A Wide-Band High-Efficiency Hybrid-Feed Antenna Array for mm-Wave Wireless Systems
<p>Geometry of the hybrid-feed 2 × 2-unit ME-dipole sub-array. (<b>a</b>) Perspective view. (<b>b</b>) Side view. (<b>c</b>) Exploded view.</p> "> Figure 2
<p>Details of the hybrid-feed 2 × 2-unit ME-dipole sub-array. (<b>a</b>) Radiation part. (<b>b</b>) Feeding part.</p> "> Figure 3
<p>Simulated surface current distribution of the hybrid-feed 2 × 2-unit ME-dipole sub-array. (<b>a</b>) t = 0, t = T/2. (<b>b</b>) t = T/4, t = 3T/4. (<b>c</b>) Equivalent magnetic currents and electric currents.</p> "> Figure 4
<p>E-field distribution of the feeding part. (<b>a</b>) t = 0 and t = T/2. (<b>b</b>) t = T/4 and t = 3T/4.</p> "> Figure 5
<p>Parameter analysis of the ME-dipole unit. (<b>a</b>) Length of the short-end patches. (<b>b</b>) Width of the short-end patches. (<b>c</b>) Gap width of the short-end patches. (<b>d</b>) Diameter of the pad.</p> "> Figure 6
<p>Performance of the original ME-dipole in [<a href="#B13-electronics-10-02383" class="html-bibr">13</a>] and modified ME-dipole in this paper. (<b>a</b>) |S11| curves. (<b>b</b>) Radiation patterns in the E-plane. (<b>c</b>) Radiation patterns in the H-plane.</p> "> Figure 7
<p>Parameter analysis and performance of the sub-array. (<b>a</b>) Length and width of the dielectric cavity. (<b>b</b>) Heights of the dielectric cavity and coaxial probes. (<b>c</b>) Spacing of the ME-dipoles. (<b>d</b>) Optimized performance of the sub-array.</p> "> Figure 8
<p>Geometry of the proposed RGWG H-T divider and simulated performance. (<b>a</b>) The RGWG H-T-junction. (<b>b</b>) Simulated S-parameters of the proposed RGWG H-T-junction.</p> "> Figure 9
<p>Configuration and simulated performance of the 1-to-16 RGWG corporate-feed network. (<b>a</b>) Configuration. (<b>b</b>) Simulated S-parameters.</p> "> Figure 10
<p>Configuration of the 8 × 8 ME-dipole antenna array.</p> "> Figure 11
<p>Vertical transition from RGWG to standard WR-30 RWG. (<b>a</b>) Top view. (<b>b</b>) Side view.</p> "> Figure 12
<p>Simulated S-parameters of the vertical transition.</p> "> Figure 13
<p>Photograph of the fabricated 8 × 8-unit ME-dipole antenna array. (<b>a</b>) Diffusion layers. (<b>b</b>) Assembled prototype.</p> "> Figure 14
<p>Measurement setup. (<b>a</b>) Block diagram of measurement setup. (<b>b</b>) Photograph of the measurement setup.</p> "> Figure 15
<p>Measured and simulated reflection coefficient and gain of the 8 × 8-unit hybrid-feed ME-dipoles antenna array.</p> "> Figure 16
<p>Measured and simulated radiation patterns of the 8 × 8-unit hybrid-feed ME-dipoles antenna array. (<b>a</b>) 27 GHz E-plane. (<b>b</b>) 27 GHz H-plane. (<b>c</b>) 29 GHz E-plane. (<b>d</b>) 29 GHz H-plane. (<b>e</b>) 31 GHz E-plane. (<b>f</b>) 31 GHz H-plane.</p> "> Figure 16 Cont.
<p>Measured and simulated radiation patterns of the 8 × 8-unit hybrid-feed ME-dipoles antenna array. (<b>a</b>) 27 GHz E-plane. (<b>b</b>) 27 GHz H-plane. (<b>c</b>) 29 GHz E-plane. (<b>d</b>) 29 GHz H-plane. (<b>e</b>) 31 GHz E-plane. (<b>f</b>) 31 GHz H-plane.</p> "> Figure 17
<p>Configuration of the 16 × 16-unit hybrid-feed ME-dipole antenna array.</p> "> Figure 18
<p>Simulated performance of the 16 × 16-unit hybrid-feed ME-dipole antenna array.</p> "> Figure 19
<p>Simulated radiation patterns of the 16 × 16-unit hybrid-feed ME-dipole antenna array. (<b>a</b>) 27 GHz. (<b>b</b>) 29 GHz. (<b>c</b>) 31 GHz.</p> "> Figure 19 Cont.
