The Concept of Spatial Reliability Across Renewable Energy Systems—An Application to Decentralized Solar PV Energy
<p>Map of Greece showing the 40 examined locations (source: Google Earth map, processed by the authors).</p> "> Figure 2
<p>Fitting of the Kumaraswamy distribution function (Equation (10)) to mean annual capacity factors across the 40 points of interest in Greece.</p> "> Figure 3
<p>Adjusted theoretical probability curves of the capacity factor for various degrees of PV spatial dispersion (source: created by the authors).</p> "> Figure 4
<p>(<b>a</b>) Fitting of the Gompertz curve to the empirically derived CF values for 80% reliability; (<b>b</b>) CF curves for different reliability degrees (source: created by the authors).</p> ">
Abstract
:1. Introduction
2. The Rationale of Optimal Solar PV Spatial Distribution
3. Reliability Standards Within Energy Systems
3.1. Generic Definitions
3.2. Energy Reliability
4. Introducing the Concept of Spatial Reliability
5. Proof of Concept: Distributed PV Energy in Greece
5.1. Study Area and Data
5.2. Methodology
5.3. Baseline Scenario
5.4. Monte Carlo Simulation of Distributed Settings
5.5. Derivation of Scale-Reliability-Yield Laws for Solar Energy
6. Discussion
7. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
Location | Latitude (φ) | Longitude (λ) | Mean Solar Radiation (W/m2) | Mean Temperature (°C) | Mean Annual Capacity Factor |
---|---|---|---|---|---|
Ioannina | 39°35′06″ N | 20°55′56″ E | 180.33 | 11.84 | 0.178 |
Kastoria | 40°28′26″ N | 21°12′07″ E | 179.81 | 12.00 | 0.177 |
Tripoli | 37°29′28″ N | 22°24′32″ E | 198.15 | 13.30 | 0.195 |
Milos | 36°41′30″ N | 24°28′31″ E | 211.21 | 18.74 | 0.211 |
Kerkira | 39°37′57″ N | 19°47′47″ E | 196.89 | 17.20 | 0.195 |
Crete | 35°02′33″ N | 24°59′22″ E | 219.50 | 18.28 | 0.212 |
Kavala | 40°58′05″ N | 24°49′12″ E | 187.39 | 15.29 | 0.186 |
Larissa | 39°33′23″ N | 22°31′40″ E | 188.88 | 16.60 | 0.181 |
Leivadia | 38°26′42″ N | 23°01′26″ E | 186.92 | 16.23 | 0.180 |
Lesvos | 39°07′34″ N | 26°19′13″ E | 194.72 | 16.87 | 0.190 |
Agrinio | 38°36′34″ N | 21°20′24″ E | 198.42 | 16.76 | 0.192 |
Thessaloniki | 40°35′49″ N | 22°48′02″ E | 186.10 | 17.08 | 0.180 |
Gytheio | 36°49′24″ N | 22°41′47″ E | 210.66 | 16.36 | 0.203 |
Zakynthos | 37°45′52″ N | 20°50′53″ E | 201.22 | 18.47 | 0.201 |
Rhodes | 36°21′43″ N | 27°58′48″ E | 216.68 | 18.70 | 0.213 |
Skyros | 38°57′38″ N | 24°29′41″ E | 195.26 | 17.48 | 0.194 |
Trikala | 39°29′36″ N | 21°53′08″ E | 187.91 | 15.76 | 0.180 |
Evros | 40°50′31″ N | 25°59′50″ E | 187.53 | 14.74 | 0.182 |
Athens | 37°58′25″ N | 23°47′14″ E | 201.33 | 18.00 | 0.193 |
Mykonos | 37°25′44″ N | 25°19′47″ E | 210.53 | 18.25 | 0.210 |
Patra | 38°07′40″ N | 21°27′16″ E | 206.68 | 17.05 | 0.200 |
Serres | 40°58′22″ N | 23°37′29″ E | 184.58 | 15.97 | 0.177 |
Aridaia | 40°58′17″ N | 22°04′41″ E | 180.90 | 15.37 | 0.174 |
Lamia | 38°51′44″ N | 22°31′16″ E | 192.20 | 17.31 | 0.183 |
Chios | 38°18′14″ N | 26°07′53″ E | 208.94 | 17.91 | 0.207 |
Olympia | 37°44′35″ N | 21°45′27″ E | 198.47 | 15.49 | 0.192 |
Kalamata | 37°04′02″ N | 21°58′35″ E | 203.65 | 18.46 | 0.196 |
