A Novel Wind Power Prediction Model That Considers Multi-Scale Variable Relationships and Temporal Dependencies
<p>Wind turbine workflow.</p> "> Figure 2
<p>The overall framework of the proposed model.</p> "> Figure 3
<p>Framework diagram of MSF-Decomp module.</p> "> Figure 4
<p>The primary structure of MST-GCN.</p> "> Figure 5
<p>Overall architecture diagram of Bi-TGCN.</p> "> Figure 6
<p>Bidirectional architecture diagram of three-layer TCN.</p> "> Figure 7
<p>Data distribution of power and wind speed.</p> "> Figure 8
<p>Scatter plot of power versus wind speed and direction.</p> "> Figure 9
<p>Correlation analysis results.</p> "> Figure 10
<p>Prediction accuracy comparison.</p> "> Figure 11
<p>Visualization of forecast results in wind farm site 1. The section within the red circle in <a href="#electronics-13-03710-f011" class="html-fig">Figure 11</a>a is magnified and displayed in <a href="#electronics-13-03710-f011" class="html-fig">Figure 11</a>b.</p> "> Figure 12
<p>PCC scatter plot of predicted and true values in wind farm site 1.</p> "> Figure 13
<p>Visualization of forecast results in wind farm site 4. The section within the red circle in <a href="#electronics-13-03710-f013" class="html-fig">Figure 13</a>a is magnified and displayed in <a href="#electronics-13-03710-f013" class="html-fig">Figure 13</a>b.</p> "> Figure 14
<p>Voilin plots of predicted and true values in wind farm site 4.</p> ">
Abstract
:1. Introduction
- (1)
- We developed a multi-scale frequency decomposition (MSF-Decomp) module that effectively extracts seasonal and trend changes from data of different sampling sizes, transforming them into high and low-frequency components for independent modeling.
- (2)
- The Multi-Scale Temporal Graph Convolutional Network (MST-GCN) was designed to use low-frequency components as inputs, capturing correlations across multi- scale sequences.
- (3)
- A Bidirectional Temporal Gated Convolution Network (Bi-TGCN) was introduced, utilizing high-frequency components to effectively handle dependencies within multi-scale sequences.
- (4)
- By using a multi-head cross-attention mechanism to fuse the prediction results of two models and comparing them with several benchmark models, the advantages of our method in terms of robustness and accuracy were validated.
2. Proposed Methodology
2.1. Multi-Scale Decomposition Module
2.2. Multi-Scale Graph Neural Network Modeling
2.2.1. Dynamic Graph Learning
2.2.2. Multi-Scale Temporal Graph Convolution Network
2.3. Multi-Scale Temporal Convolution Modeling
2.4. Fusion Mechanism
3. Data Collection and Analysis
3.1. Data Collection
3.2. Data Preprocessing and Analysis
4. Experimental Case Studies
4.1. Evaluation Metrics
4.2. Experiment Parameter
4.3. Case 1: Wind Farm Site 1
4.4. Case 2: Wind Farm Site 4
4.5. Model Analysis
4.6. Seasonal Variation Analysis
4.7. Discussion of Multi-Step Ahead Forecasting
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
MLP | Multi-Layer Perceptron |
RF | Random Forest |
LSTM | Long Short Term Memory |
GRU | Gated Recurrent Units |
MSF-Decomp | Multi-Scale Frequency Decomposition |
MST-GCN | Multi-Scale Temporal Graph Convolutional Network |
Bi-TGCN | Bidirectional Temporal Gated Convolution Network |
CSG | Chinese State Grid |
SCADA | Supervisory Control and Data Acquisition |
PCC | Pearson correlation coefficients |
