Study on the Dynamic Combustion Characteristics of a Staged High-Temperature Rise Combustor
<p>Schematic of the combustion chamber: (<b>a</b>) combustion chamber; (<b>b</b>) triple swirler; (<b>c</b>) midplane.</p> "> Figure 2
<p>Grid independence verification.</p> "> Figure 3
<p>Mesh distributions: (<b>a</b>) combustor; (<b>b</b>) swirler.</p> "> Figure 4
<p>Courant number distribution.</p> "> Figure 5
<p>Percentage of resolved turbulent kinetic energy.</p> "> Figure 6
<p>Kinetic energy spectra.</p> "> Figure 7
<p>Comparison of experimental results and simulation results of average velocity field.</p> "> Figure 8
<p>Time-averaged velocity field (Case0): (<b>a</b>) axial velocity; (<b>b</b>) radial velocity.</p> "> Figure 9
<p>Axial velocity distribution under temperature fluctuation: (<b>a</b>) axial distribution; (<b>b</b>) radial distribution.</p> "> Figure 10
<p>Time-averaged temperature distribution in the midplane of the combustor (Case0).</p> "> Figure 11
<p>Comparison of time-averaged RTDF of combustion chamber outlet section.</p> "> Figure 12
<p>Instantaneous temperature evolution in the middle section of the combustor under inlet temperature fluctuation.</p> "> Figure 13
<p>Comparison of axial distribution of temperature fluctuation under different working conditions: (<b>a</b>) temperature pulsation; (<b>b</b>) air pulsation; (<b>c</b>) fuel pulsation.</p> "> Figure 14
<p>Frequency domain diagram of heat release rate pulsation under different working conditions: (<b>a</b>) temperature pulsation; (<b>b</b>) air pulsation; (<b>c</b>) fuel pulsation.</p> "> Figure 15
<p>Comparison of inlet parameters and outlet average temperature of combustion chamber with time under different operating conditions: (<b>a</b>) temperature pulsation; (<b>b</b>) air pulsation; (<b>c</b>) fuel pulsation.</p> "> Figure 16
<p>The outlet time-averaged temperature distribution under different operating conditions.</p> "> Figure 17
<p>Distribution of DOTDF.</p> ">
Abstract
:1. Introduction
2. Computational Models and Methods
2.1. Physical Model and Meshing
2.2. Calculation Methods and Operating Conditions
2.3. Model Evaluation
3. Results
3.1. Time-Averaged Analysis
3.2. Instantaneous Temperature Field Analysis
3.3. Analysis of Outlet Temperature Fluctuation
4. Conclusions
- (1)
- The steady-state time-averaged results of each working condition were analyzed. The three-swirl staged combustion chamber forms a large, low-speed recirculation zone that enhances flame stability. The flow field and temperature distribution for all operating conditions show minimal differences, indicating that, on a large time scale, small pulsations of the inlet parameters have no significant impact on the steady-state, time-averaged performance. Furthermore, as the pulsation intensity of the inlet parameters increases, the recirculation zone tends to expand horizontally.
- (2)
- The transient temperature field results for each operating condition were analyzed, revealing a similar temperature distribution across all conditions. Near the outlet of the cyclone, the flame root region exhibits pronounced unsteady flame characteristics. Fluctuations in the inlet parameters lead to an increase in the temperature variations in this flame root area.
- (3)
- The outlet temperature results for each operating condition were analyzed. It was observed that, when the inlet pulsation amplitude is small, the inherent combustion instability within the combustion chamber amplifies the inlet pulsations. As the inlet pulsation amplitude increases, the influence of inlet parameter fluctuations on the outlet pulsations becomes more pronounced, suggesting that inlet pulsations have a suppressive effect on the inherent combustion instability of the chamber. Analysis of the outlet dynamic OTDF reveals that fluctuations in the inlet parameters can mitigate the fluctuations in the outlet hot spot temperature.
