Design Optimization of a THz Receiver Based on 60 nm Complementary Metal–Oxide–Semiconductor Technology
<p>(<b>a</b>) Two-dimensional color map of the simulated zeroth-order harmonic component of the electrostatic potential in a ST B55 Technology NGH MOS induced by a <math display="inline"><semantics> <mrow> <mn>0.7</mn> </mrow> </semantics></math> THz signal of nominal amplitude <math display="inline"><semantics> <mrow> <mn>100</mn> <mo> </mo> <mi mathvariant="normal">m</mi> <mi mathvariant="normal">V</mi> <mo>,</mo> </mrow> </semantics></math> applied between source and gate. The source and gate-source bias are <math display="inline"><semantics> <mrow> <msub> <mrow> <mi>V</mi> </mrow> <mrow> <mi>S</mi> </mrow> </msub> <mo>=</mo> <mn>0.5</mn> <mo> </mo> <mi mathvariant="normal">V</mi> </mrow> </semantics></math> and <math display="inline"><semantics> <mrow> <msub> <mrow> <mi>V</mi> </mrow> <mrow> <mi>G</mi> </mrow> </msub> <mo>=</mo> <mn>0.6</mn> <mo> </mo> <mi mathvariant="normal">V</mi> </mrow> </semantics></math>, respectively. (<b>b</b>) Two-dimensional color map of the simulated 2nd-order harmonic response of the electrostatic potential.</p> "> Figure 2
<p>Two-dimensional map of the self-mixing rectified potential for the same structure and physical parameters as in <a href="#electronics-13-03122-f001" class="html-fig">Figure 1</a>. The three maps refer to different values of gate-source bias <math display="inline"><semantics> <mrow> <msub> <mrow> <mi>V</mi> </mrow> <mrow> <mi>G</mi> </mrow> </msub> </mrow> </semantics></math>: <math display="inline"><semantics> <mrow> <mn>0.5</mn> <mo> </mo> <mi mathvariant="normal">V</mi> </mrow> </semantics></math> (<b>a</b>), <math display="inline"><semantics> <mrow> <mn>0.6</mn> <mo> </mo> <mi mathvariant="normal">V</mi> </mrow> </semantics></math> (<b>b</b>), <math display="inline"><semantics> <mrow> <mn>0.7</mn> <mo> </mo> <mi mathvariant="normal">V</mi> </mrow> </semantics></math> (<b>c</b>). The increase in the magnitude of the potential between channel and drain is due to the different penetration of THz electric field toward the substrate depletion barrier. The penetration of the THz potential toward the substrate reduces at higher gate voltages (panel (<b>c</b>)) due to the screening by the channel charge.</p> "> Figure 3
<p>(<b>a</b>) Two-dimensional color map of the self-mixing-induced variation of electron density (red color: increase; blue color: decrease). (<b>b</b>) Two-dimensional color map of the self-mixing variation in hole density for the same structure and physical parameters as in <a href="#electronics-13-03122-f001" class="html-fig">Figure 1</a> and <a href="#electronics-13-03122-f002" class="html-fig">Figure 2</a>.</p> "> Figure 4
<p>(<b>a</b>) Three-dimensional representation of the receiver providing a depiction of the antenna terminals connected to the source and gate contacts of the MOS rectifier. The drain contact of the detector is connected to the gate of the first transistor of the LNA. The width <math display="inline"><semantics> <mrow> <mi>H</mi> </mrow> </semantics></math> and <math display="inline"><semantics> <mrow> <mi>W</mi> </mrow> </semantics></math> of the gates, respectively, of the TR and of the LNA input transistor are highlighted. (<b>b</b>) Receiver circuit diagram. The parasitic capacitance at the LNA input is highlighted.</p> "> Figure 5
