An Optimization Strategy for Unit Commitment in High Wind Power Penetration Power Systems Considering Demand Response and Frequency Stability Constraints
<p>Optimization strategy.</p> "> Figure 2
<p>Economic load distribution process diagram.</p> "> Figure 3
<p>Algorithm iteration steps.</p> "> Figure 4
<p>Wind and load forecasting power.</p> "> Figure 5
<p>Load curve.</p> "> Figure 6
<p>Time-of-use electricity price in each period of a day.</p> "> Figure 7
<p>Shiftable load power curve.</p> "> Figure 8
<p>Curtailable load power curve.</p> "> Figure 9
<p>Comparison of iterative effects of different algorithms.</p> "> Figure 10
<p>Scenario 1 unit combination output.</p> "> Figure 11
<p>Scenario 2 unit combination output.</p> ">
Abstract
:1. Introduction
2. Consideration of Demand Response and Frequency Security Constraint Mathematical Model
2.1. Demand-Side Response
2.1.1. Incentive-Based DR
2.1.2. Price-Based DR
2.2. Frequency Regulation Constraints for Wind and Thermal Units
3. Unit Commitment Model Considering DR and Dynamic Frequency Constraints
3.1. Objective Function
3.1.1. Unit Operating Costs
3.1.2. Unit Startup/Shutdown Constraints
3.1.3. Unit Ramp Rate Constraints
3.1.4. Wind Power Integration Constraints
3.1.5. Power Balance Constraints
3.1.6. DR Constraints
3.2. PLBPSO Algorithm
3.3. Load Distribution Strategy
4. Case Study
5. Results Discussion
6. Conclusions
- (1)
- By incorporating frequency security constraints into the optimization model, the frequency fluctuations of the system can be significantly improved, enhancing the overall system stability.
- (2)
- Load participation in DSR allows for rational adjustments to users’ electricity consumption periods, improving the operational flexibility of the power system while reducing operational risks.
- (3)
- The power system unit commitment method, which comprehensively considers frequency security constraints and DSR, not only improves system stability and flexibility but also reduces the cost of unit commitment.
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Yang, Y.; Peng, J.C.H.; Ye, C.; Ye, Z.S.; Ding, Y. A criterion and stochastic unit commitment towards frequency resilience of power systems. IEEE Trans. Power Syst. 2022, 37, 640–652. [Google Scholar] [CrossRef]
- Chu, Z.; Markovic, U.; Hug, G.; Teng, F. Towards optimal system scheduling with synthetic inertia provision from wind turbines. IEEE Trans. Power Syst. 2020, 35, 4056–4066. [Google Scholar] [CrossRef]
- Zhu, D.; Wang, Z.; Hu, J.; Zou, X.; Kang, Y.; Guerrero, J.M. Rethinking Fault Ride-Through Control of DFIG-Based Wind Turbines From New Perspective of Rotor-Port Impedance Characteristics. IEEE Trans. Sustain. Energy 2024, 15, 2050–2062. [Google Scholar] [CrossRef]
- Yang, D.; Li, J.; Jin, Z.; Yan, G.; Wang, X.; Ding, L.; Zhang, F.; Terzija, V. Sequential Frequency Regulation Strategy for DFIG and Battery Energy Storage System Considering Artificial Deadbands. Int. J. Electr. Power Energy Syst. 2024, 155, 109503. [Google Scholar] [CrossRef]
- Wang, Y.; Wang, Y.; Huang, Y.; Yang, J.; Ma, Y.; Yu, H.; Zeng, M.; Zhang, F.; Zhang, Y. Operation optimization of regional integrated energy system based on the modeling of electricity-thermal-natural gas network. Appl. Energy 2019, 251, 113410. [Google Scholar] [CrossRef]
- Baroche, T.; Pinson, P.; Latimier, R.L.G.; Ben Ahmed, H. Exogenous cost allocation in peer-to-peer electricity markets. IEEE Trans. Power Syst. 2019, 34, 2553–2564. [Google Scholar] [CrossRef]