Corinth | 37°55′09″ N | 22°53′32″ E | 204.27 | 16.76 | 0.198 |
Kozani | 40°19′56″ N | 21°58′12″ E | 183.35 | 13.26 | 0.180 |
Diakopto | 38°10′11″ N | 22°17′05″ E | 198.57 | 12.95 | 0.197 |
Grevena | 40°02′44″ N | 21°25′25″ E | 175.52 | 13.05 | 0.172 |
Karpenisi | 38°56′53″ N | 21°48′12″ E | 176.31 | 11.61 | 0.175 |
Chalkidiki | 40°03′51″ N | 23°22′09″ E | 189.14 | 17.02 | 0.187 |
Drama | 41°28′06″ N | 24°14′06″ E | 170.28 | 10.62 | 0.169 |
Orestiada | 41°30′14″ N | 26°30′48″ E | 179.18 | 14.71 | 0.173 |
Arta | 39°05′31″ N | 20°59′42″ E | 197.75 | 16.90 | 0.191 |
Anafi | 36°21′47″ N | 25°46′09″ E | 214.57 | 18.92 | 0.214 |
Patmos | 37°18′36″ N | 26°32′53″ E | 213.73 | 18.55 | 0.213 |
Limnos | 39°54′57″ N | 25°10′38″ E | 196.53 | 16.87 | 0.195 |
Euvoia | 38°33′09″ N | 23°45′03″ E | 195.24 | 16.19 | 0.190 |
References
- Jing, J.; Zhou, Y.; Wang, L.; Liu, Y.; Wang, D. The spatial distribution of China’s solar energy resources and the optimum tilt angle and power generation potential of PV systems. Energy Convers. Manag. 2023, 283, 116912. [Google Scholar] [CrossRef]
- IRENA. Renewable Capacity Statistics 2024; International Renewable Energy Agency: Abu Dhabi, United Arab Emirates, 2024; Available online: https://www.irena.org/Publications/2024/Mar/Renewable-capacity-statistics-2024 (accessed on 11 October 2024).
- Mouhib, E.; Micheli, L.; Almonacid, F.M.; Fernández, E.F. Overview of the Fundamentals and Applications of Bifacial Photovoltaic Technology: Agrivoltaics and Aquavoltaics. Energies 2022, 15, 8777. [Google Scholar] [CrossRef]
- Li, G.; Li, M.; Taylor, R.; Hao, Y.; Besagni, G.; Markides, C.N. Solar energy utilisation: Current status and roll-out potential. Appl. Therm. Eng. 2022, 209, 118285. [Google Scholar] [CrossRef]
- Tapia, M.; Heinemann, D.; Ballari, D.; Zondervan, E. Spatio-temporal characterization of long-term solar resource using spatial functional data analysis: Understanding the variability and complementarity of global horizontal irradiance in Ecuador. Renew. Energy 2022, 189, 1176–1193. [Google Scholar] [CrossRef]
- Rodríguez-Benítez, F.J.; Arbizu-Barrena, C.; Santos-Alamillos, F.J.; Tovar-Pescador, J.; Pozo-Vázquez, D. Analysis of the intra-day solar resource variability in the Iberian Peninsula. Sol. Energy 2018, 171, 374–387. [Google Scholar] [CrossRef]
- Hofierka, J.; Zlocha, M. A New 3-D Solar Radiation Model for 3-D City Models. Trans. GIS 2012, 16, 681–690. [Google Scholar] [CrossRef]
- Mamassis, N.; Efstratiadis, A.; Apostolidou, I.-G. Topography-adjusted solar radiation indices and their importance in hydrology. Hydrol. Sci. J. 2012, 57, 756–775. [Google Scholar] [CrossRef]
- Hofierka, J.; Kaňuk, J.; Gallay, M. The spatial distribution of photovoltaic power plants in relation to solar resource potential: The case of the Czech Republic and Slovakia. Morav. Geogr. Rep. 2014, 22, 26–33. [Google Scholar] [CrossRef]
- Wang, L.; Lu, Y.; Wang, Z.; Li, H.; Zhang, M. Hourly solar radiation estimation and uncertainty quantification using hybrid models. Renew. Sustain. Energy Rev. 2024, 202, 114727. [Google Scholar] [CrossRef]
