Exploring the Effects of Renewable Energy, Energy Consumption, and Industrial Growth on Saudi Arabia’s Environmental Footprint: An Autoregressive Distributed Lag Analysis
<p>Relationship among renewable energy, energy consumption, industrial growth, and the environmental footprint.</p> "> Figure 2
<p>The box plots for model variables.</p> "> Figure 3
<p>(<b>a</b>) Results of CUSUM and (<b>b</b>) CUSUM square tests.</p> "> Figure 4
<p>The relationship between urbanization (LnURB) and the environmental footprint (LnEnF).</p> "> Figure 5
<p>The relationship between energy consumption (Ln ENERG) and the environmental footprint (Ln EnF).</p> "> Figure 6
<p>The relationship between renewable energy (Ln REN) and the environmental footprint (Ln EnF).</p> "> Figure 7
<p>The relationship between industrial value added (Ln INDVAD) and the environmental footprint (Ln EnF).</p> "> Figure 8
<p>The relationship between GDP per capita (Ln PGDP) and the environmental footprint (Ln EnF).</p> "> Scheme 1
<p>Data analysis procedure flowchart.</p> ">
Abstract
:1. Introduction
2. Literature Review
2.1. Environmental Footprints and the Impact of Renewable Energy
2.2. Influence of Urbanization on Environmental Footprints
2.3. Industrialization and Environmental Footprints
2.4. Energy Consumption and Environmental Footprints
2.5. Economic Growth and Environmental Footprints
3. Data, Methodology, and Estimation Strategies
3.1. Data
3.2. Model Specification
3.3. Estimation Strategies
3.3.1. ARDL Model
- Null (H0): No long-run relationship among variables.
- Alternative (H1): Long-run relationship exists.
- Greater than Upper Bound: Reject H0 (long-run relationship exists).
- Less than Lower Bound: Fail to reject H0 (no long-run relationship).
- Between Bounds: Inconclusive; further testing needed.
3.3.2. Unit Root Tests
3.3.3. Robustness Check
4. Results
4.1. Descriptive Analysis
4.2. Detecting Outliers and Assessing Multicollinearity
4.2.1. Outliers
4.2.2. Multicollinearity
4.3. Unit Root Results
4.4. ARDL Result
4.5. Robustness Test Results
4.6. Diagnostic Tests
4.7. Stability Test: The CUSUM and CUSUMSQ
5. Discussion
- Expanding renewable energy investments, echoing insights from [20] on the global importance of renewables in reducing ecological footprints.
- Promoting energy efficiency programs, as highlighted by [19], to align industrial and urban energy consumption with sustainability goals.
- Enhancing public awareness and stakeholder engagement to foster a sustainability-oriented culture.
6. Conclusions and Policy Implications
6.1. Conclusions
6.2. Policy Recommendations
- Increase Investments in Renewable Energy: Expand financial support for renewable energy projects, particularly solar and wind energy, to enhance their share in the energy mix.
- Promote Clean Industrial Technologies: Encourage the adoption of energy-efficient and low-carbon technologies in the industrial sector to reduce emissions without compromising economic growth. Promoting green technology innovation is essential for achieving sustainable industrial growth and minimizing environmental degradation [66].
- Urban Sustainability Initiatives: Implement urban planning strategies that incorporate green spaces, energy-efficient infrastructure, and public transportation to mitigate the environmental impact of urbanization.
- Energy Efficiency Programs: Launch nationwide energy efficiency programs aimed at reducing overall energy consumption, particularly in residential and industrial sectors.
- Public Awareness Campaigns: Increase public awareness about the importance of renewable energy and energy conservation through education and community initiative.
6.3. Limitations and Future Research
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Ministry of Energy. Available online: https://moenergy.gov.sa/en/OurPrograms/RenewableEnergy/Pages/default.aspx (accessed on 1 September 2024).