<p>Simulated radiation patterns of the 16 × 16-unit hybrid-feed ME-dipole antenna array. (<b>a</b>) 27 GHz. (<b>b</b>) 29 GHz. (<b>c</b>) 31 GHz.</p> ">
Abstract
:1. Introduction
2. The Hybrid-Feed 2 × 2 ME-Dipole Sub-Array
2.1. Configuration
2.2. Operation Mechanism
2.3. Performance and Parametric Analysis
3. Design and Measurement of the 8 × 8-Unit ME-Dipole Antenna Array
3.1. RGWG Feed Network Design and Array Configuration
3.2. Measurement of the 8 × 8-Unit ME-Dipole Antenna Array
4. Analysis and Comparison of the Hybrid-Feed ME-Dipole Antenna Array
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Hong, W.; Jiang, Z.H.; Yu, C.; Zhou, J.; Chen, P.; Yu, Z.; Zhang, H.; Yang, B.; Pang, X.; Jiang, M.; et al. Multibeam antenna technologies for 5G wireless communications. IEEE Trans. Antennas Propag. 2017, 65, 6231–6249. [Google Scholar] [CrossRef]
- Hasch, J.; Topak, E.; Schnabel, R.; Zwick, T.; Weigel, R.; Waldschmidt, C. Millimeter-Wave Technology for Automotive Radar Sensors in the 77 GHz Frequency Band. IEEE Trans. Microw. Theory Tech. 2012, 60, 845–860. [Google Scholar] [CrossRef]
- Zankl, D.; Schuster, S.; Feger, R.; Stelzer, A.; Scheiblhofer, S.; Schmid, C.M.; Ossberger, G.; Stegfellner, L.; Lengauer, G.; Feilmayr, C.; et al. BLASTDAR—A Large Radar Sensor Array System for Blast Furnace Burden Surface Imaging. IEEE Sens. J. 2015, 15, 5893–5909. [Google Scholar] [CrossRef]
- Sohrabi, F.; Yu, W. Hybrid Analog and Digital Beamforming for mmWave OFDM Large-Scale Antenna Arrays. IEEE J. Sel. Areas Commun. 2017, 35, 1432–1443. [Google Scholar] [CrossRef] [Green Version]
- Wu, Y.W.; Hao, Z.C.; Miao, Z.W. A Planar W-Band Large-Scale High-Gain Substrate-Integrated Waveguide Slot Array. IEEE Trans. Antennas Propag. 2020, 68, 6429–6434. [Google Scholar] [CrossRef]
- Jiang, X.; Jia, F.; Cao, Y.; Huang, P.; Yu, J.; Wang, X.; Shi, Y. Ka-Band 8 × 8 Low-Sidelobe Slot Antenna Array Using a 1-to-64 High-Efficiency Network Designed by New Printed RGW Technology. IEEE Antennas Wirel. Propag. Lett. 2019, 18, 1248–1252. [Google Scholar] [CrossRef]
- Qi, Z.; Li, X.; Xiao, J.; Zhu, H. Low-Cost Empty Substrate Integrated Waveguide Slot Arrays for Millimeter-Wave Applications. IEEE Antennas Wirel. Propag. Lett. 2019, 18, 1021–1025. [Google Scholar] [CrossRef]
- Liu, B.; Zhao, R.; Ma, Y.; Guo, Z.; Wei, X.; Xing, W.; Wang, Y. A 45° Linearly Polarized Slot Array Antenna With Substrate Integrated Coaxial Line Technique. IEEE Antennas Wirel. Propag. Lett. 2018, 17, 339–342. [Google Scholar] [CrossRef]
- Luk, K.M.; Hang, W. A new wideband unidirectional antenna element. Int. J. Microw. Opt. Technol. 2006, 1, 35–44. [Google Scholar]
- Li, Y.; Luk, K.M. A 60-GHz Wideband Circularly Polarized Aperture-Coupled Magneto-Electric Dipole Antenna Array. IEEE Trans. Antennas Propag. 2016, 64, 1325–1333. [Google Scholar] [CrossRef]
- Li, Y.; Wang, C.; Guo, Y.X. A Ka-Band Wideband Dual-Polarized Magnetoelectric Dipole Antenna Array on LTCC. IEEE Trans. Antennas Propag. 2020, 68, 4985–4990. [Google Scholar] [CrossRef]