- Zhang, X.; Chan, K.W.; Wang, H.; Hu, J.; Zhou, B.; Zhang, Y.; Qiu, J. Game-theoretic planning for integrated energy system with independent participants considering ancillary services of power-to-gas stations. Energy 2019, 176, 249–264. [Google Scholar] [CrossRef]
- Wu, L.; Shahidehpour, M.; Li, Z. Comparison of scenario-based and interval optimization approaches to stochastic SCUC. IEEE Trans. Power Syst. 2012, 27, 913–921. [Google Scholar] [CrossRef]
- Han, K.-H.; Kim, J.-H. Genetic quantum algorithm and its application to combinatorial optimization problem. In Proceedings of the IEEE International Conference on Evolutionary Computation, La Jolla, CA, USA, 16–19 July 2000; pp. 1354–1360. [Google Scholar]
- Yuan, X.; Chen, R.; Wang, Y. Two-stage robust unit commitment with frequency constraints considering risk and demand response. Power Syst. Big Data 2022, 25, 17–25. [Google Scholar]
- Sun, Q.; Wu, Z.; Ma, Z.; Gu, W.; Zhang, X.-P.; Lu, Y.; Liu, P. Resilience enhancement strategy for multi-energy systems considering multi-stage recovery process and multi-energy coordination. Energy 2022, 241, 122834. [Google Scholar] [CrossRef]
- Liu, X.; Wang, B.; Li, Y.; Wang, K. Stochastic unit commitment model for high wind power integration considering demand side resources. Proc. CSEE 2015, 35, 3714–3723. [Google Scholar]
- Chen, Z.; Zhang, Y.; Ma, G.; Guo, C.; Zhang, J. Two-stage day-ahead and intra-day robust reserve optimization considering demand response. Autom. Electr. Power Syst. 2019, 43, 67–76. [Google Scholar]
- Chen, Q.; Wang, W.; Wang, H. Bi-level optimization model of an active distribution network based on demand response. Power Syst. Prot. Control 2022, 50, 1–13. [Google Scholar]
- Li, Z.; Wu, L.; Xu, Y.; Wang, L.; Yang, N. Distributed tri-layer risk-averse stochastic game approach for energy trading among multi-energy microgrids. Appl. Energ. 2023, 331, 120282. [Google Scholar] [CrossRef]
- Eto, J.H.; Undrill, J.; Mackin, P.; Daschmans, R.; Williams, B.; Haney, B.; Hunt, R.; Ellis, J.; Illian, H.; Martinez, C.; et al. Use of Frequency Response Metrics to Assess the Planning and Operating Requirements for Reliable Integration of Variable Renewable Generation; Lawrence Berkeley National Lab. (LBNL): Berkeley, CA, USA, 2017. [Google Scholar] [CrossRef]
- Yang, D.; Wang, X.; Chen, W.; Yan, G. Adaptive Frequency Droop Feedback Control-Based Power Tracking Operation of a DFIG for Temporary Frequency Regulation. IEEE Trans. Power Syst. 2024, 39, 2682–2692. [Google Scholar] [CrossRef]
- Paturet, M.; Markovic, U.; Delikaraoglou, S.; Vrettos, E.; Aristidou, P.; Hug, G. Stochastic unit commitment in low-inertia grids. IEEE Trans. Power Syst. 2020, 35, 3448–3458. [Google Scholar] [CrossRef]
- Zhang, Z.; Du, E.; Teng, F.; Zhang, N.; Kang, C. Modeling frequency dynamics in unit commitment with a high share of renewable energy. IEEE Trans. Power Syst. 2020, 35, 4383–4395. [Google Scholar] [CrossRef]
- Nguyen, N.; Almasabi, S.; Bera, A.; Mitra, J. Optimal power flow incorporating frequency security constraint. IEEE Trans. Ind. Appl. 2020, 55, 6508–6516. [Google Scholar] [CrossRef]
- Münz, U.; Mešanović, A.; Metzger, M.; Wolfrum, P. Robust optimal dispatch, secondary, and primary reserve allocation for power systems with uncertain load and generation. IEEE Trans. Control Syst. Technol. 2018, 26, 475–485. [Google Scholar] [CrossRef]
- Ge, X.; Zhu, X.; Fu, Y.; Xu, Y.; Huang, L. Optimization of Reserve With Different Time Scales for Wind-Thermal Power Optimal Scheduling Considering Dynamic Deloading of Wind Turbines. IEEE Trans. Sustain. Energy 2022, 13, 2041–2050. [Google Scholar] [CrossRef]