- Dubey, S.; Sarvaiya, J.N.; Seshadri, B. Temperature Dependent Photovoltaic (PV) Efficiency and Its Effect on PV Production in the World—A Review. Energy Procedia 2013, 33, 311–321. [Google Scholar] [CrossRef]
- Hassan, Q.; Jaszczur, M.; Przenzak, E.; Abdulateef, J. The PV cell temperature effect on the energy production and module efficiency. Contemp. Probl. Power Eng. Environ. Prot. 2016, 33, 1. [Google Scholar]
- Mekhilef, S.; Saidur, R.; Kamalisarvestani, M. Effect of dust, humidity and air velocity on efficiency of photovoltaic cells. Renew. Sustain. Energy Rev. 2012, 16, 2920–2925. [Google Scholar] [CrossRef]
- Hamdi, R.T.; Hafad, S.A.; Kazem, H.A.; Chaichan, M.T. Humidity impact on photovoltaic cells performance: A review. Int. J. Recent Eng. Res. Dev. 2018, 3, 27–37. [Google Scholar]
- Schnidrig, J.; Chuat, A.; Terrier, C.; Maréchal, F.; Margni, M. Power to the People: On the Role of Districts in Decentralized Energy Systems. Energies 2024, 17, 1718. [Google Scholar] [CrossRef]
- IEA. Renewables 2019: Analysis and Forecast to 2024; International Energy Agency: Paris, France, 2019; p. 204. Available online: https://www.iea.org/reports/renewables-2019 (accessed on 16 October 2024).
- Mills, A.D.; Wiser, R.H. Implications of geographic diversity for short-term variability and predictability of solar power. In Proceedings of the 2011 IEEE Power and Energy Society General Meeting, Detroit, MI, USA, 24–28 July 2011; p. 1. [Google Scholar]
- David, M.; Andriamasomanana, F.H.R.; Liandrat, O. Spatial and Temporal Variability of PV Output in an Insular Grid: Case of Reunion Island. Energy Procedia 2014, 57, 1275–1282. [Google Scholar] [CrossRef]
- Riaz, N.; Repo, S.; Lindfors, A.V. Statistical Impact Evaluation of Stochastic Parameters Enhancing Solar Power Inherent Smoothing. In Proceedings of the 2018 IEEE PES Innovative Smart Grid Technologies Conference Europe (ISGT-Europe), Sarajevo, Bosnia and Herzegovina, 21–25 October 2018; p. 1. [Google Scholar] [CrossRef]
- Bessa, R.J.; Trindade, A.; Miranda, V. Spatial-Temporal Solar Power Forecasting for Smart Grids. IEEE Trans. Ind. Inform. 2015, 11, 232–241. [Google Scholar] [CrossRef]
- Wang, Q.; Kwan, M.-P.; Fan, J.; Zhou, K.; Wang, Y.-F. A study on the spatial distribution of the renewable energy industries in China and their driving factors. Renew. Energy 2019, 139, 161–175. [Google Scholar] [CrossRef]
- Burger, S.P.; Jenkins, J.D.; Huntington, S.C.; Perez-Arriaga, I.J. Why Distributed?: A Critical Review of the Tradeoffs Between Centralized and Decentralized Resources. IEEE Power Energy Mag. 2019, 17, 16–24. [Google Scholar] [CrossRef]
- Zaihidee, F.M.; Mekhilef, S.; Seyedmahmoudian, M.; Horan, B. Dust as an unalterable deteriorative factor affecting PV panel’s efficiency: Why and how. Renew. Sustain. Energy Rev. 2016, 65, 1267–1278. [Google Scholar] [CrossRef]
- Tanesab, J.; Parlevliet, D.; Whale, J.; Urmee, T. Seasonal effect of dust on the degradation of PV modules performance deployed in different climate areas. Renew. Energy 2017, 111, 105–115. [Google Scholar] [CrossRef]