- Sun, J.; Li, A.; Luk, K.-M. A High-Gain Millimeter-Wave Magnetoelectric Dipole Array with Packaged Microstrip Line Feed Network. IEEE Antennas Wirel. Propag. Lett. 2020, 19, 1669–1673. [Google Scholar] [CrossRef]
- Ng, K.B.; Wong, H.; So, K.K.; Chan, C.H.; Luk, K.M. 60 GHz Plated Through Hole Printed Magneto-Electric Dipole Antenna. IEEE Trans. Antennas Propag. 2012, 60, 3129–3136. [Google Scholar] [CrossRef]
- Kim, D.; Zhang, M.; Hirokawa, J.; Ando, M. Design and Fabrication of a Dual-Polarization Waveguide Slot Array Antenna with High Isolation and High Antenna Efficiency for the 60 GHz Band. IEEE Trans. Antennas Propag. 2014, 62, 3019–3027. [Google Scholar] [CrossRef]
- Tomura, T.; Hirokawa, J.; Hirano, T.; Ando, M. A 45 degrees Linearly Polarized Hollow-Waveguide16 × 16-Slot Array Antenna Covering 71-86 GHz Band. IEEE Trans. Antennas Propag. 2014, 62, 5061–5067. [Google Scholar] [CrossRef]
- Kildal, P.-S.; Alfonso, E.; Valero-Nogueira, A.; Rajo-Iglesias, E. Local Metamaterial-Based Waveguides in Gaps between Parallel Metal Plates. IEEE Antennas Wirel. Propag. Lett. 2008, 8, 84–87. [Google Scholar] [CrossRef]
- Ferrando-Rocher, M.; Herranz-Herruzo, J.I.; Valero-Nogueira, A.; Bernardo-Clemente, B.; Herranz, J.I.; Bernardo, B. Full-Metal K-Ka Dual-Band Shared-Aperture Array Antenna Fed by Combined Ridge-Groove Gap Waveguide. IEEE Antennas Wirel. Propag. Lett. 2019, 18, 1463–1467. [Google Scholar] [CrossRef]
- Ferrando-Rocher, M.; Herranz-Herruzo, J.I.; Valero-Nogueira, A.; Vila-Jimenez, A. Single-Layer Circularly-Polarized Ka-Band Antenna Using Gap Waveguide Technology. IEEE Trans. Antennas Propag. 2018, 66, 3837–3845. [Google Scholar] [CrossRef]
- Sorkherizi, M.S.; Dadgarpour, A.; Kishk, A. Planar High-efficiency Antenna Array Using New Printed Ridge Gap Waveguide Technology. IEEE Trans. Antennas Propag. 2017, 65, 3772–3776. [Google Scholar] [CrossRef]
- Cao, B.; Shi, Y.; Feng, W. W-Band LTCC Circularly Polarized Antenna Array With Mixed U-Type Substrate Integrated Waveguide and Ridge Gap Waveguide Feeding Networks. IEEE Antennas Wirel. Propag. Lett. 2019, 18, 2399–2403. [Google Scholar] [CrossRef]
- Cao, J.; Wang, H.; Mou, S.; Soothar, P.; Zhou, J. An Air Cavity-Fed Circularly Polarized Magneto-Electric Dipole Antenna Array With Gap Waveguide Technology for mm-Wave Applications. IEEE Trans. Antennas Propag. 2019, 67, 6211–6216. [Google Scholar] [CrossRef]
- Li, X.; Xiao, J.; Qi, Z.; Zhu, H. Broadband and High-Gain SIW-Fed Antenna Array for 5G Applications. IEEE Access 2018, 6, 56282–56289. [Google Scholar] [CrossRef]
- Ding, Z.-F.; Xiao, S.; Tang, M.-C.; Liu, C.; Shaoqiu, X. A Compact Highly Efficient Hybrid Antenna Array for W-Band Applications. IEEE Antennas Wirel. Propag. Lett. 2018, 17, 1547–1551. [Google Scholar] [CrossRef]
- Saeidi-Manesh, H.; Zhang, G. High-Isolation, Low Cross-Polarization, Dual-Polarization, Hybrid Feed Microstrip Patch Array Antenna for MPAR Application. IEEE Trans. Antennas Propag. 2018, 66, 2326–2332. [Google Scholar] [CrossRef]