<p>(<b>a</b>) Thevenin equivalent circuit or the rectifier highlighting the dependence from parameter <math display="inline"><semantics> <mrow> <mi>W</mi> </mrow> </semantics></math> of the parasitic capacitance <math display="inline"><semantics> <mrow> <msub> <mrow> <mi>C</mi> </mrow> <mrow> <mi>G</mi> <mi>S</mi> <mo>_</mo> <mi>L</mi> <mi>N</mi> <mi>A</mi> </mrow> </msub> </mrow> </semantics></math> of the LNA input transistor; (<b>b</b>) Norton equivalent current sources of the LNA, highlighting the functional dependence on <math display="inline"><semantics> <mrow> <mi>W</mi> </mrow> </semantics></math> of the LNA signal, of the transconductance <math display="inline"><semantics> <mrow> <msub> <mrow> <mi>g</mi> </mrow> <mrow> <mi>m</mi> <mo>_</mo> <mi>L</mi> <mi>N</mi> <mi>A</mi> </mrow> </msub> </mrow> </semantics></math>, and the functional dependence <math display="inline"><semantics> <mrow> <msqrt> <mi>W</mi> </msqrt> </mrow> </semantics></math> of the equivalent noise current source <math display="inline"><semantics> <mrow> <msub> <mrow> <mi>i</mi> </mrow> <mrow> <mi>n</mi> <mi>d</mi> </mrow> </msub> </mrow> </semantics></math>.</p> "> Figure 6
<p>Equivalent antenna parameters vs. frequency. Real (black) and imaginary (blue) parts of the antenna input impedance and (red dashed) antenna effective height. The circle indicates the optimum working point.</p> "> Figure 7
<p>Simulated resistance (<b>a</b>) and reactance (<b>b</b>) of the MOS receiver versus values of its gate–source bias, <math display="inline"><semantics> <mrow> <msub> <mrow> <mi>V</mi> </mrow> <mrow> <mi>G</mi> <mo>_</mo> <mi>T</mi> <mi>R</mi> </mrow> </msub> </mrow> </semantics></math>, for two different values of the receiver source bias, <math display="inline"><semantics> <mrow> <msub> <mrow> <mi>V</mi> </mrow> <mrow> <mi>S</mi> <mo>_</mo> <mi>T</mi> <mi>R</mi> </mrow> </msub> <mo>=</mo> <mn>0.5</mn> <mo> </mo> <mi mathvariant="normal">V</mi> </mrow> </semantics></math> and <math display="inline"><semantics> <mrow> <msub> <mrow> <mi>V</mi> </mrow> <mrow> <mi>S</mi> <mo>_</mo> <mi>T</mi> <mi>R</mi> </mrow> </msub> <mo>=</mo> <mn>0.8</mn> <mo> </mo> <mi mathvariant="normal">V</mi> </mrow> </semantics></math>. Simulations refer to the high-frequency response of the receiver to a <math display="inline"><semantics> <mrow> <mn>0.7</mn> </mrow> </semantics></math> THz.</p> "> Figure 8
<p>Rectifier output voltage <math display="inline"><semantics> <mrow> <msub> <mrow> <mi>V</mi> </mrow> <mrow> <mi>o</mi> <mi>u</mi> <mi>t</mi> <mo>_</mo> <mi>T</mi> <mi>R</mi> </mrow> </msub> </mrow> </semantics></math> (<b>a</b>) and output resistance <math display="inline"><semantics> <mrow> <msub> <mrow> <mi>R</mi> </mrow> <mrow> <mi>o</mi> <mi>u</mi> <mi>t</mi> <mo>_</mo> <mi>T</mi> <mi>R</mi> </mrow> </msub> </mrow> </semantics></math>. (<b>b</b>) <math display="inline"><semantics> <mrow> <msub> <mrow> <mi>V</mi> </mrow> <mrow> <mi>G</mi> <mo>_</mo> <mi>T</mi> <mi>R</mi> </mrow> </msub> </mrow> </semantics></math> for two different values of <math display="inline"><semantics> <mrow> <msub> <mrow> <mi>V</mi> </mrow> <mrow> <mi>S</mi> <mo>_</mo> <mi>T</mi> <mi>R</mi> </mrow> </msub> </mrow> </semantics></math>.</p> "> Figure 9