- Psiloglou, B.E.; Kambezidis, H.D.; Kaskaoutis, D.G.; Karagiannis, D.; Polo, J.M. Comparison between MRM simulations, CAMS and PVGIS databases with measured solar radiation components at the Methoni station, Greece. Renew. Energy 2020, 146, 1372–1391. [Google Scholar] [CrossRef]
- Prăvălie, R.; Patriche, C.; Bandoc, G. Spatial assessment of solar energy potential at global scale. A geographical approach. J. Clean. Prod. 2019, 209, 692–721. [Google Scholar] [CrossRef]
- Zhang, Y.; Ren, J.; Pu, Y.; Wang, P. Solar energy potential assessment: A framework to integrate geographic, technological, and economic indices for a potential analysis. Renew. Energy 2020, 149, 577–586. [Google Scholar] [CrossRef]
- Feng, Y.; Zhang, X.; Jia, Y.; Cui, N.; Hao, W.; Li, H.; Gong, D. High-resolution assessment of solar radiation and energy potential in China. Energy Convers. Manag. 2021, 240, 114265. [Google Scholar] [CrossRef]
- Qiu, T.; Wang, L.; Lu, Y.; Zhang, M.; Qin, W.; Wang, S.; Wang, L. Potential assessment of photovoltaic power generation in China. Renew. Sustain. Energy Rev. 2022, 154, 111900. [Google Scholar] [CrossRef]
- Ridha, H.M.; Gomes, C.; Hizam, H.; Ahmadipour, M.; Heidari, A.A.; Chen, H. Multi-objective optimization and multi-criteria decision-making methods for optimal design of standalone photovoltaic system: A comprehensive review. Renew. Sustain. Energy Rev. 2021, 135, 110202. [Google Scholar] [CrossRef]
- Iešmantas, T.; Alzbutas, R. Bayesian spatial reliability model for power transmission network lines. Electr. Power Syst. Res. 2019, 173, 214–219. [Google Scholar] [CrossRef]
- Emara, M.; Filippou, M.C.; Karls, I. Availability and Reliability of Wireless Links in 5G Systems: A Space-Time Approach. In Proceedings of the 2018 IEEE Globecom Workshops (GC Wkshps), Abu Dhabi, United Arab Emirates, 9–13 December 2018; p. 1. [Google Scholar] [CrossRef]
- Mendis, H.V.K.; Li, F.Y. Achieving Ultra Reliable Communication in 5G Networks: A Dependability Perspective Availability Analysis in the Space Domain. IEEE Commun. Lett. 2017, 21, 2057–2060. [Google Scholar] [CrossRef]
- Elkadeem, M.R.; Younes, A.; Sharshir, S.W.; Campana, P.E.; Wang, S. Sustainable siting and design optimization of hybrid renewable energy system: A geospatial multi-criteria analysis. Appl. Energy 2021, 295, 117071. [Google Scholar] [CrossRef]
- Carpio, L.G.T. Efficient spatial allocation of solar photovoltaic electric energy generation in different regions of Brazil: A portfolio approach. Energy Sources Part B Econ. Plan. Policy 2021, 16, 542–557. [Google Scholar] [CrossRef]
- Roques, F.; Hiroux, C.; Saguan, M. Optimal wind power deployment in Europe—A portfolio approach. Energy Policy 2010, 38, 3245–3256. [Google Scholar] [CrossRef]
- Tarroja, B.; Mueller, F.; Samuelsen, S. Solar power variability and spatial diversification: Implications from an electric grid load balancing perspective. Int. J. Energy Res. 2013, 37, 1002–1016. [Google Scholar] [CrossRef]
- deLlano-Paz, F.; Calvo-Silvosa, A.; Antelo, S.I.; Soares, I. Energy planning and modern portfolio theory: A review. Renew. Sustain. Energy Rev. 2017, 77, 636–651. [Google Scholar] [CrossRef]