Parameter | Value | Parameter | Value |
---|---|---|---|
wd | 0.85 (0.12 λg) | dc | 0.4 (0.06 λg) |
hr | 1.6 (0.22 λg) | hc | 1.2 (0.17 λg) |
din | 0.6 (0.08 λg) | dpat | 1.7 (0.24 λg) |
dout | 1.6 (0.22 λg) | hp | 0.8 (0.11 λg) |
wp | 1.8 (0.25 λg) | wl | 0.2 (0.03 λg) |
lp | 2.9 (0.4 λg) | wf | 0.28 (0.04 λg) |
ws | 1 | xd | 3.6 (0.5 λg) |
ls | 6.5 | yd | 3.6 (0.5 λg) |
wc | 11 (1.54 λg) | a | 3.6 |
lc | 12 (1.7 λg) | b | 2.1 |
hs | 1.2 | ain | 1.6 |
hg | 2 | xm | 0.7 |
lg | 5 | w | 0.8 |
d | 1.6 | dr | 1 |
Parameter | Value | Parameter | Value |
---|---|---|---|
ar | 7.112 | br | 3.556 |
ai2 | 1 | bi2 | 2 |
ai1 | 0.8 | li2 | 5.1 |
bi1 | 1.9 | G | 0.1 |
d | 1.6 | W | 0.8 |
wt | 0.6 | li | 2.3 |
Ref. | Bandwidth (|S11| < −10 dB) | Num. of Unit | Array Size (λ0) | Fabrication Process | Max. Gain | Max. Rad. Efficiency | Aperture Efficiency * | XPD. (dB) | Cost |
---|---|---|---|---|---|---|---|---|---|
[6] | 16% 34–40.1 GHz | 8 × 8 | 6.4 × 6.4 × 0.17 | PCB | 24 dBi | 41.7% | 48.8% | 30 | Low |
[8] | 2.6% 33.95–34.86 GHz | 5 × 6 | 5.07 × 3.82 × 0.1 | PCB | 17.09 dBi | 22% | 21.02% | 26.8 | Low |
[10] | 18% 55.4–66.5 GHz | 8 × 8 | 6.12 × 6.8 × 0.5 | Multi-layer PCB | 26.1 dBi | 70% | 95.8% | 20 | Med. |
[11] | 45% 25.5–40.2 GHz | 4 × 4 | 2 × 2 × 0.12 | LTCC | 16.1 dBi | 83% | 81% | 15 | High |
[15] | 20% 71–86 GHz | 16 × 16 | 15.7 × 16 × 0.8 | Diffusion bonding | 32.9 dBi | 86.6% | 61.7% | 30 | High |
[18] | 3.6% 29.6–30.7 GHz | 4 × 4 | 5.3 × 5.3 × 1.1 | Machining | 22.4 dBi | 99% | 49.2% | 13 | Med. |
[19] | 16.5% 28.8–34 GHz | 4 × 4 | 3.5 × 3.4 × 0.3 | PCB | 21.2 dBi | 70% | 88% | 35 | Low |
[21] | 16.4% 86.7–102.2 GHz | 4 × 8 | 11.8 × 11.4 × 2.2 | PCB + machining | 23 dBi | N.A. | 11.8% | 15 | Med. |
This work | 16.4% 26.05–31.15 GHz | 8 × 8 | 5.4 × 5.4 × 0.6 | PCB + machining | 25 dBi | 85% | 86.2% | 34 | Med. |
This work | 13.8% ** 27.1–31.1 GHz | 16 × 16 | 10.8 × 10.8 × 0.6 | PCB + machining | 31 dBi ** | 83.2% ** | 85.8% ** | 37 | Med. |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tan, W.; Xiao, Y.; Li, C.; Zhu, K.; Luo, H.; Sun, H. A Wide-Band High-Efficiency Hybrid-Feed Antenna Array for mm-Wave Wireless Systems. Electronics 2021, 10, 2383. https://doi.org/10.3390/electronics10192383
Tan W, Xiao Y, Li C, Zhu K, Luo H, Sun H. A Wide-Band High-Efficiency Hybrid-Feed Antenna Array for mm-Wave Wireless Systems. Electronics. 2021; 10(19):2383. https://doi.org/10.3390/electronics10192383
Chicago/Turabian StyleTan, Wenhao, Yu Xiao, Cong Li, Kaiqiang Zhu, Hao Luo, and Houjun Sun. 2021. "A Wide-Band High-Efficiency Hybrid-Feed Antenna Array for mm-Wave Wireless Systems" Electronics 10, no. 19: 2383. https://doi.org/10.3390/electronics10192383
APA StyleTan, W., Xiao, Y., Li, C., Zhu, K., Luo, H., & Sun, H. (2021). A Wide-Band High-Efficiency Hybrid-Feed Antenna Array for mm-Wave Wireless Systems. Electronics, 10(19), 2383. https://doi.org/10.3390/electronics10192383