MIC | Maximum Information Coefficients |
MSE | Mean Squared Error |
MAE | Mean Absolute Error |
References
- Li, N.; Dong, J.; Liu, L.; Li, H.; Yan, J. A novel EMD and causal convolutional network integrated with Transformer for ultra short-term wind power forecasting. Int. J. Electr. Power Energy Syst. 2023, 154, 109470. [Google Scholar] [CrossRef]
- Zhen, Z.; Qiu, G.; Mei, S.; Wang, F.; Zhang, X.; Yin, R.; Li, Y.; Osório, G.J.; Shafie-khah, M.; Catalão, J.P. An ultra-short-term wind speed forecasting model based on time scale recognition and dynamic adaptive modeling. Int. J. Electr. Power Energy Syst. 2022, 135, 107502. [Google Scholar] [CrossRef]
- Yang, T.; Yang, Z.; Li, F.; Wang, H. A short-term wind power forecasting method based on multivariate signal decomposition and variable selection. Appl. Energy 2024, 360, 122759. [Google Scholar] [CrossRef]
- Ouarda, T.B.; Charron, C. Non-stationary statistical modelling of wind speed: A case study in eastern Canada. Energy Convers. Manag. 2021, 236, 114028. [Google Scholar] [CrossRef]
- Ding, Y.; Ye, X.W.; Guo, Y.; Zhang, R.; Ma, Z. Probabilistic method for wind speed prediction and statistics distribution inference based on SHM data-driven. Probabilistic Eng. Mech. 2023, 73, 103475. [Google Scholar] [CrossRef]
- Fu, W.; Fu, Y.; Li, B.; Zhang, H.; Zhang, X.; Liu, J. A compound framework incorporating improved outlier detection and correction, VMD, weight-based stacked generalization with enhanced DESMA for multi-step short-term wind speed forecasting. Appl. Energy 2023, 348, 121587. [Google Scholar] [CrossRef]
- Xiong, J.; Peng, T.; Tao, Z.; Zhang, C.; Song, S.; Nazir, M.S. A dual-scale deep learning model based on ELM-BiLSTM and improved reptile search algorithm for wind power prediction. Energy 2023, 266, 126419. [Google Scholar] [CrossRef]
- Hua, L.; Zhang, C.; Peng, T.; Ji, C.; Shahzad Nazir, M. Integrated framework of extreme learning machine (ELM) based on improved atom search optimization for short-term wind speed prediction. Energy Convers. Manag. 2022, 252, 115102. [Google Scholar] [CrossRef]
- Li, T.; Liu, X.; Lin, Z.; Morrison, R. Ensemble offshore Wind Turbine Power Curve modelling—An integration of Isolation Forest, fast Radial Basis Function Neural Network, and metaheuristic algorithm. Energy 2022, 239, 122340. [Google Scholar] [CrossRef]
- Lin, L.; Li, M.; Ma, L.; Baziar, A.; Ali, Z.M. Hybrid RNN-LSTM deep learning model applied to a fuzzy based wind turbine data uncertainty quantization method. Ad Hoc Netw. 2021, 123, 102658. [Google Scholar] [CrossRef]
- Kisvari, A.; Lin, Z.; Liu, X. Wind power forecasting—A data-driven method along with gated recurrent neural network. Renew. Energy 2021, 163, 1895–1909. [Google Scholar] [CrossRef]
- Xiang, L.; Liu, J.; Yang, X.; Hu, A.; Su, H. Ultra-short term wind power prediction applying a novel model named SATCN-LSTM. Energy Convers. Manag. 2022, 252, 115036. [Google Scholar] [CrossRef]
- Wu, Q.; Zheng, H.; Guo, X.; Liu, G. Promoting wind energy for sustainable development by precise wind speed prediction based on graph neural networks. Renew. Energy 2022, 199, 977–992. [Google Scholar] [CrossRef]
- Song, Y.; Tang, D.; Yu, J.; Yu, Z.; Li, X. Short-Term Forecasting Based on Graph Convolution Networks and Multiresolution Convolution Neural Networks for Wind Power. IEEE Trans. Ind. Inform. 2023, 19, 1691–1702. [Google Scholar] [CrossRef]
