Research on Path-Planning Algorithm Integrating Optimization A-Star Algorithm and Artificial Potential Field Method
<p>Schematic diagram of the traditional A-star algorithm. (<b>a</b>) Conventional A-star algorithm pathfinding in the absence of obstacles; (<b>b</b>) conventional A-star algorithm pathfinding in the presence of obstacles.</p> "> Figure 2
<p>Optimization A-star algorithm schematic.</p> "> Figure 3
<p>Optimization of the A-star calculation hair path-planning process.</p> "> Figure 4
<p>Force analysis of robot in artificial potential field.</p> "> Figure 5
<p>Potential Field Method Wayfinding.</p> "> Figure 6
<p>Potential field method misalignment principle.</p> "> Figure 7
<p>Optimization of the potential field method path-planning process.</p> "> Figure 8
<p>Global path comparison. (<b>a</b>,<b>c</b>,<b>e</b>) Traditional A-star algorithm; (<b>b</b>,<b>d</b>,<b>f</b>) optimization of the A-star algorithm.</p> "> Figure 8 Cont.
<p>Global path comparison. (<b>a</b>,<b>c</b>,<b>e</b>) Traditional A-star algorithm; (<b>b</b>,<b>d</b>,<b>f</b>) optimization of the A-star algorithm.</p> "> Figure 9
<p>Global path comparison for map replacement. (<b>a</b>,<b>c</b>) Traditional A-star algorithm; (<b>b</b>,<b>d</b>) optimization of the A-star algorithm.</p> "> Figure 9 Cont.
<p>Global path comparison for map replacement. (<b>a</b>,<b>c</b>) Traditional A-star algorithm; (<b>b</b>,<b>d</b>) optimization of the A-star algorithm.</p> "> Figure 10
<p>Comparison of global path planning for complex map environments. (<b>a</b>) Traditional A-star algorithm; (<b>b</b>) optimization of the A-star algorithm.</p> "> Figure 11
<p>Use of the optimized potential field method in different map environments to set different start and end points of the path planning. (<b>a</b>,<b>b</b>) are route plans for different starting points and different end points in the same environment; (<b>c</b>,<b>d</b>) are route plans for different starting points and different end points after changing maps.</p> "> Figure 11 Cont.
<p>Use of the optimized potential field method in different map environments to set different start and end points of the path planning. (<b>a</b>,<b>b</b>) are route plans for different starting points and different end points in the same environment; (<b>c</b>,<b>d</b>) are route plans for different starting points and different end points after changing maps.</p> "> Figure 12
<p>Path fitting results. (<b>a</b>) <a href="#electronics-11-03660-f011" class="html-fig">Figure 11</a>a path fit; (<b>b</b>) <a href="#electronics-11-03660-f011" class="html-fig">Figure 11</a>b path fit.</p> "> Figure 13
<p>Addition of dynamic obstacles.</p> "> Figure 14
<p>Optimized A-star algorithm vs. the bidirectional A-star algorithm. (<b>a</b>,<b>c</b>) The bidirectional A-star algorithm; (<b>b</b>,<b>d</b>) optimization of the A-star algorithm.</p> "> Figure 15
<p>Effect on the optimized potential field method for different L values.</p> "> Figure 16
<p>Optimal potential field method path-planning time for three L values.</p> "> Figure 17
<p>Ant colony algorithm path planning.</p> "> Figure 18
<p>The RRT algorithm path planning.</p> ">
Abstract
:1. Introduction
2. Global Path Planning
2.1. Traditional A-Star Algorithm
2.2. Optimization of the A-Star Algorithm
3. Local Route Planning
3.1. Artificial Potential Field Method
3.2. Optimization of the Artificial Potential Field Method
3.2.1. Interruption Point Selection
3.2.2. Least Squares Method
4. Simulation and Analysis
4.1. Comparative Analysis of Optimization Algorithms and Traditional Algorithms
4.2. Comparative Analysis of Optimized A-Star Algorithm and Bidirectional A-Star Algorithm
4.3. Simulation Analysis of the Effect of Different L Values on the Potential Field Method
4.4. Comparative Analysis of Fusion and Ant Colony Algorithms
4.5. Comparative Analysis of Fusion Algorithms and the RRT Algorithm
5. Results and Discussion
6. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Liu, J.; Zhang, L.; Li, H. The study on path planning of stair cleaning robot rest platform. J. Jiangxi Norm. Univ. (Nat. Sci.) 2022, 46, 67–74. [Google Scholar]
- Yang, M.; Xie, M.; Zhang, X. The Design of Obstacle Avoidance System and Path Planning of Cleaning Robot. Chang. Inf. Commun. 2021, 34, 14–17. [Google Scholar]
- Li, X.; Ma, X.; Wang, X. A Survey of Path Planning Algorithms for Mobile Robots. Comput. Meas. Control 2022, 30, 9–19. [Google Scholar]
- Zhang, K. Overview of Path Planning Algorithms for Unmanned Vehicles. Equip. Manuf. Technol. 2021, 6, 111–113. [Google Scholar] [CrossRef]
- Yang, Y. Overview of Global Path Planning Algorithms for Mobile Robots. Inf. Rec. Mater. 2022, 23, 29–32. [Google Scholar]
- Wang, Z.; Hu, X.; Li, X.; Du, Z. Overview of Global Path Planning Algorithms for Mobile Robots. Comput. Sci. 2021, 48, 19–29. [Google Scholar]
- Dijkstra, E. A Note on Two Problems in Connexion With Graphs. In Numerische Mathematik; Springer: New York, NY, USA, 1959; pp. 269–271. [Google Scholar]
- Hart, P.E.; Nilsson, N.J.; Raphael, B. A formal basis for the heuristic determination of minimum cost paths in graphs. IEEE Trans. Syst. Sci. Cybern. 1968, 4, 100–107. [Google Scholar] [CrossRef]
- Zhang, X.; Zou, Y. Collision-free path planning for automated guided vehicles based on improved A-star algorithm. Syst. Eng. Theory Pract. 2021, 41, 240–246. [Google Scholar]
- Khatib, O. The Potential Field Approach and Operational Space Formulation in Robot Control; Springer: New York, NY, USA, 1986; pp. 367–377. [Google Scholar]
- Wang, Y. Improvement of Artificial Potential Field Algorithm for Robots in Different Environments. Nanjing Univ. Inf. Sci. Technol. 2020, 2, 45–53. [Google Scholar]
- Liu, H.; Wang, D.; Wang, Y.; Lu, X. Research of Path Planning for Mobile Robots Based on Fuzzy Artificial Potential Field Method. Control Eng. China 2022, 29, 33–38. [Google Scholar]
- Sheng, L.; Bao, L.; Wu, P. Application of Heuristic Approaches in the Robot Path Planning and Optimization: A Review. Electron. Opt. Control 2018, 25, 58–64. [Google Scholar]
- Hen, J.; Wen, J.; Xie, G. Mobile robot path planning based on improved A-star algorithm. J. Guangxi Univ. Sci. Technol. 2022, 33, 78–84. [Google Scholar]
- Lin, M.; Yuan, K.; Shi, C.; Wang, Y. Path planning of Mobile robot based on improved A-star algorithm. Mech. Sci. Technol. Aerosp. Eng. 2022, 41, 795–800. [Google Scholar]
- Zhou, J.; Yang, L.; Zhang, C. Indoor robot path planning based on improved A-star algorithm. Mod. Electron. Tech. 2022, 32, 202–206. [Google Scholar]
- Shi, Z.; Mei, S.; Shao, Y.; Wan, R.; Song, Z.; Xie, M.; Li, Y. Research status and prospect of path planning for mobile robots based on artificial potential field method. J. Chin. Agric. Mech. 2022, 42, 182–188. [Google Scholar]
- Liu, X. Review on UAV obstacle avoidance methods. J. Ordnance Equip. Eng. 2022, 43, 40–47. [Google Scholar]
- Wu, Q.; Zeng, Q.; Luo, J.; Kuang, X.; Huang, H. Application research on improved artificial potential field method in UAV path planning. J. Chongqing Univ. Technol. (Nat. Sci.) 2022, 36, 144–151. [Google Scholar]
- Sun, L. Obstacle Avoidance Algorithm of Autonomous Vehicle Based on an Improved Artificial Potential Field. J. Henan Univ. Sci. Technol. (Nat. Sci.) 2022, 43, 5–6, 28–34, 41. [Google Scholar]
- Gao, Q. Research on Least Square Curve Fitting and Optimization Algorithm. Ind. Control Comput. 2021, 34, 100–101. [Google Scholar]
- Wang, R. Research of Least Square Curve Fitting and Simplified Algorithm. Sens. World 2021, 27, 8–10, 25. [Google Scholar]
- Zhao, J.; Wang, J.; Lu, Z.; Sun, H. Research on path planning of medical inspection robot based on improved bidirectional exploration A-star algorithm. J. Jilin Norm. Univ. (Nat. Sci. Ed.) 2022, 43, 121–127. [Google Scholar]
- Wang, Z.; Zeng, G.; Huang, B. Mobile robot path planning algorithm based on improved bidirectional A star. Transducer Microsyst. Technol. 2020, 39, 141–143, 147. [Google Scholar]