<p>(<b>a</b>) LNA transconductance <math display="inline"><semantics> <mrow> <msub> <mrow> <mi>g</mi> </mrow> <mrow> <mi>m</mi> <mo>_</mo> <mi>L</mi> <mi>N</mi> <mi>A</mi> </mrow> </msub> </mrow> </semantics></math> versus the LNA gate-source bias <math display="inline"><semantics> <mrow> <msub> <mrow> <mi>V</mi> </mrow> <mrow> <mi>G</mi> <mi>S</mi> <mo>_</mo> <mi>L</mi> <mi>N</mi> <mi>A</mi> </mrow> </msub> </mrow> </semantics></math> for different values of the LNA drain-source bias <math display="inline"><semantics> <mrow> <msub> <mrow> <mi>V</mi> </mrow> <mrow> <mi>D</mi> <mi>S</mi> <mo>_</mo> <mi>L</mi> <mi>N</mi> <mi>A</mi> </mrow> </msub> </mrow> </semantics></math>. (<b>b</b>) LNA output noise spectral density versus the signal frequency. The noise corner frequency of <math display="inline"><semantics> <mrow> <mn>45</mn> <mo> </mo> <mi mathvariant="normal">M</mi> <mi mathvariant="normal">H</mi> <mi mathvariant="normal">z</mi> </mrow> </semantics></math> is noticeable.</p> "> Figure 10
<p>Minimum power density of a plane wave impinging on the structure vs. frequency for different values of the parameter <span class="html-italic">H</span>.</p> ">
Abstract
:1. Introduction
2. Materials and Methods: Analysis of the Detection Process
2.1. Electrostatic Potential
2.2. Self-Mixing Voltage
2.3. Displacements of Carriers
3. Receiver Design
3.1. Analysis of the Detector/LNA Coupling
3.2. The Antenna Design
3.3. Analysis of the Antenna–Rectifier Coupling
3.4. The Receiver Optimization
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Guerboukha, H.; Nallappan, K.; Skorobogatiy, M. Toward real-time terahertz imaging. Adv. Opt. Photonics 2018, 10, 843–938. [Google Scholar] [CrossRef]
- Islam, M.S.; Cordeiro, C.M.; Franco, M.A.; Sultana, J.; Cruz, A.L.; Abbott, D. Terahertz optical fibers. Opt. Express 2019, 28, 16089–16117. [Google Scholar] [CrossRef]
- Zaytsev, K.I.; Dolganova, I.N.; Chernomyrdin, N.V.; Katyba, G.M.; Gavdush, A.A.; Cherkasova, O.P.; Reshetov, I.V. The progress and perspectives of terahertz technology for diagnosis of neoplasms: A review. J. Opt. 2019, 22, 013001. [Google Scholar] [CrossRef]
- Smolyanskaya, O.A.; Chernomyrdin, N.V.; Konovko, A.A.; Zaytsev, K.I.; Ozheredov, I.A.; Cherkasova, O.P.; Coutaz, J.L. Terahertz biophotonics as a tool for studies of dielectric and spectral properties of biological tissues and liquids. Prog. Quantum Electron. 2018, 62, 1–77. [Google Scholar] [CrossRef]
- Yachmenev, A.E.; Lavrukhin, D.V.; Glinskiy, I.A.; Zenchenko, N.V.; Goncharov, Y.G.; Spektor, I.E.; Ponomarev, D.S. Metallic and dielectric metasurfaces in photoconductive terahertz devices: A review. Opt. Eng. 2019, 59, 061608. [Google Scholar] [CrossRef]
- Yachmenev, A.E.; Pushkarev, S.S.; Reznik, R.R.; Khabibullin, R.A.; Ponomarev, D.S. Arsenides-and related III-V materials-based multilayered structures for terahertz applications: Various designs and growth technology. Prog. Cryst. Growth Charact. Mater. 2020, 66, 100485. [Google Scholar] [CrossRef]
- Lepeshov, S.; Gorodetsky, A.; Krasnok, A.; Rafailov, E.; Belov, P. Enhancement of terahertz photoconductive antenna operation by optical nanoantennas. Laser Photonics Rev. 2017, 11, 1600199. [Google Scholar] [CrossRef]
- Pfeiffer, U.R.; Kutaish, A. Terahertz Light-Field Imaging with Silicon Technologies. IEEE Open J. Solid-State Circuits Soc. 2024, 4, 1–11. [Google Scholar] [CrossRef]