- Liao, W.; Wang, S.; Bak-Jensen, B.; Pillai, J.R.; Yang, Z.; Liu, K. Ultra-short-term Interval Prediction of Wind Power Based on Graph Neural Network and Improved Bootstrap Technique. J. Mod. Power Syst. Clean Energy 2023, 11, 1100–1114. [Google Scholar] [CrossRef]
- Qiu, H.; Shi, K.; Wang, R.; Zhang, L.; Liu, X.; Cheng, X. A novel temporal–spatial graph neural network for wind power forecasting considering blockage effects. Renew. Energy 2024, 227, 120499. [Google Scholar] [CrossRef]
- Vaswani, A.; Shazeer, N.; Parmar, N.; Uszkoreit, J.; Jones, L.; Gomez, A.N.; Kaiser, L.; Polosukhin, I. Attention is all you need. In Proceedings of the 31st International Conference on Neural Information Processing Systems, Red Hook, NY, USA, 4–9 December 2017; NIPS’17. pp. 6000–6010. [Google Scholar]
- Xiong, B.; Lou, L.; Meng, X.; Wang, X.; Ma, H.; Wang, Z. Short-term wind power forecasting based on Attention Mechanism and Deep Learning. Electr. Power Syst. Res. 2022, 206, 107776. [Google Scholar] [CrossRef]
- Niu, Z.; Yu, Z.; Tang, W.; Wu, Q.; Reformat, M. Wind power forecasting using attention-based gated recurrent unit network. Energy 2020, 196, 117081. [Google Scholar] [CrossRef]
- Huang, B.; Liang, Y.; Qiu, X. Wind Power Forecasting Using Attention-Based Recurrent Neural Networks: A Comparative Study. IEEE Access 2021, 9, 40432–40444. [Google Scholar] [CrossRef]
- Ma, Z.; Mei, G. A hybrid attention-based deep learning approach for wind power prediction. Appl. Energy 2022, 323, 119608. [Google Scholar] [CrossRef]
- Zhou, H.; Zhang, S.; Peng, J.; Zhang, S.; Li, J.; Xiong, H.; Zhang, W. Informer: Beyond Efficient Transformer for Long Sequence Time-Series Forecasting. In Proceedings of the AAAI Conference on Artificial Intelligence, San Francisco, CA, USA, 7–11 August 2021; Volume 35, pp. 11106–11115. [Google Scholar] [CrossRef]
- Wu, H.; Xu, J.; Wang, J.; Long, M. Autoformer: Decomposition Transformers with Auto-Correlation for Long-Term Series Forecasting. In Proceedings of the Advances in Neural Information Processing Systems, Online, 6–14 December 2021; Ranzato, M., Beygelzimer, A., Dauphin, Y., Liang, P., Vaughan, J.W., Eds.; Curran Associates, Inc.: Red Hook, NY, USA, 2021; Volume 34, pp. 22419–22430. [Google Scholar]
- Zhou, T.; Ma, Z.; Wen, Q.; Wang, X.; Sun, L.; Jin, R. FEDformer: Frequency Enhanced Decomposed Transformer for Long-term Series Forecasting. In Proceedings of the 39th International Conference on Machine Learning, Baltimore, MA, USA, 17–23 July 2022; Proceedings of Machine Learning Research. Chaudhuri, K., Jegelka, S., Song, L., Szepesvari, C., Niu, G., Sabato, S., Eds.; PMLR: Westminster, UK, 2022; Volume 162, pp. 27268–27286. [Google Scholar]
- Liu, Y.; Hu, T.; Zhang, H.; Wu, H.; Wang, S.; Ma, L.; Long, M. iTransformer: Inverted Transformers Are Effective for Time Series Forecasting. arXiv 2024, arXiv:2310.06625. Available online: http://arxiv.org/abs/2310.06625 (accessed on 26 May 2024).
- Wang, H.; Peng, J.; Huang, F.; Wang, J.; Chen, J.; Xiao, Y. MICN: Multi-scale Local and Global Context Modeling for Long-term Series Forecasting. In Proceedings of the International Conference on Learning Representations, Kigali, Rwanda, 1–5 May 2023. [Google Scholar]
