Anomaly Detection in Multi-Host Environment Based on Federated Hypersphere Classifier
<p>An overview of training the proposed method, federated hypersphere classifier, based on the federated learning framework.</p> "> Figure 2
<p>An overview of host data preparation in our experiments. Training data: the original classes of benign samples are distributed among the hosts minimizing their overlap to simulate the heterogeneity of data distribution. Test data: all hosts experience the test data from the same distribution.</p> "> Figure 3
<p>The AUC results of each anomaly detection method according to different numbers of the training instances for the CICIDS-2017 dataset. The <span class="html-italic">x</span>-axis represents the total number of training instances in all hosts.</p> "> Figure 4
<p>The AUC results of each anomaly detection method according to the ratio of hosts including abnormal data for the CICIDS-2017 dataset. The <span class="html-italic">x</span>-axis represents the proportion of hosts containing abnormal data.</p> "> Figure 5
<p>The AUC results of each anomaly detection method according to the ratio of abnormal data in the training dataset for the CICIDS-2017 dataset. The <span class="html-italic">x</span>-axis represents the proportion of abnormal data in each host.</p> ">
Abstract
:1. Introduction
- We propose the federated hypersphere classifier (FHC), which is a novel federated learning-based anomaly detection method for a multi-host environment where data sharing is limited, the data distributions of hosts are skewed, and only a few hosts contain anomaly data.
- We introduce a new version of the hypersphere classifier suited for federated learning. By modifying the objective function to include the radius variable, it is possible to find an optimal consensus radius, which is necessary for decision making in anomaly detection.
- We demonstrate our proposed method in a multi-host environment where the data distributions of hosts are skewed, and only a few hosts contain anomaly data. The results show that our method detects anomalies far more accurately than the state-of-the-art single-host alternatives.
2. Related Works
2.1. Anomaly Detection
2.1.1. Classical Anomaly Detection
2.1.2. Deep Learning-Based Anomaly Detection
2.2. Federated Learning
3. Methods
3.1. Multi-Host Environment
- Multiple hosts store a certain type of data available to train anomaly detectors to detect normal and abnormal inputs or activities.
- The hosts are connected in a network, where exchanging training data is prohibited for privacy or security reasons.
- All hosts contain normal data, whereas only a few hosts have abnormal samples due to the rarity of such events. Furthermore, the distribution can be skewed; for example, normal samples from a host may not cover all types of normal data.
3.2. Notation
3.3. Hypersphere Classifier
3.4. Proposed Method: Federated Hypersphere Classifier
- Step 1. We fix the radius R and update the model parameter and the center c so that is minimized for normal instances and maximized for abnormal instances.
- Step 2. We fix the model parameter and the center c and update the radius R.
Algorithm 1 The federated hypersphere classifier (FHC) algorithm |
Require: hosts , host datasets , number of abnormal instances in each host , global model |
Initialize: |
global model ; global hypersphere center ; global hypersphere radius |
procedure ServerUpdate |
for each round do |
for each host h in parallel do |
Host update: |
end for |
Global model aggregation: |
Global hyersphere center aggregation: |
Global hyersphere radius aggregation: |
end for |
end procedure |
procedure HostUpdate() |
if then ▹ host with abnormal data |
for each local epoch do |
for batch do |
(Step 1) |
Fix the radius: |
Optimize the model parameter: |
Optimize the center: |
(Step 2) |
Fix the model parameter and the center: |
Optimize the radius: |
end for |
end for |
else ▹ host with no abnormal data |
Compute the center: |
Compute the radius: |
end if |
return |
end procedure |
3.5. Computational Cost Analysis
4. Experiments
4.1. Data Preparation
- The MNIST [78] dataset consists of 10 classes of handwritten digits, and each data instance is a gray-scale image with pixels. The total number of the training set is 60,000, and the total number of the evaluation set is 10,000.
- CIFAR-10 [79] consists of 10 different classes of RGB-color images of objects and animals. It consists of 50,000 training and 10,000 evaluation examples.
- CICIDS-2017 [80] is a network traffic data collected for five days composed of 14 different types of attacks. There are a total of 655,364 attack instances and 2,271,397 benign instances.
- TON-IoT [81] is the Internet of Things dataset that comprises heterogeneous sources such as network data, telemetry data, and operating system logs. We use network traffic data with nine attack types, including DoS, DDoS, and backdoor attacks. The dataset contains 21,523,641 malicious and 796,380 benign instances.