- Alajmi, R.G. Carbon emissions and electricity generation modeling in Saudi Arabia. Environ. Sci. Pollut. Res. 2022, 29, 23169–23179. [Google Scholar] [CrossRef] [PubMed]
- Abdel-Gadir, S.E.M.; Mohammed, M.G.A. Oman’s Green Horizon: Steering Towards Sustainability Through Decarbonization and Energy Transition. Sustainability 2024, 16, 9375. [Google Scholar] [CrossRef]
- Abid, M. How Does Renewable Energy Consumption Affect Environmental Quality in Saudi Arabia? Evidence from Quantile Regressions. Int. J. Energy Econ. Policy 2023, 13, 574–578. [Google Scholar] [CrossRef]
- Al-Ismail, F.S.; Alam, M.S.; Shafiullah, M.; Hossain, M.I.; Rahman, S.M. Impacts of Renewable Energy Generation on Greenhouse Gas Emissions in Saudi Arabia: A Comprehensive Review. Sustainability 2023, 15, 5069. [Google Scholar] [CrossRef]
- Aldegheishem, A. The Relationship between Urbanization, Energy Consumption, Economic Growth, and Carbon Dioxide Emissions in Middle Eastern Countries: Saudi Arabia, Jordan and Egypt. Environ. Res. Commun. 2024, 6, 065011. [Google Scholar] [CrossRef]
- Ali, A.; Sumaira; Siddique, H.M.A.; Ashiq, S. Impact of Economic Growth, Energy Consumption and Urbanization on Carbon Dioxide Emissions in the Kingdom of Saudi Arabia. J. Policy Res. 2023, 9, 130–140. [Google Scholar] [CrossRef]
- Osman, Y. The Correlation among Industrial Economic Growth, Renewable Energy Provision and CO2 Emissions in Saudi Arabia. WSEAS Trans. Environ. Dev. 2024, 20, 339–349. [Google Scholar] [CrossRef]
- Asghar, F.; Hussain, M.I.; Alshahrani, F.A.; Akhtar, M.I.; Amjad, W.; Shahzad, M.; Husnain, S.N.; Lee, G.H. Technoeconomic analysis of standalone hybrid renewable energy systems for telecommunication sector under different climatic conditions in Saudi Arabia. Energy Rep. 2024, 11, 4067–4084. [Google Scholar] [CrossRef]
- Aziz, G.; Waheed, R.; Alsaggaf, M.I. Investigating the Impact of Green Natural Resources and Green Activities on Ecological Footprint: A Perspective of Saudi Vision 2030. Sustainability 2023, 15, 8639. [Google Scholar] [CrossRef]
- Al-Gahtani, S.F. Saudi Arabia’s Journey toward a Renewable Future. Energies 2024, 17, 2444. [Google Scholar] [CrossRef]
- Alruweili, F. Impact of GDP growth on the ecological footprint: Theoretical and empirical evidence from Saudi Arabia. Int. J. Adv. Appl. Sci. 2023, 10, 120–129. [Google Scholar] [CrossRef]
- Dada, J.T.; Al-Faryan, M.A.S. Linking per capita income, renewable energy, natural resources, trade, and Urbanisation to material footprint: Insights from Saudi Arabia. Energy Nexus 2024, 13, 100269. [Google Scholar] [CrossRef]
- Ellaythy, I.; Osman, Y.; Elmotkassi, T.; Al Shammre, A.S.; Alyousef, B.K. Assessment of Economic and Environmental Impacts of using Green Hydrogen Gas for Generating Electricity in the KSA. WSEAS Trans. Environ. Dev. 2024, 20, 256–267. Available online: https://wseas.com/journals/ead/2024/a525107-2803.pdf (accessed on 11 September 2024). [CrossRef]
- Emre Caglar, A. The importance of renewable energy consumption and FDI inflows in reducing environmental degradation: Bootstrap ARDL bound test in selected 9 countries. J. Clean. Prod. 2020, 264, 121663. [Google Scholar] [CrossRef]
- Abid, N.; Ceci, F.; Ahmad, F.; Aftab, J. Financial development and green innovation, the ultimate solutions to an environmentally sustainable society: Evidence from leading economies. J. Clean. Prod. 2022, 369, 133223. [Google Scholar] [CrossRef]
- Sahoo, B.; Behera, D.K.; Rahut, D. Decarbonization: Examining the role of environmental innovation versus renewable energy use. Environ. Sci. Pollut. Res. 2022, 29, 48704–48719. [Google Scholar] [CrossRef] [PubMed]
- International Energy Agency. World Energy Outlook 2020; IEA: Paris, France, 2020. [Google Scholar]
- Dincer, I. Renewable energy and sustainable development: A crucial review. Renew. Sustain. Energy Rev. 2000, 4, 157–175. [Google Scholar] [CrossRef]