- Wu, Z.; Pan, S.; Chen, F.; Long, G.; Zhang, C.; Yu, P.S. A Comprehensive Survey on Graph Neural Networks. arXiv 2019, arXiv:1901.00596. Available online: http://arxiv.org/abs/1901.00596 (accessed on 26 May 2024). [CrossRef] [PubMed]
- Veličković, P. Everything is connected: Graph neural networks. Curr. Opin. Struct. Biol. 2023, 79, 102538. [Google Scholar] [CrossRef] [PubMed]
- Gao, C.; Zheng, Y.; Li, N.; Li, Y.; Qin, Y.; Piao, J.; Quan, Y.; Chang, J.; Jin, D.; He, X.; et al. A Survey of Graph Neural Networks for Recommender Systems: Challenges, Methods, and Directions. ACM Trans. Recomm. Syst. 2023, 1, 1–51. [Google Scholar] [CrossRef]
- Chen, L.; Chen, D.; Shang, Z.; Zhang, Y.; Wen, B.; Yang, C. Multi-Scale Adaptive Graph Neural Network for Multivariate Time Series Forecasting. arXiv 2022, arXiv:2201.04828. Available online: http://arxiv.org/abs/2201.04828 (accessed on 26 May 2024). [CrossRef]
- Peters, B.; Martins, A.F.T. Smoothing and Shrinking the Sparse Seq2Seq Search Space. In Proceedings of the 2021 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Online, 6–11 June 2021; Toutanova, K., Rumshisky, A., Zettlemoyer, L., Hakkani-Tur, D., Beltagy, I., Bethard, S., Cotterell, R., Chakraborty, T., Zhou, Y., Eds.; ACL Anthology: Melbourne, Australia, 2021; pp. 2642–2654. [Google Scholar] [CrossRef]
- Abu-El-Haija, S.; Perozzi, B.; Kapoor, A.; Alipourfard, N.; Lerman, K.; Harutyunyan, H.; Steeg, G.V.; Galstyan, A. MixHop: Higher-Order Graph Convolutional Architectures via Sparsified Neighborhood Mixing. In Proceedings of the 36th International Conference on Machine Learning, Long Beach, CA, USA, 9–15 June 2019; Chaudhuri, K., Salakhutdinov, R., Eds.; Proceedings of Machine Learning Research. PMLR: Westminster, UK, 2019; Volume 97, pp. 21–29. [Google Scholar]
- Sprangers, O.; Schelter, S.; de Rijke, M. Parameter-efficient deep probabilistic forecasting. Int. J. Forecast. 2023, 39, 332–345. [Google Scholar] [CrossRef]
- Chen, Y.; Xu, J. Solar and wind power data from the Chinese State Grid Renewable Energy Generation Forecasting Competition. Sci. Data 2022, 9, 577. [Google Scholar] [CrossRef]
- González-Sopeña, J.; Pakrashi, V.; Ghosh, B. An overview of performance evaluation metrics for short-term statistical wind power forecasting. Renew. Sustain. Energy Rev. 2021, 138, 110515. [Google Scholar] [CrossRef]
- Diebold, F.X.; Mariano, R.S. Comparing Predictive Accuracy. J. Bus. Econ. Stat. 2002, 20, 134–144. [Google Scholar] [CrossRef]
Heading Name | Shortened Name |
---|---|
Wind speed at height of x meters (m/s) | WS_x |
Wind direction at height of x meters (°) | WD_x |
Air temperature (°C) | Air_T |
Atmosphere (hpa) | Air_P |
Relative humidity (%) | Air_H |
Power output(MW) | Power (MW) |
Parameter | Value |
---|---|
GCN depth | 2 |
Bi-TGCN scale | [12,12,12] |
Dimensions of embedding | 256 |
Number of heads of attention | 6 |
Batch size | 32 |
Optimizer | Adam |
Dropout | 0.2 |
Initial learning rate |
Model | MSE | MAE | R2 |
---|---|---|---|
RF | 28.856 | 5.221 | 0.785 |
BiLSTM | 25.371 | 4.873 | 0.812 |
CNN-LSTM | 23.790 | 4.210 | 0.819 |
GRU | 23.182 | 3.789 | 0.931 |
TCN | 20.530 | 3.940 | 0.940 |
Informer | 16.458 | 2.991 | 0.968 |
Autoformer | 18.131 | 3.514 | 0.963 |
FEDformer | 19.415 | 3.661 | 0.941 |
iTransformer | 11.743 | 2.532 | 0.980 |
Proposed | 11.231 | 2.445 | 0.981 |
Methods | DM Statistic | p Value |
---|---|---|