4.2. Comparisons and Other Settings
4.3. Experimental Results
4.3.1. The Effect of the Number of Training Instances
4.3.2. The Effect of the Proportion of Hosts with Abnormal Data
4.3.3. The Effect of the Proportion of Abnormal Instances per Hosts
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Chandola, V.; Banerjee, A.; Kumar, V. Anomaly detection: A survey. ACM Comput. Surv. 2009, 41, 15:1–15:58. [Google Scholar] [CrossRef]
- Ten, C.W.; Hong, J.; Liu, C.C. Anomaly Detection for Cybersecurity of the Substations. IEEE Trans. Smart Grid 2011, 2, 865–873. [Google Scholar] [CrossRef]
- Goh, J.; Adepu, S.; Tan, M.; Lee, Z.S. Anomaly detection in cyber physical systems using recurrent neural networks. In Proceedings of the 2017 IEEE 18th International Symposium on High Assurance Systems Engineering (HASE), Singapore, 12–14 January 2017; pp. 140–145. [Google Scholar]
- Shone, N.; Ngoc, T.N.; Phai, V.D.; Shi, Q. A Deep Learning Approach to Network Intrusion Detection. IEEE Trans. Emerg. Top. Comput. Intell. 2018, 2, 41–50. [Google Scholar] [CrossRef] [Green Version]
- Du, M.; Li, F.; Zheng, G.; Srikumar, V. Deeplog: Anomaly detection and diagnosis from system logs through deep learning. In Proceedings of the 2017 ACM SIGSAC Conference on Computer and Communications Security, Dallas, TX, USA, 30 October–3 November 2017; pp. 1285–1298. [Google Scholar]
- Meng, W.; Liu, Y.; Zhu, Y.; Zhang, S.; Pei, D.; Liu, Y.; Chen, Y.; Zhang, R.; Tao, S.; Sun, P.; et al. LogAnomaly: Unsupervised Detection of Sequential and Quantitative Anomalies in Unstructured Logs. In Proceedings of the Twenty-Eighth International Joint Conference on Artificial Intelligence, IJCAI-19. International Joint Conferences on Artificial Intelligence Organization, Macao, China, 10–16 August 2019; pp. 4739–4745. [Google Scholar] [CrossRef] [Green Version]
- Audibert, J.; Michiardi, P.; Guyard, F.; Marti, S.; Zuluaga, M.A. USAD: UnSupervised Anomaly Detection on Multivariate Time Series. In Proceedings of the 26th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, Virtual Event, 6–10 July 2020; ACM: New York, NY, USA, 2020. [Google Scholar] [CrossRef]
- Anwar, S.M.; Majid, M.; Qayyum, A.; Awais, M.; Alnowami, M.; Khan, M.K. Medical Image Analysis using Convolutional Neural Networks: A Review. J. Med. Syst. 2018, 42, 226. [Google Scholar] [CrossRef] [Green Version]
- Sato, D.; Hanaoka, S.; Nomura, Y.; Takenaga, T.; Miki, S.; Yoshikawa, T.; Hayashi, N.; Abe, O. A primitive study on unsupervised anomaly detection with an autoencoder in emergency head CT volumes. In Medical Imaging 2018: Computer-Aided Diagnosis. International Society for Optics and Photonics; International Society for Optics and Photonics location: Bellingham, DC, USA, 2018; Volume 10575, p. 105751P. [Google Scholar]
- Shvetsova, N.; Bakker, B.; Fedulova, I.; Schulz, H.; Dylov, D.V. Anomaly detection in medical imaging with deep perceptual autoencoders. IEEE Access 2021, 9, 118571–118583. [Google Scholar] [CrossRef]