- Tumuluru, V.K.; Huang, Z.; Tsang, D.H.K. Integrating Price Responsive Demand Into the Unit Commitment Problem. IEEE Trans. Smart Grid 2014, 5, 2757–2765. [Google Scholar] [CrossRef]
- Ray, P.K.; Jena, C.J. Security-Constrained Unit Commitment for Demand Response Provider—A Stochastic Approach. In Proceedings of the 2020 IEEE International Conference on Power Electronics, Smart Grid and Renewable Energy (PESGRE2020), Cochin, India, 2–4 January 2020; pp. 1–5. [Google Scholar]
- Zeng, Y.; Yu, Y.; Li, J.; Li, B.; Hu, Y.; Zhu, L. Frequency Dynamics-Constrained Unit Commitment with High Penetration of Wind Power. In Proceedings of the 2023 8th International Conference on Power and Renewable Energy (ICPRE), Shanghai, China, 22–25 September 2023; pp. 1986–1991. [Google Scholar]
- Aoyagi, H.; Chakraborty, S.; Mandal, P.; Shigenobu, R.; Conteh, A.; Senjyu, T. Unit Commitment Considering Uncertainty of Price-Based Demand Response. In Proceedings of the 2018 IEEE PES Asia-Pacific Power and Energy Engineering Conference (APPEEC), Kota Kinabalu, Malaysia, 7–10 October 2018; pp. 406–410. [Google Scholar]
- Elsayed, W.; Hegazy, Y.G.; El-Bages, M.S.; Bendary, F.M. Improved random drift particle swarm optimization with self-adaptive mechanism for solving the power economic dispatch problem. IEEE Trans. Ind. Inform. 2017, 13, 1017–1026. [Google Scholar] [CrossRef]
Time/h | Scena. 1 | Scena. 2 | Time/h | Scena. 1 | Scena. 2 |
---|---|---|---|---|---|
1 | 50.000 | 50.000 | 13 | 49.973 | 49.973 |
2 | 49.934 | 49.934 | 14 | 49.973 | 49.958 |
3 | 49.921 | 49.921 | 15 | 49.972 | 49.957 |
4 | 49.921 | 49.921 | 16 | 49.970 | 49.956 |
5 | 49.914 | 49.927 | 17 | 49.971 | 49.956 |
6 | 49.914 | 49.927 | 18 | 49.955 | 49.970 |
7 | 49.925 | 49.913 | 19 | 49.935 | 49.949 |
8 | 49.933 | 49.933 | 20 | 49.931 | 49.931 |
9 | 49.954 | 49.94 | 21 | 49.939 | 49.925 |
10 | 49.949 | 49.963 | 22 | 49.929 | 49.993 |
11 | 49.969 | 49.970 | 23 | 49.930 | 49.930 |
12 | 49.957 | 49.972 | 24 | 49.933 | 49.934 |
Scena. 1 | Scena. 2 | |
---|---|---|
Output cost of thermal power unit/CNY 10,000 | 436.25 | 375.40 |
Standby cost of thermal power unit/CNY 10,000 | 92.59 | 79.08 |
Penalty cost for abandoning wind/CNY 10,000 | 64.71 | 59.73 |
Curtailable load cost/CNY 10,000 | 0 | 61.61 |
Transferable load cost/CNY 10,000 | 0 | 9.37 |
Total cost/CNY 10,000 | 593.55 | 585.19 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Qian, M.; Wang, J.; Yang, D.; Yin, H.; Zhang, J. An Optimization Strategy for Unit Commitment in High Wind Power Penetration Power Systems Considering Demand Response and Frequency Stability Constraints. Energies 2024, 17, 5725. https://doi.org/10.3390/en17225725
Qian M, Wang J, Yang D, Yin H, Zhang J. An Optimization Strategy for Unit Commitment in High Wind Power Penetration Power Systems Considering Demand Response and Frequency Stability Constraints. Energies. 2024; 17(22):5725. https://doi.org/10.3390/en17225725
Chicago/Turabian StyleQian, Minhui, Jiachen Wang, Dejian Yang, Hongqiao Yin, and Jiansheng Zhang. 2024. "An Optimization Strategy for Unit Commitment in High Wind Power Penetration Power Systems Considering Demand Response and Frequency Stability Constraints" Energies 17, no. 22: 5725. https://doi.org/10.3390/en17225725
APA StyleQian, M., Wang, J., Yang, D., Yin, H., & Zhang, J. (2024). An Optimization Strategy for Unit Commitment in High Wind Power Penetration Power Systems Considering Demand Response and Frequency Stability Constraints. Energies, 17(22), 5725. https://doi.org/10.3390/en17225725