- REN21. Renewables 2022 Global Status Report; REN21 Secretariat: Paris, France, 2022. [Google Scholar]
- Panwar, N.L.; Kaushik, S.C.; Kothari, S. Role of renewable energy sources in environmental protection: A review. Renew. Sustain. Energy Rev. 2011, 15, 1513–1524. [Google Scholar] [CrossRef]
- World Bank. Toward Green Growth: World Bank Strategies for Sustainability; World Bank Group: Washington, DC, USA, 2023. [Google Scholar]
- United Nations Environment Programme (UNEP). Emissions Gap Report 2019; UNEP: Nairobi, Kenya, 2019. [Google Scholar]
- Pandit, J.; Sharma, A.K. Urbanization’s environmental imprint: A review. Environ. Conserv. J. 2022, 23, 168–177. [Google Scholar] [CrossRef]
- Udemba, E.N.; Khan, N.U.; Shah, S.A. Demographic change effect on ecological footprint: A tripartite study of urbanization, aging population, and environmental mitigation technology. J. Clean. Prod. 2024, 37, 140406. [Google Scholar] [CrossRef]
- Behera, S.R.; Dash, D.P. The effect of urbanization, energy consumption, and foreign direct investment on the carbon dioxide emission in the SSEA (South and Southeast Asian) region. Renew. Sustain. Energy Rev. 2017, 70, 96–106. [Google Scholar] [CrossRef]
- Salahuddin, M.; Ali, I.; Vink, N.; Gow, J. The effects of urbanization and globalization on CO2 emissions: Evidence from the Sub-Saharan Africa (SSA) countries. Environ. Sci. Pollut. Res. 2019, 26, 2699–2709. [Google Scholar] [CrossRef]
- Salahuddin, M.; Gow, J.; Ali, M.I.; Hossain, M.R.; Al-Azami, K.S.; Akbar, D.; Gedikli, A. Urbaniza-tion-globalization-CO2 emissions nexus revisited: Empirical evidence from South Africa. Heliyon 2019, 5, e01974. [Google Scholar] [CrossRef] [PubMed]
- Yasmeen, H.; Tan, Q.; Zameer, H.; Vo, X.V.; Shahbaz, M. Discovering the relationship between natural resources, energy consumption, gross capital formation with economic growth: Can lower financial openness change the curse into blessing. Resour. Policy 2021, 71, 102013. [Google Scholar] [CrossRef]
- Chen, F.; Liu, A.; Lu, X.; Zhe, R.; Tong, J.; Akram, R. Evaluation of the effects of urbanization on carbon emissions: The transformative role of government effectiveness. Front. Energy Res. 2022, 10, 848800. [Google Scholar] [CrossRef]
- Adebayo, T.S.; Ullah, S.; Kartal, M.T.; Ali, K.; Pata, U.K.; Ağa, M. Endorsing sustainable development in BRICS: The role of technological innovation, renewable energy consumption, and natural resources in limiting carbon emission. Sci. Total. Environ. 2023, 859, 160181. [Google Scholar] [CrossRef] [PubMed]
- Nathaniel, S.P.; Adeleye, N.; Adedoyin, F.F. Natural resource abundance, renewable energy, and ecological footprint linkage in MENA countries. Stud. Appl. Econ. 2021, 39, 11. [Google Scholar] [CrossRef]
- Amer, E.A.A.A.; Meyad, E.M.A.; Gao, Y.; Niu, X.; Chen, N.; Xu, H.; Zhang, D. Exploring the link between natural resources, urbanization, human capital, and ecological footprint: A case of GCC countries. Ecol. Indic. 2022, 144, 109556. [Google Scholar] [CrossRef]
- Mahmood, H.; Asadov, A.; Tanveer, M.; Furqan, M.; Yu, Z. Impact of Oil Price, Economic Growth and Urbanization on CO2 Emissions in GCC Countries: Asymmetry Analysis. Sustainability 2022, 14, 4562. [Google Scholar] [CrossRef]
- Mehmood, U.; Tariq, S.; Haq, Z.U.; Nawaz, H.; Ali, S.; Murshed, M.; Iqbal, M. Evaluating the role of renewable energy and technology innovations in lowering CO2 emission: A wavelet coherence approach. Environ. Sci. Pollut. Res. 2023, 30, 44914–44927. [Google Scholar] [CrossRef]
- Schliesser, C. Industrialization Impact on Climate Change. In Advances in Business Strategy and Competitive Advantage Book Series; IGI Global: New York, NY, USA, 2023. [Google Scholar] [CrossRef]