- Han, C.; Rundo, L.; Murao, K.; Noguchi, T.; Shimahara, Y.; Milacski, Z.Á.; Koshino, S.; Sala, E.; Nakayama, H.; Satoh, S. MADGAN: Unsupervised medical anomaly detection GAN using multiple adjacent brain MRI slice reconstruction. BMC Bioinform. 2021, 22, 31. [Google Scholar] [CrossRef]
- Tootooni, M.S.; Liu, C.; Roberson, D.; Donovan, R.; Rao, P.K.; Kong, Z.J.; Bukkapatnam, S.T. Online non-contact surface finish measurement in machining using graph theory-based image analysis. J. Manuf. Syst. 2016, 41, 266–276. [Google Scholar] [CrossRef]
- Hajizadeh, S.; Núnez, A.; Tax, D.M. Semi-supervised rail defect detection from imbalanced image data. IFAC-PapersOnLine 2016, 49, 78–83. [Google Scholar] [CrossRef]
- Atha, D.J.; Jahanshahi, M.R. Evaluation of deep learning approaches based on convolutional neural networks for corrosion detection. Struct. Health Monit. 2018, 17, 1110–1128. [Google Scholar] [CrossRef]
- Siddiqui, M.A.; Stokes, J.W.; Seifert, C.; Argyle, E.; McCann, R.; Neil, J.; Carroll, J. Detecting Cyber Attacks Using Anomaly Detection with Explanations and Expert Feedback. In Proceedings of the ICASSP 2019—2019 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), Brighton, UK, 12–17 May 2019; pp. 2872–2876. [Google Scholar] [CrossRef]
- Karimipour, H.; Dehghantanha, A.; Parizi, R.M.; Choo, K.K.R.; Leung, H. A Deep and Scalable Unsupervised Machine Learning System for Cyber-Attack Detection in Large-Scale Smart Grids. IEEE Access 2019, 7, 80778–80788. [Google Scholar] [CrossRef]
- Denning, D.; Neumann, P.G. Requirements and Model for IDES-a Real-Time Intrusion-Detection Expert System; SRI International Menlo Park: Menlo Park, CA, USA, 1985; Volume 8. [Google Scholar]
- Ilgun, K.; Kemmerer, R.A.; Porras, P.A. State Transition Analysis: A Rule-Based Intrusion Detection Approach. IEEE Trans. Softw. Eng. 1995, 21, 181–199. [Google Scholar] [CrossRef]
- Scholkopf, B.; Williamson, R.C.; Smola, A.J.; Shawe-Taylor, J.; Platt, J.C. Support Vector Method for Novelty Detection. In Proceedings of the Advances in Neural Information Processing Systems 12, NIPS Conference, Denver, CO, USA, 29 November–4 December 1999; Solla, S.A., Leen, T.K., Müller, K., Eds.; The MIT Press: Cambridge, MA, USA, 1999; pp. 582–588. [Google Scholar]
- Tax, D.M.J.; Duin, R.P.W. Support Vector Data Description. Mach. Learn. 2004, 54, 45–66. [Google Scholar] [CrossRef] [Green Version]
- Liu, F.T.; Ting, K.M.; Zhou, Z. Isolation Forest. In Proceedings of the 8th IEEE International Conference on Data Mining (ICDM 2008), Pisa, Italy, 15–19 December 2008; pp. 413–422. [Google Scholar] [CrossRef]
- Lakhina, A.; Papagiannaki, K.; Crovella, M.; Diot, C.; Kolaczyk, E.D.; Taft, N. Structural Analysis of Network Traffic Flows. In Proceedings of the Joint International Conference on Measurement and Modeling of Computer Systems (SIGMETRICS ’04/Performance ’04), New York, NY, USA, 10–14 June 2004; Association for Computing Machinery: New York, NY, USA, 2004; pp. 61–72. [Google Scholar] [CrossRef] [Green Version]
- Chalapathy, R.; Chawla, S. Deep Learning for Anomaly Detection: A Survey. arXiv 2019, arXiv:1901.03407v2. Available online: https://arxiv.org/abs/1901.03407 (accessed on 1 March 2022).