Proposed vs. RF | −37.23 | 1.26 × 10−168 |
Proposed vs. BiLSTM | −25.00 | 3.15 × 10−67 |
Proposed vs. CNN-LSTM | −18.89 | 9.25 × 10−120 |
Proposed vs. GRU | −19.97 | 2.14 × 10−148 |
Proposed vs. TCN | −21.23 | 7.25 × 10−122 |
Proposed vs. Informer | −14.90 | 1.67 × 10−40 |
Proposed vs. Autoformer | −16.23 | 6.78 × 10−48 |
Proposed vs. FEDformer | −17.29 | 1.27 × 10−54 |
Proposed vs. iTransformer | −8.91 | 4.73 × 10−19 |
Model | MSE | MAE | R2 |
---|---|---|---|
RF | 30.043 | 5.034 | 0.783 |
BiLSTM | 25.991 | 4.427 | 0.833 |
CNN-LSTM | 25.774 | 4.029 | 0.845 |
GRU | 24.101 | 4.384 | 0.883 |
TCN | 22.451 | 3.848 | 0.937 |
Informer | 18.119 | 2.907 | 0.951 |
Autoformer | 19.857 | 3.582 | 0.952 |
FEDformer | 21.534 | 3.661 | 0.939 |
iTransformer | 14.005 | 2.540 | 0.975 |
Proposed | 13.730 | 2.511 | 0.978 |
Model | MSE | MAE | R2 |
---|---|---|---|
Proposed-D | 14.868 | 2.896 | 0.961 |
Proposed-DT | 21.501 | 4.080 | 0.937 |
Proposed-DG | 17.543 | 3.767 | 0.949 |
Proposed | 11.231 | 2.445 | 0.981 |
Season | Model | MSE | MAE | R2 |
---|---|---|---|---|
Spring | Informer | 18.512 | 3.42 | 0.948 |
Autoformer | 16.12 | 3.581 | 0.957 | |
FEDformer | 17.638 | 3.593 | 0.951 | |
iTransformer | 13.107 | 2.551 | 0.978 | |
Proposed | 12.563 | 2.547 | 0.978 | |
Summer | Informer | 16.018 | 2.589 | 0.971 |
Autoformer | 17.416 | 2.471 | 0.977 | |
FEDformer | 16.555 | 2.4 | 0.975 | |
iTransformer | 10.75 | 2.139 | 0.989 | |
Proposed | 10.954 | 2.219 | 0.988 | |
Autumn | Informer | 16.589 | 3.41 | 0.971 |
Autoformer | 18.964 | 3.471 | 0.96 | |
FEDformer | 19.564 | 3.51 | 0.947 | |
iTransformer | 11.69 | 2.578 | 0.981 | |
Proposed | 11.564 | 2.45 | 0.982 | |
Winter | Informer | 21.04 | 4.224 | 0.937 |
Autoformer | 20.417 | 4.346 | 0.931 | |
FEDformer | 22.471 | 4.851 | 0.935 | |
iTransformer | 14.864 | 2.799 | 0.969 | |
Proposed | 14.115 | 2.842 | 0.972 |
Model | 12-Step (3 h Ahead) | 24-Step (6 h Ahead) | ||||
---|---|---|---|---|---|---|
MSE | MAE | R2 | MSE | MAE | R2 | |
Informer | 58.531 | 4.976 | 0.787 | 126.458 | 7.457 | 0.688 |
Autoformer | 66.544 | 5.446 | 0.731 | 145.581 | 7.575 | 0.649 |
FEDformer | 62.998 | 5.22 | 0.743 | 131.912 | 7.22 | 0.653 |
iTransformer | 55.184 | 4.492 | 0.827 | 100.31 | 6.656 | 0.71 |
Proposed | 47.752 | 4.265 | 0.833 | 89.818 | 5.847 | 0.737 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xu, Z.; Zhao, H.; Xu, C.; Shi, H.; Xu, J.; Wang, Z. A Novel Wind Power Prediction Model That Considers Multi-Scale Variable Relationships and Temporal Dependencies. Electronics 2024, 13, 3710. https://doi.org/10.3390/electronics13183710
Xu Z, Zhao H, Xu C, Shi H, Xu J, Wang Z. A Novel Wind Power Prediction Model That Considers Multi-Scale Variable Relationships and Temporal Dependencies. Electronics. 2024; 13(18):3710. https://doi.org/10.3390/electronics13183710
Chicago/Turabian StyleXu, Zhanyang, Hong Zhao, Chengxi Xu, Hongyan Shi, Jian Xu, and Zhe Wang. 2024. "A Novel Wind Power Prediction Model That Considers Multi-Scale Variable Relationships and Temporal Dependencies" Electronics 13, no. 18: 3710. https://doi.org/10.3390/electronics13183710
APA StyleXu, Z., Zhao, H., Xu, C., Shi, H., Xu, J., & Wang, Z. (2024). A Novel Wind Power Prediction Model That Considers Multi-Scale Variable Relationships and Temporal Dependencies. Electronics, 13(18), 3710. https://doi.org/10.3390/electronics13183710