- Yue, G.; Zhang, M.; Shen, C.; Guan, X. Bi-directional smooth A-star algorithm for navigation planning of mobile robots. Sci. Sin. Technol. 2021, 51, 459–468. [Google Scholar] [CrossRef]
- Chen, D.; Liu, X.; Liu, S. Improved A-star algorithm based on two-way search for path planning of automated guided vehicle. J. Comput. Appl. 2021, 41, 309–313. [Google Scholar]
- Wang, Z.; Xia, X. Application of adaptive ant colony algorithm in robot path planning. J. Minnan Norm. Univ. (Nat. Sci.) 2022, 35, 38–45. [Google Scholar]
- Yue, C.; Huang, J.; Deng, L. Research on improved ant colony algorithm in AGV path planning. Comput. Eng. Des. 2022, 43, 2533–2541. [Google Scholar]
- Wang, H.; Cui, Y.; Li, M.; Li, G. Mobile Robot Path Planning Algorithm Based on Improved RRT∗FN. J. Northeast Univ. (Nat. Sci.) 2022, 43, 1217–1224, 1249. [Google Scholar]
- Chen, H.; Wang, L. A Path Planning Algorithm Based on Two-Way Simultaneous No-Collision Goal RRT. J. Airf. Eng. Univ. (Nat. Sci. Ed.) 2022, 23, 60–67. [Google Scholar]
Time | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 |
---|---|---|---|---|---|---|---|---|---|---|
Traditional A-star algorithm | 0.623 | 0.583 | 0.635 | 0.592 | 0.606 | 0.581 | 0.604 | 0.600 | 0.596 | 0.603 |
Optimization of the A-star algorithm | 0.368 | 0.225 | 0.208 | 0.190 | 0.218 | 0.175 | 0.179 | 0.172 | 0.170 | 0.174 |
Time | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 |
---|---|---|---|---|---|---|---|---|---|---|
Traditional A-star algorithm | 0.309 | 0.307 | 0.308 | 0.305 | 0.303 | 0.299 | 0.304 | 0.300 | 0.296 | 0.299 |
Optimization of the A-star algorithm | 0.140 | 0.139 | 0.139 | 0.139 | 0.140 | 0.138 | 0.136 | 0.134 | 0.133 | 0.133 |
Time | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 |
---|---|---|---|---|---|---|---|---|---|---|
Traditional A-star algorithm | 2.427 | 2.436 | 2.419 | 2.371 | 2.402 | 2.552 | 2.349 | 2.359 | 2.371 | 2.368 |
Optimization of the A-star algorithm | 0.683 | 0.732 | 0.703 | 0.689 | 0.691 | 0.782 | 0.704 | 0.699 | 0.685 | 0.692 |
Time | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 |
---|---|---|---|---|---|---|---|---|---|---|
Two-way exploration A-star algorithm | 0.486 | 0.493 | 0.497 | 0.452 | 0.462 | 0.489 | 0.473 | 0.472 | 0.458 | 0.454 |
Optimization of the A-star algorithm | 0.163 | 0.157 | 0.161 | 0.158 | 0.154 | 0.162 | 0.169 | 0.181 | 0.183 | 0.158 |
Time | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 |
---|---|---|---|---|---|---|---|---|---|---|
Ant colony algorithm | 2.185 | 2.092 | 2.029 | 2.047 | 2.053 | 2.064 | 2.066 | 2.049 | 2.055 | 2.092 |
Fusion algorithm | 0.693 | 0.712 | 0.706 | 0.718 | 0.700 | 0.750 | 0.740 | 0.736 | 0.738 | 0.726 |
Time | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 |
---|---|---|---|---|---|---|---|---|---|---|
The RRT algorithm | 3.779 | 3.871 | 3.996 | 4.063 | 3.921 | 4.012 | 4.039 | 4.182 | 4.094 | 4.074 |
Fusion algorithm | 0.593 | 0.633 | 0.677 | 0.715 | 0.640 | 0.647 | 0.658 | 0.648 | 0.680 | 0.660 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, L.; Wang, B.; Xu, H. Research on Path-Planning Algorithm Integrating Optimization A-Star Algorithm and Artificial Potential Field Method. Electronics 2022, 11, 3660. https://doi.org/10.3390/electronics11223660
Liu L, Wang B, Xu H. Research on Path-Planning Algorithm Integrating Optimization A-Star Algorithm and Artificial Potential Field Method. Electronics. 2022; 11(22):3660. https://doi.org/10.3390/electronics11223660
Chicago/Turabian StyleLiu, Lisang, Bin Wang, and Hui Xu. 2022. "Research on Path-Planning Algorithm Integrating Optimization A-Star Algorithm and Artificial Potential Field Method" Electronics 11, no. 22: 3660. https://doi.org/10.3390/electronics11223660
APA StyleLiu, L., Wang, B., & Xu, H. (2022). Research on Path-Planning Algorithm Integrating Optimization A-Star Algorithm and Artificial Potential Field Method. Electronics, 11(22), 3660. https://doi.org/10.3390/electronics11223660