- Ruff, L.; Vandermeulen, R.; Goernitz, N.; Deecke, L.; Siddiqui, S.A.; Binder, A.; Müller, E.; Kloft, M. Deep One-Class Classification. In Proceedings of the 35th International Conference on Machine Learning, Stockholm, Sweden, 10–15 July 2018; Dy, J., Krause, A., Eds.; International Conference on Machine Learning (ICML): Baltimore, MD, USA, 2018; Volume 80, pp. 4393–4402. [Google Scholar]
- Potluri, S.; Henry, N.F.; Diedrich, C. Evaluation of hybrid deep learning techniques for ensuring security in networked control systems. In Proceedings of the 2017 22nd IEEE International Conference on Emerging Technologies and Factory Automation (ETFA), Limassol, Cyprus, 12–15 September 2017; pp. 1–8. [Google Scholar] [CrossRef]
- Kravchik, M.; Shabtai, A. Detecting Cyber Attacks in Industrial Control Systems Using Convolutional Neural Networks. In Proceedings of the 2018 Workshop on Cyber-Physical Systems Security and PrivaCy, (CPS-SPC ’18), Toronto, ON, Canada, 19 October 2018; Association for Computing Machinery: New York, NY, USA, 2018; pp. 72–83. [Google Scholar] [CrossRef] [Green Version]
- Yan, W.; Mestha, L.K.; Abbaszadeh, M. Attack Detection for Securing Cyber Physical Systems. IEEE Internet Things J. 2019, 6, 8471–8481. [Google Scholar] [CrossRef]
- Wang, H.; Ruan, J.; Wang, G.; Zhou, B.; Liu, Y.; Fu, X.; Peng, J. Deep Learning-Based Interval State Estimation of AC Smart Grids Against Sparse Cyber Attacks. IEEE Trans. Ind. Inform. 2018, 14, 4766–4778. [Google Scholar] [CrossRef]
- Wang, J.; Shi, D.; Li, Y.; Chen, J.; Ding, H.; Duan, X. Distributed Framework for Detecting PMU Data Manipulation Attacks With Deep Autoencoders. IEEE Trans. Smart Grid 2019, 10, 4401–4410. [Google Scholar] [CrossRef]
- Kang, M.J.; Kang, J.W. Intrusion detection system using deep neural network for in-vehicle network security. PLoS ONE 2016, 11, e0155781. [Google Scholar] [CrossRef]
- Song, H.M.; Woo, J.; Kim, H.K. In-vehicle network intrusion detection using deep convolutional neural network. Veh. Commun. 2020, 21, 100198. [Google Scholar] [CrossRef]
- Ashraf, J.; Bakhshi, A.D.; Moustafa, N.; Khurshid, H.; Javed, A.; Beheshti, A. Novel Deep Learning-Enabled LSTM Autoencoder Architecture for Discovering Anomalous Events From Intelligent Transportation Systems. IEEE Trans. Intell. Transp. Syst. 2021, 22, 4507–4518. [Google Scholar] [CrossRef]
- Moslehi, K.; Kumar, R. A Reliability Perspective of the Smart Grid. IEEE Trans. Smart Grid 2010, 1, 57–64. [Google Scholar] [CrossRef]
- Gunduz, M.Z.; Das, R. Cyber-security on smart grid: Threats and potential solutions. Comput. Netw. 2020, 169, 107094. [Google Scholar] [CrossRef]
- Rodríguez-Valenzuela, S.; Holgado-Terriza, J.A.; Gutiérrez-Guerrero, J.M.; Muros-Cobos, J.L. Distributed service-based approach for sensor data fusion in IoT environments. Sensors 2014, 14, 19200–19228. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bhuvaneswari Amma, N.G.; Selvakumar, S. Anomaly detection framework for Internet of things traffic using vector convolutional deep learning approach in fog environment. Future Gener. Comput. Syst. 2020, 113, 255–265. [Google Scholar]
- Wang, X.; Han, Y.; Wang, C.; Zhao, Q.; Chen, X.; Chen, M. In-Edge AI: Intelligentizing Mobile Edge Computing, Caching and Communication by Federated Learning. IEEE Netw. 2019, 33, 156–165. [Google Scholar] [CrossRef] [Green Version]
- Alazab, M.; RM, S.P.; M, P.; Maddikunta, P.K.R.; Gadekallu, T.R.; Pham, Q.V. Federated Learning for Cybersecurity: Concepts, Challenges, and Future Directions. IEEE Trans. Ind. Inform. 2022, 18, 3501–3509. [Google Scholar] [CrossRef]
- Caragea, D.; Silvescu, A.; Honavar, V. Analysis and synthesis of agents that learn from distributed dynamic data sources. In Emergent Neural Computational Architectures Based on Neuroscience; Springer: Berlin/Heidelberg, Germany, 2001; pp. 547–559. [Google Scholar]
- Peteiro-Barral, D.; Guijarro-Berdiñas, B. A survey of methods for distributed machine learning. Prog. Artif. Intell. 2013, 2, 1–11. [Google Scholar] [CrossRef] [Green Version]
- Liu, A.; Wang, Y.; Li, T. SFE-GACN: A novel unknown attack detection under insufficient data via intra categories generation in embedding space. Comput. Secur. 2021, 105, 102262. [Google Scholar] [CrossRef]
- McMahan, B.; Moore, E.; Ramage, D.; Hampson, S.; y Arcas, B.A. Communication-Efficient Learning of Deep Networks from Decentralized Data. In Proceedings of the 20th International Conference on Artificial Intelligence and Statistics, AISTATS 2017, Fort Lauderdale, FL, USA, 20–22 April 2017; Singh, A., Zhu, X.J., Eds.; PMLR: Cambridge MA, USA, 2017; Volume 54, pp. 1273–1282. [Google Scholar]
- Ruff, L.; Vandermeulen, R.A.; Franks, B.J.; Müller, K.; Kloft, M. Rethinking Assumptions in Deep Anomaly Detection. arXiv 2020, arXiv:2006.00339v2. Available online: https://arxiv.org/abs/2006.00339 (accessed on 3 March 2022).