- Aziz, G.; Sarwar, S.; Nawaz, K.; Waheed, R.; Khan, M.S. Influence of tech-industry, natural resources, renewable energy and urbanization towards environment footprints: A fresh evidence of Saudi Arabia. Resour. Policy 2023, 83, 103553. [Google Scholar] [CrossRef]
- Quito, B.; Río-Rama, M.d.l.C.d.; Álvarez-García, J.; Durán-Sánchez, A. Impacts of industrialization, renewable energy and urbanization on the global ecological footprint: A quantile regression approach. Bus. Strat. Environ. 2022, 32, 1529–1541. [Google Scholar] [CrossRef]
- Ragmoun, W. Ecological footprint, natural resource rent, and industrial production in MENA region: Empirical evidence using the SDM model. Heliyon 2023, 9, e20060. [Google Scholar] [CrossRef] [PubMed]
- Hossain, M.D.A.; Eleais, M.D.; Urbee, A.J.; Hasan, M.D.A.; Tahrim, F. Assessing the Intensity of Economic Progress, Industrialization, Energy Use on Environmental Degradation. S. Asian J. Soc. Sci. Humanit. 2024, 5, 23–42. [Google Scholar] [CrossRef]
- Touati, K.; Ben-Salha, O. Reconsidering the Long-Term Impacts of Digitalization, Industrialization, and Financial Development on Environmental Sustainability in GCC Countries. Sustainability 2024, 16, 3576. [Google Scholar] [CrossRef]
- Salem, H.S.; Pudza, M.Y.; Yihdego, Y. Harnessing the energy transition from total dependence on fossil to renewable energy in the Arabian Gulf region, considering population, climate change impacts, ecological and carbon footprints, and United Nations’ Sustainable Development Goals. Sustain. Earth Rev. 2023, 6, 10. [Google Scholar] [CrossRef]
- Popescu, G.H.; Nica, E.; Klieštik, T.; Zvaríková, K.; Mihai, E.-A.; Gura, K. Exploring the Environmental Impact of Energy Consumption, Globalization, and Research & Development in Europe: Insights from the STIRPAT-EKC Framework. 2023. Available online: https://www.researchsquare.com/article/rs-3377718/v1 (accessed on 3 September 2024). [CrossRef]
- Jahanger, A.; Awan, A.; Anwar, A.; Adebayo, T.S. Greening the Brazil, Russia, India, China and South Africa (BRICS) economies: Assessing the impact of electricity consumption, natural resources, and renewable energy on environmental footprint. Nat. Resour. Forum 2023, 47, 484–503. [Google Scholar] [CrossRef]
- Yuzbashkandi, S.S.; Mehrjo, A.; Nasab, M.H.E. Exploring the dynamic nexus between urbanization, energy efficiency, renewable energies, economic growth, with ecological footprint: A panel cross-sectional autoregressive distributed lag evidence along Middle East and North Africa countries. Energy Environ. 2023, 35, 4386–4407. [Google Scholar] [CrossRef]
- Kahouli, B.; Chaaben, N. Investigate the Link among Energy Consumption, Environmental Pollution, Foreign Trade, Foreign Direct Investment, and Economic Growth: Empirical Evidence from GCC countries. Energy Build. 2022, 266, 112117. [Google Scholar] [CrossRef]
- Jammazi, R.; Aloui, C. Environment degradation, economic growth and energy consumption nexus: A wave-let-windowed cross correlation approach. Phys. A Stat. Mech. Its Appl. 2015, 436, 110–125. [Google Scholar] [CrossRef]
- Çakmak, E.E.; Acar, S. The nexus between economic growth, renewable energy and ecological footprint: An empirical evidence from most oil-producing countries. J. Clean. Prod. 2022, 352, 131548. [Google Scholar] [CrossRef]
- Boussaidi, R.; Hakimi, A. Financial inclusion, economic growth, and environmental quality in the MENA region: What role does institution quality play? Nat. Resour. Forum 2024. [Google Scholar] [CrossRef]
- Hamed, L.M.; Dhaouadi, L.; Zehri, F.; Tiba, S.; Besser, H.; Karbout, N.; Emara, E.I. Examining the relationship between the economic growth, energy use, CO2 emissions, and water resources: Evidence from selected MENA countries. J. Saudi Soc. Agric. Sci. 2024, 23, 415–423. [Google Scholar] [CrossRef]
- Al Hattali, N.U.M.; Saboori, B.; Zekri, S.; Gulsevin, O. Towards Ecological Sustainability in GCC Countries, the Role of Trade Market Diversification, Economic Growth, Energy Consumption, and Foreign Direct Investment. Available online: https://ssrn.com/abstract=4711944 (accessed on 3 September 2024). [CrossRef]