- Mauleón, I. Optimising the spatial allocation of photovoltaic investments: Application to the Spanish case. Energy Convers. Manag. 2023, 291, 117292. [Google Scholar] [CrossRef]
- Markowitz, H. Portfolio Selection. J. Financ. 1952, 7, 77–91. [Google Scholar] [CrossRef]
- Shahriari, M.; Blumsack, S. The capacity value of optimal wind and solar portfolios. Energy 2018, 148, 992–1005. [Google Scholar] [CrossRef]
- Scala, A.; Facchini, A.; Perna, U.; Basosi, R. Portfolio analysis and geographical allocation of renewable sources: A stochastic approach. Energy Policy 2019, 125, 154–159. [Google Scholar] [CrossRef]
- Hu, J.; Harmsen, R.; Crijns-Graus, W.; Worrell, E. Geographical optimization of variable renewable energy capacity in China using modern portfolio theory. Appl. Energy 2019, 253, 113614. [Google Scholar] [CrossRef]
- Bar-Lev, D.; Katz, S. A portfolio approach to fossil fuel procurement in the electric utility industry. J. Financ. 1976, 31, 933–947. [Google Scholar] [CrossRef]
- Schindler, D.; Behr, H.D.; Jung, C. On the spatiotemporal variability and potential of complementarity of wind and solar resources. Energy Convers. Manag. 2020, 218, 113016. [Google Scholar] [CrossRef]
- Weschenfelder, F.; de Novaes Pires Leite, G.; Araújo da Costa, A.C.; de Castro Vilela, O.; Ribeiro, C.M.; Villa Ochoa, A.A.; Araújo, A.M. A review on the complementarity between grid-connected solar and wind power systems. J. Clean. Prod. 2020, 257, 120617. [Google Scholar] [CrossRef]
- deLlano-Paz, F.; Cartelle-Barros, J.J.; Martínez-Fernández, P. Application of modern portfolio theory to the European electricity mix: An assessment of environmentally optimal scenarios. Environ. Dev. Sustain. 2024, 26, 15001–15029. [Google Scholar] [CrossRef]
- Castro, G.M.; Klöckl, C.; Regner, P.; Schmidt, J.; Pereira, A.O. Improvements to Modern Portfolio Theory based models applied to electricity systems. Energy Econ. 2022, 111, 106047. [Google Scholar] [CrossRef]
- Urquhart, B.; Sengupta, M.; Keller, J. Optimizing geographic allotment of photovoltaic capacity in a distributed generation setting. Prog. Photovolt. Res. Appl. 2013, 21, 1276–1285. [Google Scholar] [CrossRef]
- Pillot, B.; Al-Kurdi, N.; Gervet, C.; Linguet, L. An integrated GIS and robust optimization framework for solar PV plant planning scenarios at utility scale. Appl. Energy 2020, 260, 114257. [Google Scholar] [CrossRef]
- Birolini, A. Reliability Engineering; Springer: Berlin/Heidelberg, Germany, 2007; Volume 5. [Google Scholar]
- Koutsoyiannis, D. Reliability Concepts in Reservoir Design. In Water Encyclopedia; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2005; ISBN 9780471478447. [Google Scholar]
- Efstratiadis, A.; Tsoukalas, I.; Koutsoyiannis, D. Generalized storage-reliability-yield framework for hydroelectric reservoirs. Hydrol. Sci. J. 2021, 66, 580–599. [Google Scholar] [CrossRef]
- US Office of Renewable Energy and Energy Efficiency, “Energy Reliability”. Available online: https://www.energy.gov/eere/energy-reliability (accessed on 20 October 2024).