- Cortes, C.; Vapnik, V. Support-vector networks. Mach. Learn. 1995, 20, 273–297. [Google Scholar] [CrossRef]
- Hotelling, H. Analysis of a complex of statistical variables into principal components. J. Educ. Psychol. 1933, 24, 417. [Google Scholar] [CrossRef]
- Ringberg, H.; Soule, A.; Rexford, J.; Diot, C. Sensitivity of PCA for Traffic Anomaly Detection. SIGMETRICS Perform. Eval. Rev. 2007, 35, 109–120. [Google Scholar] [CrossRef]
- Sakurada, M.; Yairi, T. Anomaly Detection Using Autoencoders with Nonlinear Dimensionality Reduction. In Proceedings of the MLSDA 2014 2nd Workshop on Machine Learning for Sensory Data Analysis (MLSDA’14), Gold Coast, QLD, Australia, 2 December 2014; Association for Computing Machinery: New York, NY, USA, 2014; pp. 4–11. [Google Scholar] [CrossRef]
- Kingma, D.P.; Welling, M. Auto-Encoding Variational Bayes. In Proceedings of the 2nd International Conference on Learning Representations, ICLR 2014, Banff, AB, Canada, 14–16 April 2014; Conference Track Proceedings. Bengio, Y., LeCun, Y., Eds.; DBLP: Trier, Germany, 2014. [Google Scholar]
- Zong, B.; Song, Q.; Min, M.R.; Cheng, W.; Lumezanu, C.; Cho, D.K.; Chen, H. Deep Autoencoding Gaussian Mixture Model for Unsupervised Anomaly Detection. In Proceedings of the 6th International Conference on Learning Representations, ICLR 2018, Vancouver, BC, Canada, 30 April–3 May 2018. [Google Scholar]
- Gong, D.; Liu, L.; Le, V.; Saha, B.; Mansour, M.R.; Venkatesh, S.; van den Hengel, A. Memorizing Normality to Detect Anomaly: Memory-Augmented Deep Autoencoder for Unsupervised Anomaly Detection. In Proceedings of the 2019 IEEE/CVF International Conference on Computer Vision, ICCV 2019, Seoul, Korea, 27 October–2 November 2019; pp. 1705–1714. [Google Scholar] [CrossRef] [Green Version]
- Vapnik, V. The Nature of Statistical Learning Theory; Springer Science & Business Media: Berlin/Heidelberg, Germany, 1999. [Google Scholar]
- Hojjati, H.; Armanfard, N. DASVDD: Deep Autoencoding Support Vector Data Descriptor for Anomaly Detection. arXiv 2021, arXiv:2106.05410. [Google Scholar]
- Schlegl, T.; Seeböck, P.; Waldstein, S.M.; Schmidt-Erfurth, U.; Langs, G. Unsupervised Anomaly Detection with Generative Adversarial Networks to Guide Marker Discovery. In Proceedings of the Information Processing in Medical Imaging—25th International Conference, Boone, NC, USA, 25–30 June 2017. [Google Scholar]
- Goodfellow, I.J.; Pouget-Abadie, J.; Mirza, M.; Xu, B.; Warde-Farley, D.; Ozair, S.; Courville, A.C.; Bengio, Y. Generative Adversarial Nets. In Proceedings of the Advances in Neural Information Processing Systems 27: Annual Conference on Neural Information Processing Systems 2014, Montreal, QC, Canada, 8–13 December 2014; Ghahramani, Z., Welling, M., Cortes, C., Lawrence, N.D., Weinberger, K.Q., Eds.; Association for Computing Machinery: New York, NY, USA, 2014; pp. 2672–2680. [Google Scholar]
- Schlegl, T.; Seeböck, P.; Waldstein, S.M.; Langs, G.; Schmidt-Erfurth, U. f-AnoGAN: Fast unsupervised anomaly detection with generative adversarial networks. Med. Image Anal. 2019, 54, 30–44. [Google Scholar] [CrossRef]
- Goyal, S.; Raghunathan, A.; Jain, M.; Simhadri, H.V.; Jain, P. DROCC: Deep Robust One-Class Classification. In Proceedings of the 37th International Conference on Machine Learning, ICML 2020, Virtual Event, 13–18 July 2020; Volume 119, pp. 3711–3721. [Google Scholar]
- Goodfellow, I.J.; Shlens, J.; Szegedy, C. Explaining and harnessing adversarial examples. arXiv 2014, arXiv:1412.6572. [Google Scholar]