- Zatta, R.; Jagtap, V.S.; Grzyb, J.; Pfeiffer, U.R. Broadband Lens-Integrated CMOS Camera-Type THz Compact Antenna Test Range. IEEE Trans. Terahertz Sci. Technol. 2021, 11, 527–537. [Google Scholar] [CrossRef]
- Zhu, K.; Ding, Q.; Mao, T.; Tang, X.; Xiao, Y.; Qin, H.; Sun, H. Experimental Realization of 16-Pixel Terahertz Receiver Front-End Based on Bulk Silicon MEMS Power Divider and AlGaN/GaN HEMT Linear Detector Array. Electronics 2022, 11, 2305. [Google Scholar] [CrossRef]
- Boppel, S.; Lisauskas, A.; Mundt, M.; Seliuta, D.; Minkevicius, L.; Kasalynas, I.; Roskos, H.G. CMOS Integrated Antenna-Coupled Field-Effect Transistors for the Detection of Radiation From 0.2 to 4.3 THz. IEEE Trans. Microw. Theory Tech. 2012, 60, 3834–3843. [Google Scholar] [CrossRef]
- Ikamas, K.; Čibiraitė, D.; Lisauskas, A.; Bauer, M.; Krozer, V.; Roskos, H.G. Broadband Terahertz Power Detectors Based on 90-nm Silicon CMOS Transistors with Flat Responsivity Up to 2.2 THz. IEEE Electron Device Lett. 2018, 39, 1413–1416. [Google Scholar] [CrossRef]
- Shur, M.S.; Liu, X.; Ytterdal, T. Editors’ Choice—Thin Film Transistor Response in the THz Range. ECS J. Solid State Sci. Technol. 2023, 12, 035008. [Google Scholar] [CrossRef]
- Liu, Z.Y.; Liu, L.Y.; Yang, J.; Wu, N.J.Z. A CMOS Fully Integrated 860-GHz Terahertz Sensor. IEEE Trans. Terahertz Sci. Technol. 2017, 7, 455–465. [Google Scholar] [CrossRef]
- Seok, E.; Shim, D.; Mao, C.; Han, R.; Sankaran, S.; Cao, C.; Knap, W. Progress and Challenges Towards Terahertz CMOS Integrated Circuits. IEEE J. Solid-State Circuits 2010, 45, 1554–1564. [Google Scholar] [CrossRef]
- Marczewski, J.; Coquillat, D.; Knap, W.; Kolacinski, C.; Kopyt, P.; Kucharski, K.; Palka, N. THz detectors based on Si-CMOS technology field effect transistors–advantages, limitations and perspectives for THz imaging and spectroscopy. Opto-Electron. Rev. 2018, 26, 261–269. [Google Scholar] [CrossRef]
- Nahar, S.; Shafee, M.; Blin, S.; Pénarier, A.; Nouvel, P.; Coquillat, D.; Hella, M.M. Wide modulation bandwidth terahertz detection in 130 nm CMOS technology. Eur. Phys. J. Appl. Phys. 2016, 76, 20101. [Google Scholar] [CrossRef]
- Dyakonov, M.; Shur, M. Detection, mixing, and frequency multiplication of terahertz radiation by two-dimensional electronic fluid. IEEE Trans. Electron Devices 1996, 43, 380–387. [Google Scholar] [CrossRef]
- Al Hadi, R.; Sherry, H.; Grzyb, J.; Baktash, N.; Zhao, Y.; Öjefors, E.; Pfeiffer, U. A broadband 0.6 to 1 THz CMOS imaging detector with an integrated lens. In Proceedings of the IEEE MTT-S International Microwave Symposium, Baltimore, MD, USA, 5–10 June 2011; pp. 1–4. [Google Scholar]
- Lisauskas, A.; Pfeiffer, U.; Öjefors, E.; Bolìvar, P.H.; Glaab, D.; Roskos, H.G. Rational design of high-responsivity detectors of terahertz radiation based on distributed self-mixing in silicon field-effect transistors. J. Appl. Phys. 2009, 105, 114511. [Google Scholar] [CrossRef]
- Palma, F. Self-Mixing Model of Terahertz Rectification in a Metal Oxide Semiconductor Capacitance. Electronics 2020, 9, 479. [Google Scholar] [CrossRef]
- Synopsys®. Sentaurus™ Sentaurus Device User Manual, Version Y-2006.06. 2006. Available online: https://www.scribd.com/document/377498693/Utilities-Ug (accessed on 5 February 2024).