- Singh, S.; Saket, R.K.; Khan, B. A comprehensive review of reliability assessment methodologies for grid-connected photovoltaic systems. IET Renew. Power Gener. 2023, 17, 1859–1880. [Google Scholar] [CrossRef]
- Kahn, E. The reliability of distributed wind generators. Electr. Power Syst. Res. 1979, 2, 1–14. [Google Scholar] [CrossRef]
- Iung, A.M.; Cyrino Oliveira, F.L.; Marcato, A.L.M. A Review on Modeling Variable Renewable Energy: Complementarity and Spatial–Temporal Dependence. Energies 2023, 16, 1013. [Google Scholar] [CrossRef]
- Budischak, C.; Sewell, D.; Thomson, H.; Mach, L.; Veron, D.E.; Kempton, W. Cost-minimized combinations of wind power, solar power and electrochemical storage, powering the grid up to 99.9% of the time. J. Power Sources 2013, 225, 60–74. [Google Scholar] [CrossRef]
- Carden, K.; Wintermantel, N.; Pfeifenberger, J. The Economics of Resource Adequacy Planning: Why Reserve Margins Are Not Just About Keeping the Lights On; NRRI Report; National Regulatory Research Institute: Washington, DC, USA, 2011. [Google Scholar]
- Tong, D.; Farnham, D.J.; Duan, L.; Zhang, Q.; Lewis, N.S.; Caldeira, K.; Davis, S.J. Geophysical constraints on the reliability of solar and wind power worldwide. Nat. Commun. 2021, 12, 6146. [Google Scholar] [CrossRef] [PubMed]
- de Oliveira, R.; Borges, C.L.T. Influence of photovoltaic generation model and time resolution on the reliability evaluation of distribution systems. Int. J. Energy Res. 2021, 45, 864–878. [Google Scholar] [CrossRef]
- Allan, R.N. Reliability Evaluation of Power Systems, 2nd ed.; Plenum Press: New York, NY, USA, 1996. [Google Scholar]
- Bromley-Dulfano, I.; Florez, J.; Craig, M.T. Reliability benefits of wide-area renewable energy planning across the Western United States. Renew. Energy 2021, 179, 1487–1499. [Google Scholar] [CrossRef]
- Lian, J.; Zhang, Y.; Ma, C.; Yang, Y.; Chaima, E. A review on recent sizing methodologies of hybrid renewable energy systems. Energy Convers. Manag. 2019, 199, 112027. [Google Scholar] [CrossRef]
- Kumar, S.; Saket, R.K.; Dheer, D.K.; Holm-Nielsen, J.B.; Sanjeevikumar, P. Reliability enhancement of electrical power system including impacts of renewable energy sources: A comprehensive review. IET Gener. Transm. Distrib. 2020, 14, 1799–1815. [Google Scholar] [CrossRef]
- Abunima, H.; Teh, J. Reliability Modeling of PV Systems Based on Time-Varying Failure Rates. IEEE Access 2020, 8, 14367–14376. [Google Scholar] [CrossRef]
- Zisos, A.; Sakki, G.-K.; Efstratiadis, A. Mixing Renewable Energy with Pumped Hydropower Storage: Design Optimization under Uncertainty and Other Challenges. Sustainability 2023, 15, 13313. [Google Scholar] [CrossRef]
- Jurasz, J.; Canales, F.A.; Kies, A.; Guezgouz, M.; Beluco, A. A review on the complementarity of renewable energy sources: Concept, metrics, application and future research directions. Sol. Energy 2020, 195, 703–724. [Google Scholar] [CrossRef]
- Satellite Application Facility on Climate Monitoring (CM SAF). Available online: http://www.cmsaf.eu/EN/Home/home_node.html (accessed on 8 October 2024).