- Wang, J.; Neskovic, P.; Cooper, L.N. Pattern classification via single spheres. In Proceedings of the International Conference on Discovery Science, Singapore, 8–11 of October 2005; pp. 241–252. [Google Scholar]
- Liu, Y.; Zheng, Y.F. Minimum enclosing and maximum excluding machine for pattern description and discrimination. In Proceedings of the 18th International Conference on Pattern Recognition (ICPR’06), Hong Kong, China, 20–24 August 2006; Volume 3, pp. 129–132. [Google Scholar]
- Görnitz, N.; Kloft, M.; Rieck, K.; Brefeld, U. Toward supervised anomaly detection. J. Artif. Intell. Res. 2013, 46, 235–262. [Google Scholar] [CrossRef]
- Hendrycks, D.; Mazeika, M.; Dietterich, T.G. Deep Anomaly Detection with Outlier Exposure. In Proceedings of the 7th International Conference on Learning Representations, ICLR 2019, New Orleans, LA, USA, 6–9 May 2019. [Google Scholar]
- Ruff, L.; Vandermeulen, R.A.; Görnitz, N.; Binder, A.; Müller, E.; Müller, K.; Kloft, M. Deep Semi-Supervised Anomaly Detection. In Proceedings of the 8th International Conference on Learning Representations, ICLR 2020, Addis Ababa, Ethiopia, 26–30 April 2020. [Google Scholar]
- Rubinstein, R. The Cross-Entropy Method for Combinatorial and Continuous Optimization. Methodol. Comput. Appl. Probab. 1999, 1, 127–190. [Google Scholar] [CrossRef]
- Park, J.; Sandberg, I.W. Approximation and Radial-Basis-Function Networks. Neural Comput. 1993, 5, 305–316. Available online: https://direct.mit.edu/neco/article-pdf/5/2/305/812543/neco.1993.5.2.305.pdf (accessed on 28 February 2022). [CrossRef]
- Kairouz, P.; McMahan, H.B.; Avent, B.; Bellet, A.; Bennis, M.; Bhagoji, A.N.; Bonawitz, K.; Charles, Z.; Cormode, G.; Cummings, R.; et al. Advances and Open Problems in Federated Learning. Found. Trends Mach. Learn. 2021, 14, 1–210. [Google Scholar] [CrossRef]
- Reddi, S.J.; Charles, Z.; Zaheer, M.; Garrett, Z.; Rush, K.; Konečný, J.; Kumar, S.; McMahan, H.B. Adaptive Federated Optimization. In Proceedings of the 9th International Conference on Learning Representations, ICLR 2021, Virtual Event, 3–7 May 2021. [Google Scholar]
- Duchi, J.C.; Hazan, E.; Singer, Y. Adaptive Subgradient Methods for Online Learning and Stochastic Optimization. J. Mach. Learn. Res. 2011, 12, 2121–2159. [Google Scholar]
- Kingma, D.P.; Ba, J. Adam: A Method for Stochastic Optimization. In Proceedings of the 3rd International Conference on Learning Representations, ICLR 2015, San Diego, CA, USA, 7–9 May 2015; Bengio, Y., LeCun, Y., Eds.; DBLP: Trier, Germany, 2015. [Google Scholar]
- Wang, J.; Liu, Q.; Liang, H.; Joshi, G.; Poor, H.V. Tackling the Objective Inconsistency Problem in Heterogeneous Federated Optimization. In Proceedings of the Advances in Neural Information Processing Systems 33: Annual Conference on Neural Information Processing Systems 2020, NeurIPS 2020, Virtual, 6–12 December 2020; Larochelle, H., Ranzato, M., Hadsell, R., Balcan, M., Lin, H., Eds.; Curran Associates, Inc.: Red Hook, NY, USA, 2020. [Google Scholar]
- Li, T.; Sahu, A.K.; Zaheer, M.; Sanjabi, M.; Talwalkar, A.; Smith, V. Federated Optimization in Heterogeneous Networks. In Proceedings of the Machine Learning and Systems 2020, MLSys 2020, Austin, TX, USA, 2–4 March 2020; Dhillon, I.S., Papailiopoulos, D.S., Sze, V., Eds.; DBLP: Trier, Germany, 2020. [Google Scholar]
- Liang, P.P.; Liu, T.; Liu, Z.; Salakhutdinov, R.; Morency, L. Think Locally, Act Globally: Federated Learning with Local and Global Representations. arXiv 2020, arXiv:2001.01523v3. Available online: http://arxiv.org/abs/2001.01523 (accessed on 8 February 2022).