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Wang, B.; Hui, X.; Li, F.; Cheng, M.; Zhang, M.; Yang, J. Research status and key technology analysis of dynamic combustion in aero-engine main combustor. J. Aerosp. Power 2022, 37, 2479–2487. [Google Scholar]
- Kapucu, M.; Kok, J.B.W.; Pozarlik, A.K. Experimental investigation of thermoacoustics and high-frequency combustion dynamics with band stop characteristics in a pressurized combustor. Energies 2024, 17, 1680. [Google Scholar] [CrossRef]
- Tang, A.; Cai, T.; Li, C.; Zhou, C.; Gao, L. Flame visualization and spectral analysis of combustion instability in a premixed methane/air-fueled micro-combustor. Energy 2024, 294, 130793. [Google Scholar] [CrossRef]
- Hwang, D.; Ahn, K. Experimental Study on Dynamic Combustion Characteristics in Swirl-Stabilized Combustors. Energies 2021, 14, 1609. [Google Scholar] [CrossRef]
- Jia, D.; Pan, Y.; Wang, N.; Liu, C.; Yang, K. Combustion Modes and Unsteady Characteristics during the Condition Transition of a Scramjet Combustor. Energies 2021, 14, 2522. [Google Scholar] [CrossRef]
- Fu, C.; Wang, X.; Wu, Y.; Gao, Y. 20 kHz CH2O- and SO2-PLIF/OH*-chemiluminescence measurements on blowoff in a non-premixed swirling flame under fuel mass flow rate fluctuations. Appl. Sci. 2024, 14, 9419. [Google Scholar] [CrossRef]
- Sthr, M.; Boxx, I.; Carter, C.; Meier, W. Dynamics of lean blowout of a swirl-stabilized flame in a gas turbine model combustor. Proc. Combust. Inst. 2011, 33, 2953–2960. [Google Scholar] [CrossRef]
- Slabaugh, C.; Boxx, I.; Werner, S.; Meier, W.; Lucht, R. High-speed measurements in partially-premixed swirl flames at elevated temperature and pressure. In Proceedings of the AIAA Aerospace Sciences Meeting 2015, Kissimmee, FL, USA, 5–9 January 2015. [Google Scholar]
- Zhao, Q.; Yang, J.; Liu, C.; Liu, F.; Wang, S.; Mu, Y.; Xu, G.; Zhu, J. Experimental investigation on lean blowout dynamics of spray flame in a multi-swirl staged combustor. Therm. Sci. Eng. Prog. 2023, 37, 101551. [Google Scholar] [CrossRef]
- Broda, J.; Seo, S.; Santoro, R.; Shirhattikar, G.; Yang, V. An experimental study of combustion dynamics of a premixed swirl injector. Symp. Int. Combust. 1998, 27, 1849–1856. [Google Scholar] [CrossRef]
- Guiberti, T.; Boyette, W.; Masri, A.; Roberts, W. An experimental study of turbulent lifted flames at elevated pressures. Combust. Flame 2019, 203, 301–312. [Google Scholar] [CrossRef]
- Guiberti, T.; Boyette, W.; Roberts, W. Height of turbulent non-premixed jet flames at elevated pressure. Combust. Flame 2020, 220, 407–409. [Google Scholar] [CrossRef]
- Boudier, G.; Gicquel, L.; Poinsot, T.; Bissières, D.; Institute, C. Comparison of LES, RANS and experiments in an aeronautical gas turbine combustion chamber. Proc. Combust. Inst. 2007, 31, 3075–3082. [Google Scholar] [CrossRef]
- Han, X.; Krajnović, S. An efficient very large eddy simulation model for simulation of turbulent flow. Int. J. Numer. Methods Fluids 2013, 71, 1341–1360. [Google Scholar] [CrossRef]
- James, S.; Zhu, J.; Anand, M. Large-eddy simulations as a design tool for gas turbine combustion systems. AIAA J. 2006, 44, 674–686. [Google Scholar] [CrossRef]
- Kawai, S.; Lele, S. Large-eddy simulation of jet mixing in supersonic crossflows. AIAA J. 2010, 48, 2063–2083. [Google Scholar] [CrossRef]
- Wang, S.; Yang, V.; Hsiao, G.; Hsieh, S.; Mongia, H. Large-eddy simulations of gas-turbine swirl injector flow dynamics. J. Fluid Mech. 2007, 583, 99–122. [Google Scholar] [CrossRef]
- Xu, J.; Ma, T.; Huang, D.; Wang, D.; Meng, H. Large eddy simulations of dual swirl injection and combustion of methane-air under different pressures. J. Propuls. Technol. 2024, 1–24. [Google Scholar] [CrossRef]
