Robust Trajectory Multi-Bernoulli Filter for Superpositional Sensors. Electronics 2024, 13, 4001. https://doi.org/10.3390/electronics13204001
Zhang H, Luo W, Zhou X, Mu H, Gao L, Wang X. A Robust Trajectory Multi-Bernoulli Filter for Superpositional Sensors. Electronics. 2024; 13(20):4001. https://doi.org/10.3390/electronics13204001
Chicago/Turabian StyleZhang, Huaguo, Wenting Luo, Xu Zhou, Hao Mu, Lin Gao, and Xiaodong Wang. 2024. "A Robust Trajectory Multi-Bernoulli Filter for Superpositional Sensors" Electronics 13, no. 20: 4001. https://doi.org/10.3390/electronics13204001