- Shamsian, A.; Navon, A.; Fetaya, E.; Chechik, G. Personalized Federated Learning using Hypernetworks. In Proceedings of the 38th International Conference on Machine Learning, ICML 2021, Virtual Event, 18–24 July 2021; Meila, M., Zhang, T., Eds.; PMLR: Cambridge MA, USA, 2021; Volume 139, pp. 9489–9502. [Google Scholar]
- Nguyen, T.D.; Marchal, S.; Miettinen, M.; Fereidooni, H.; Asokan, N.; Sadeghi, A. DÏoT: A Federated Self-learning Anomaly Detection System for IoT. In Proceedings of the 39th IEEE International Conference on Distributed Computing Systems, ICDCS 2019, Dallas, TX, USA, 7–10 July 2019; pp. 756–767. [Google Scholar] [CrossRef] [Green Version]
- Zhao, Y.; Chen, J.; Wu, D.; Teng, J.; Yu, S. Multi-Task Network Anomaly Detection using Federated Learning. In Proceedings of the Tenth International Symposium on Information and Communication Technology, Ha Noi, Ha Long Bay, Vietnam, 4–6 December 2019; ACM: New York, NY, USA, 2019; pp. 273–279. [Google Scholar] [CrossRef]
- Wang, H.; Muñoz-González, L.; Eklund, D.; Raza, S. Non-IID data re-balancing at IoT edge with peer-to-peer federated learning for anomaly detection. In Proceedings of the WiSec’21: 14th ACM Conference on Security and Privacy in Wireless and Mobile Networks, Abu Dhabi, United Arab Emirates, 28 June–2 July 2021; Pöpper, C., Vanhoef, M., Batina, L., Mayrhofer, R., Eds.; ACM: New York, NY, USA, 2021; pp. 153–163. [Google Scholar] [CrossRef]
- Chawla, N.V.; Bowyer, K.W.; Hall, L.O.; Kegelmeyer, W.P. SMOTE: Synthetic Minority over-Sampling Technique. J. Artif. Int. Res. 2002, 16, 321–357. [Google Scholar] [CrossRef]
- Robbins, H.; Monro, S. A stochastic approximation method. Ann. Math. Stat. 1951, 22, 400–407. [Google Scholar] [CrossRef]
- LeCun, Y.; Cortes, C.; Burges, C. MNIST Handwritten Digit Database. ATT Labs [Online] 2010, 2. Available online: http://yann.lecun.com/exdb/mnist (accessed on 28 February 2022).
- Krizhevsky, A. Learning Multiple Layers of Features from Tiny Images. 2009. Available online: https://www.cs.toronto.edu/~kriz/cifar.html (accessed on 28 February 2022).