- Huld, T.; Müller, R.; Gambardella, A. A new solar radiation database for estimating PV performance in Europe and Africa. Sol. Energy 2012, 86, 1803–1815. [Google Scholar] [CrossRef]
- Bakirci, K. Prediction of global solar radiation and comparison with satellite data. J. Atmos. Sol. -Terr. Phys. 2017, 152–153, 41–49. [Google Scholar] [CrossRef]
- Lehneis, R.; Manske, D.; Thrän, D. Generation of Spatiotemporally Resolved Power Production Data of PV Systems in Germany. ISPRS Int. J. Geo-Inf. 2020, 9, 621. [Google Scholar] [CrossRef]
- Jordan, D.C.; Kurtz, S.R. Photovoltaic Degradation Rates—An Analytical Review. Prog. Photovolt. Res. Appl. 2013, 21, 12–29. [Google Scholar] [CrossRef]
- Islam, M.A.; Che, H.S.; Hasanuzzaman, M.; Rahim, N.A. Chapter 5—Energy demand forecasting. In Energy for Sustainable Development; Hasanuzzaman, M.D., Rahim, N.A., Eds.; Academic Press: Cambridge, MA, USA, 2020; pp. 105–123. ISBN 978-0-12-814645-3. [Google Scholar]
- Correa-Betanzo, C.; Calleja, H.; De León-Aldaco, S. Module temperature models assessment of photovoltaic seasonal energy yield. Sustain. Energy Technol. Assess. 2018, 27, 9–16. [Google Scholar] [CrossRef]
- Evans, D.L.; Florschuetz, L.W. Cost studies on terrestrial photovoltaic power systems with sunlight concentration. Sol. Energy 1977, 19, 255–262. [Google Scholar] [CrossRef]
- Sun, V.; Asanakham, A.; Deethayat, T.; Kiatsiriroat, T. Evaluation of nominal operating cell temperature (NOCT) of glazed photovoltaic thermal module. Case Stud. Therm. Eng. 2021, 28, 101361. [Google Scholar] [CrossRef]
- Sakki, G.K.; Tsoukalas, I.; Kossieris, P.; Makropoulos, C.; Efstratiadis, A. Stochastic simulation-optimization framework for the design and assessment of renewable energy systems under uncertainty. Renew. Sustain. Energy Rev. 2022, 168, 112886. [Google Scholar] [CrossRef]
- Kumaraswamy, P. A generalized probability density function for double-bounded random processes. J. Hydrol. 1980, 46, 79–88. [Google Scholar] [CrossRef]
- Hale, E.T.; Stoll, B.L.; Novacheck, J.E. Integrating solar into Florida’s power system: Potential roles for flexibility. Sol. Energy 2018, 170, 741–751. [Google Scholar] [CrossRef]
- Roxani, A.; Zisos, A.; Sakki, G.-K.; Efstratiadis, A. Multidimensional Role of Agrovoltaics in Era of EU Green Deal: Current Status and Analysis of Water–Energy–Food–Land Dependencies. Land 2023, 12, 1069. [Google Scholar] [CrossRef]
- Elminshawy, N.A.S.; Osama, A.; Gagliano, A.; Oterkus, E.; Tina, G.M. A technical and economic evaluation of floating photovoltaic systems in the context of the water-energy nexus. Energy 2024, 303, 131904. [Google Scholar] [CrossRef]
- Chatzopoulos, D.; Zisos, A.; Mamassis, N.; Efstratiadis, A. The benefits of distributed grid production: An insight on the role of spatial scale on solar PV energy. In Proceedings of the EGU General Assembly, Vienna, Austria, 14–19 April 2024. EGU24-3822. [Google Scholar]
(W) | 400 |
---|---|
Panel efficiency (%) | 22.6 |
Operating temperature | −40 °C to +85 °C |
Dimensions (mm) | 1046 × 1690 × 40 |
Temperature (°C) | Solar Radiation (W/m2) | Capacity Factor | |
---|---|---|---|
Average | 16.07 | 195.23 | 0.191 |
Standard deviation | 2.21 | 12.45 | 0.013 |
Minimum | 10.62 | 170.28 | 0.169 |
Maximum | 18.92 | 219.50 | 0.214 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zisos, A.; Chatzopoulos, D.; Efstratiadis, A. The Concept of Spatial Reliability Across Renewable Energy Systems—An Application to Decentralized Solar PV Energy. Energies 2024, 17, 5900. https://doi.org/10.3390/en17235900
Zisos A, Chatzopoulos D, Efstratiadis A. The Concept of Spatial Reliability Across Renewable Energy Systems—An Application to Decentralized Solar PV Energy. Energies. 2024; 17(23):5900. https://doi.org/10.3390/en17235900
Chicago/Turabian StyleZisos, Athanasios, Dimitrios Chatzopoulos, and Andreas Efstratiadis. 2024. "The Concept of Spatial Reliability Across Renewable Energy Systems—An Application to Decentralized Solar PV Energy" Energies 17, no. 23: 5900. https://doi.org/10.3390/en17235900
APA StyleZisos, A., Chatzopoulos, D., & Efstratiadis, A. (2024). The Concept of Spatial Reliability Across Renewable Energy Systems—An Application to Decentralized Solar PV Energy. Energies, 17(23), 5900. https://doi.org/10.3390/en17235900