- Meng, N.; Li, F. Large eddy simulations of unsteady non-reaction flow characteristics using different geometrical combustor models. Aerosp. Sci. Technol. 2022, 126, 107638. [Google Scholar] [CrossRef]
- Lv, G.; Liv, X.; Zhang, Z.; Li, S.; Gao, Y. Influences of pilot-stage equivalence ratio on dynamic combustion characteristics in a co-staged combustor. J. Eng. Thermophys. 2022, 43, 2163–2169. [Google Scholar]
- Chen, Z.; Langella, I.; Swaminathan, N.; Stöhr, M.; Meier, W.; Kolla, H. Large eddy simulation of a dual swirl gas turbine combustor: Flame/flow structures and stabilisation under thermoacoustically stable and unstable conditions. Combust. Flame 2019, 203, 279–300. [Google Scholar] [CrossRef]
- Yin, R.; Xue, J.; Wang, J.; Li, X. Reduced mechanism for n-Decane combustion and its application in numerical simulation of aeroengine combustor. J. Propuls. Technol. 2021, 42, 1876–1882. [Google Scholar]
- Pope, S. Turbulent flows. Technology 2001, 12, 2020–2021. [Google Scholar]
- Batchelor, G. The Theory of Homogeneous Turbulence; Cambridge University Press: Cambridge, UK, 1953. [Google Scholar]
- Zhao, Q.; Yang, J.; Liu, C.; Liu, F.; Wang, S.; Yong, M.; Gang, X.; Zhu, J. Lean blowout characteristics of spray flame in a multi-swirl staged combustor under different fuel decreasing rates. Chin. J. Aeronaut. 2022, 35, 130–143. [Google Scholar] [CrossRef]
Swirler Vane Angle | Swirl Number | Air Split Ratio | |
---|---|---|---|
1st swirler | 35° | 0.59 | 13.1% |
2nd swirler | −45° | 0.86 | 29.8% |
3rd swirler | −50° | 1.06 | 57.1% |
Case | P/(kpa) | T/(K) | ma/(kg/s) | mf/(kg/s) |
---|---|---|---|---|
0 | 500 | 600 | 0.739 | 0.02733 |
1 | 500 | 600 ± 6 | 0.739 | 0.02733 |
2 | 500 | 600 ± 12 | 0.739 | 0.02733 |
3 | 500 | 600 ± 18 | 0.739 | 0.02733 |
4 | 500 | 600 | 0.739 ± 0.0074 | 0.02733 |
5 | 500 | 600 | 0.739 ± 0.0148 | 0.02733 |
6 | 500 | 600 | 0.739 ± 0.0222 | 0.02733 |
7 | 500 | 600 | 0.739 | 0.02733 ± 0.000273 |
8 | 500 | 600 | 0.739 | 0.02733 ± 0.000546 |
9 | 500 | 600 | 0.739 | 0.02733 ± 0.000819 |
Case | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 |
---|---|---|---|---|---|---|---|---|---|---|
Length/mm | 66 | 64 | 64 | 68 | 67 | 62 | 67 | 63 | 64 | 66 |
Width/mm | 65 | 64 | 62 | 62 | 64 | 63 | 62 | 61 | 65 | 56 |
Case | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 |
---|---|---|---|---|---|---|---|---|---|---|
RTDF | 0.10 | 0.10 | 0.10 | 0.10 | 0.11 | 0.11 | 0.11 | 0.10 | 0.12 | 0.09 |
OTDF | 0.17 | 0.20 | 0.19 | 0.18 | 0.20 | 0.20 | 0.21 | 0.16 | 0.18 | 0.16 |
Case | ||
---|---|---|
1 | 1.51 | 0.92 π |
2 | 1.37 | 0.45 π |
3 | 0.76 | 0.48 π |
4 | 1.68 | 0.44 π |
5 | 1.12 | 0.62 π |
6 | 0.99 | 0.25 π |
7 | 1.77 | 0.99 π |
8 | 1.63 | 0.80 π |
9 | 1.56 | 0.82 π |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, M.; Yang, J.; Liu, C.; Liu, F.; Wang, K.; Ruan, C.; Mu, Y.; Xu, G. Study on the Dynamic Combustion Characteristics of a Staged High-Temperature Rise Combustor. Energies 2025, 18, 662. https://doi.org/10.3390/en18030662
Li M, Yang J, Liu C, Liu F, Wang K, Ruan C, Mu Y, Xu G. Study on the Dynamic Combustion Characteristics of a Staged High-Temperature Rise Combustor. Energies. 2025; 18(3):662. https://doi.org/10.3390/en18030662
Chicago/Turabian StyleLi, Meng, Jinhu Yang, Cunxi Liu, Fuqiang Liu, Kaixing Wang, Changlong Ruan, Yong Mu, and Gang Xu. 2025. "Study on the Dynamic Combustion Characteristics of a Staged High-Temperature Rise Combustor" Energies 18, no. 3: 662. https://doi.org/10.3390/en18030662
APA StyleLi, M., Yang, J., Liu, C., Liu, F., Wang, K., Ruan, C., Mu, Y., & Xu, G. (2025). Study on the Dynamic Combustion Characteristics of a Staged High-Temperature Rise Combustor. Energies, 18(3), 662. https://doi.org/10.3390/en18030662