- Sharafaldin, I.; Lashkari, A.H.; Ghorbani, A.A. Toward Generating a New Intrusion Detection Dataset and Intrusion Traffic Characterization. In Proceedings of the 4th International Conference on Information Systems Security and Privacy, ICISSP 2018, Funchal; Madeira, Portugal, 22–24 January 2018, Mori, P., Furnell, S., Camp, O., Eds.; SciTePress: Setubal, Portugal, 2018; pp. 108–116. [Google Scholar] [CrossRef]
- Alsaedi, A.; Moustafa, N.; Tari, Z.; Mahmood, A.N.; Anwar, A. TON_IoT Telemetry Dataset: A New Generation Dataset of IoT and IIoT for Data-Driven Intrusion Detection Systems. IEEE Access 2020, 8, 165130–165150. [Google Scholar] [CrossRef]
- Lloyd, S. Least squares quantization in PCM. IEEE Trans. Inf. Theory 1982, 28, 129–137. [Google Scholar] [CrossRef] [Green Version]
- Powers, D.M. Evaluation: From precision, recall and F-measure to ROC, informedness, markedness and correlation. arXiv 2020, arXiv:2010.16061. [Google Scholar]
- Bradley, A.P. The use of the area under the ROC curve in the evaluation of machine learning algorithms. Pattern Recognit. 1997, 30, 1145–1159. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Y.; Chen, X.; Jin, L.; Wang, X.; Guo, D. Network Intrusion Detection: Based on Deep Hierarchical Network and Original Flow Data. IEEE Access 2019, 7, 37004–37016. [Google Scholar] [CrossRef]
Methods | Multi-Host Environment | Anomaly Detection | Hosts without Anomalous Data May Exist | Full Optimization of Decision Variables |
---|---|---|---|---|
FedNova [69] | √ | |||
FedProx [70] | √ | |||
FedOpt [66] | √ | |||
DeepSVDD [24] | √ | |||
DeepSAD [62] | √ | |||
DROCC [56] | √ | |||
DASVDD [52] | √ | |||
HSC [43] | √ | |||
DIoT [73] | √ | √ | ||
FHC(Ours) | √ | √ | √ | √ |
MNIST | CIFAR-10 | CICIDS-2017 | TON-IoT | ||
---|---|---|---|---|---|
Training | Normal | 414.6 | 360.9 | 2391.3 | 251.5 |
Abnormal | 39.8 | 37.0 | 244.7 | 26.6 | |
Validation | Normal | 103.3 | 90.3 | 599.4 | 63.3 |
Abnormal | 12.6 | 8.6 | 54.3 | 5.0 | |
Test | Normal | 1207.8 | 1048.8 | 6969.7 | 734.4 |
Abnormal | 120.8 | 104.9 | 672.3 | 73.5 |
Hyperparameters | MNIST | CIFAR-10 | CICIDS-2017 | TON-IoT |
---|---|---|---|---|
Type of networks | CNN | CNN | CNN-LSTM | CNN-LSTM |
Representation dimension | 32 | 128 | 128 | 32 |
Number of encoder layers | 3 | 4 | 5 | 5 |
Number of FC layers | 3 | |||
Batch size | 128 |
Methods | MNIST | CIFAR-10 | CICIDS-2017 | TON-IoT | ||||
---|---|---|---|---|---|---|---|---|
AUC | F1-Score | AUC | F1-score | AUC | F1-Score | AUC | F1-Score | |
DeepSVDD | 0.541 (0.24) | 0.034 (0.08) | 0.568 (0.05) | 0.047 (0.18) | 0.526 (0.07) | 0.207 (0.06) | 0.517 (0.08) | 0.033 (0.08) |
DeepSAD | 0.764 (0.16) | 0.166 (0.23) | 0.671 (0.07) | 0.097 (0.10) | 0.560 (0.08) | 0.123 (0.10) | 0.603 (0.08) | 0.097 (0.08) |
DROCC | 0.650 (0.12) | 0.005 (0.13) | 0.505 (0.02) | 0.000 (0.00) | 0.551 (0.08) | 0.167 (0.01) | 0.553 (0.06) | 0.167 (0.02) |
DASVDD | 0.817 (0.08) | 0.033 (0.09) | 0.563 (0.06) | 0.134 (0.07) | 0.500 (0.04) | 0.145 (0.06) | 0.507 (0.04) | 0.167 (0.02) |
HSC | 0.534 (0.20) | 0.213 (0.13) | 0.594 (0.07) | 0.161 (0.07) | 0.552 (0.08) | 0.204 (0.04) | 0.409 (0.10) | 0.103 (0.05) |
FHC | 0.884 (0.02) | 0.533 (0.03) | 0.688 (0.03) | 0.271 (0.03) | 0.699 (0.01) | 0.252 (0.01) | 0.627 (0.05) | 0.249 (0.05) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kwon, J.; Jung, B.; Lee, H.; Lee, S. Anomaly Detection in Multi-Host Environment Based on Federated Hypersphere Classifier. Electronics 2022, 11, 1529. https://doi.org/10.3390/electronics11101529
Kwon J, Jung B, Lee H, Lee S. Anomaly Detection in Multi-Host Environment Based on Federated Hypersphere Classifier. Electronics. 2022; 11(10):1529. https://doi.org/10.3390/electronics11101529
Chicago/Turabian StyleKwon, Junhyung, Byeonggil Jung, Hyungil Lee, and Sangkyun Lee. 2022. "Anomaly Detection in Multi-Host Environment Based on Federated Hypersphere Classifier" Electronics 11, no. 10: 1529. https://doi.org/10.3390/electronics11101529