- Meng, Q.; Lin, Q.; Jing, W.; Han, F.; Zhao, M.; Jiang, Z. TCAD Simulation foe Nonresonant Terahertz Detector Based on Double-Channel GaN/AlGaN High-Electron-Mobility Transistor. IEEE Trans. Electron Devices 2018, 65, 4807–4813. [Google Scholar] [CrossRef]
- Hwang, H.C.; Park, K.; Park, W.; Kim, K.R. Design and Characterization of Plasmonic Terahertz Wave Detectors Based on Silicon Field-Effect Transistors. Jpn. J. Appl. Phys. 2012, 51, 06FE17. [Google Scholar] [CrossRef]
- Delgado Notario, J.A.; Menziani, Y.M.; Velasquez-Perez, J.E. TCAD study of sub-THz photovoltaic response of strained-Si MODFET. J. Phys. Conf. Ser. 2015, 647, 012041. [Google Scholar] [CrossRef]
- Velazquez, J.E.; Fobelets, K.; Gaspari, V. Study of current fluctuations in deep-submicron Si/SiGe n-channel MOSFET: Impact of relevant technological parameters on the thermal noise performance. Semicond. Sci. Technol. 2004, 19, S191–S194. [Google Scholar] [CrossRef]
- Cicchetti, R.; Petrarca, M.; Perticaroli, S.; Testa, O.; Palma, F. A Novel THz CMOS Chip Composed of 64 Antenna-Detectors Array toward 6G Applications. In Proceedings of the 61st FITCE International Congress Future, Rome, Italy, 29–30 September 2022; pp. 1–4. [Google Scholar]
- Palma, F.; Cicchetti, R.; Perticaroli, S.; Testa, O. 6G communications Push for Effective THz Sensing Technology: MOSFET Rectification Model Needs to be Refounded. In Proceedings of the 48th International Conference on Infrared, Millimeter and Terahertz Waves (IRMMW-THz), Montreal, QC, Canada, 17–22 September 2023; pp. 1–2. [Google Scholar]
- Kundert, K.S.; White, J.K.; Sangiovanni-Vincentelli, A.L. Steady-State Methods for Simulating Analog and Microwave Circuits; Springer Science and Business Media: New York, NY, USA, 2013; Volume 94. [Google Scholar]
- Palma, F. Theoretical Analysis of the Time Transient of the THz Self-Mixing Rectification Voltage in a Semiconductor Barrier. Electronics 2023, 12, 1264. [Google Scholar] [CrossRef]
- Palma, F. Physical Insights into THz Rectification in Metal–Oxide–Semiconductor Transistors. Electronics 2024, 13, 1192. [Google Scholar] [CrossRef]
- Standaert, A.; Brancato, L.; Lips, B.; Ceyssens, F.; Puers, R.; Reynaert, P. Three techniques for the fabrication of high precision, mm-sized metal components based on two-photon lithography, applied for manufacturing horn antennas for THz transceivers. J. Micromech. Microeng. 2018, 28, 035008. [Google Scholar] [CrossRef]
- Xu, L.-J.; Zhao, X.-K.; Bai, X. Design of on-chip antennas for THz detector and source in CMOS. IET Microw. Antennas Propag. 2023, 17, 454–466. [Google Scholar] [CrossRef]
- SIMULIA CST Studio Suite(R) 2019, Dassault Systèmes, Vélizy-Villacoublay, France. Available online: https://www.3ds.com/products/simulia/cst-studio-suite (accessed on 5 February 2024).
- Gauthier, A.; Brezza, E.; Montagné, A.; Guitard, N.; Goncalves, J.A.; Buczko, M.; Chevalier, P. Low-Noise Si/SiGe HBT for LEO Satellite User Terminals in Ku-Ka Bands. In Proceedings of the IEEE BiCMOS and Compound Semiconductor Integrated Circuits and Technology Symposium (BCICTS), Monterey, CA, USA, 16–17 October 2023; pp. 187–190. [Google Scholar]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Palma, F.; Logoteta, D.; Centurelli, F.; Chevalier, P.; Cicchetti, R.; Monsieur, F.; Santini, C.; Testa, O.; Trifiletti, A.; d’Alessandro, A. Design Optimization of a THz Receiver Based on 60 nm Complementary Metal–Oxide–Semiconductor Technology. Electronics 2024, 13, 3122. https://doi.org/10.3390/electronics13163122
Palma F, Logoteta D, Centurelli F, Chevalier P, Cicchetti R, Monsieur F, Santini C, Testa O, Trifiletti A, d’Alessandro A. Design Optimization of a THz Receiver Based on 60 nm Complementary Metal–Oxide–Semiconductor Technology. Electronics. 2024; 13(16):3122. https://doi.org/10.3390/electronics13163122
Chicago/Turabian StylePalma, Fabrizio, Demetrio Logoteta, Francesco Centurelli, Pascal Chevalier, Renato Cicchetti, Frederic Monsieur, Carlo Santini, Orlandino Testa, Alessandro Trifiletti, and Antonio d’Alessandro. 2024. "Design Optimization of a THz Receiver Based on 60 nm Complementary Metal–Oxide–Semiconductor Technology" Electronics 13, no. 16: 3122. https://doi.org/10.3390/electronics13163122