- Hussain, A.; Khan, F.; Albalawi, O. Modeling and Monitoring CO2 Emissions in G20 Countries: A Comparative Analysis of Multiple Statistical Models. Sustainability 2024, 16, 6114. Available online: https://www.researchgate.net/profile/Anwar-Hussain-25/publication/382324641_Modeling_and_Monitoring_CO2_Emissions_in_G20_Countries_A_Comparative_Analysis_of_Multiple_Statistical_Models/links/6697e3934a172d2988a6533f/Modeling-and-Monitoring-CO2-Emissions-in-G20-Countries-A-Comparative-Analysis-of-Multiple-Statistical-Models.pdf (accessed on 28 August 2024). [CrossRef]
- Rehman, S.; Kotb, K.M.; Zayed, M.E.; Menesy, A.S.; Irshad, K.; Alzahrani, A.S.; Mohandes, M.A. Techno-economic evaluation and improved sizing optimization of green hydrogen production and storage under higher wind penetration in Aqaba Gulf. J. Energy Storage 2024, 99, 113368. [Google Scholar] [CrossRef]
- Alotaibi, A.M.; Makhdoom, T.K.; Alquaity, A. Pathways Towards Improving the Energy Efficiency of Residential Air—Conditioning Systems in Saudi Arabia. J. Sol. Energy Eng. 2024, 146, 051010. [Google Scholar] [CrossRef]
- Yousaf, H.; Amin, A.; Ameer, W.; Akbar, M. Investigating the determinants of ecological and carbon footprints. Evidence from high-income countries. AIMS Energy 2022, 10, 831–843. [Google Scholar] [CrossRef]
- World Bank. World Development Indicators. 2023. Available online: https://databank.worldbank.org/source/world-development-indicators (accessed on 20 September 2024).
- Naqvi, S.A.A.; Shah, S.A.R.; Anwar, S.; Raza, H. Renewable energy, economic development, and ecological footprint nexus: Fresh evidence of renewable energy environment Kuznets curve (RKC) from income groups. Environ. Sci. Pollut. Res. 2021, 28, 2031–2051. [Google Scholar] [CrossRef]
- Umar, M.; Ji, X.; Mirza, N.; Naqvi, B. Carbon neutrality, bank lending, and credit risk: Evidence from the Euro-zone. J. Environ. Manag. 2021, 296, 113156. [Google Scholar] [CrossRef]
- Pesaran, M.H.; Shin, Y.; Smith, R.J. Bounds Testing Approaches to the Analysis of Level Relationships. J. Appl. Econom. 2001, 16, 289–326. [Google Scholar] [CrossRef]
- Abumunshar, M.; Aga, M.; Samour, A. Oil price, energy consumption, and CO2 emissions in Turkey. New evidence analysis of level relationships. J. Appl. Econom. 2020, 16, 289–326. [Google Scholar]
- Ky, S.; Lim, S. Examination of Banks’ Performance and Intellectual Capital in Cambodia: Utilizing FMOLS and DOLS Methods. J. Ecohumanism 2024, 3, 885–896. [Google Scholar] [CrossRef]
- Banerjee, A.; Carrion-I-Silvestre, J.L. Panel data cointegration testing with structural instabilities. J. Bus. Econ. Stat. 2024, 1–12. [Google Scholar] [CrossRef]
- Sunde, T.; Tafirenyika, B.; Adeyanju, A. Testing the Impact of Exports, Imports, and Trade Openness on Economic Growth in Namibia: Assessment Using the ARDL Cointegration Method. Economies 2023, 11, 86. [Google Scholar] [CrossRef]
- Brown, R.L.; Durbin, J.; Evans, J. Techniques for Testing the Constancy of Regression Relationships over Time. J. R. Stat. Soc. Ser. B 1975, 37, 149–192. [Google Scholar] [CrossRef]
- Wang, K.-H.; Wen, C.-P.; Long, H.; Moldovan, N.-C. Towards sustainable development: Exploring the spillover effects of green technology innovation on energy markets and economic cycles. Technol. Forecast. Soc. Chang. 2024, 203, 123368. [Google Scholar] [CrossRef]
- Wang, K.-H.; Wen, C.-P.; Xu, B.-C.; Li, X. Receiver or transmitter? Unlocking the role of green technology innovation in sustainable development, energy, and carbon markets. Technol. Soc. 2024, 79, 102703. [Google Scholar] [CrossRef]
Series | Ln ENF | Ln ENERG | Ln PGDP | LN INDVAD | LN REN | LN URB |
---|---|---|---|---|---|---|
Mean | 2.610 | 8.615 | 9.838 | 0.489 | −4.229 | 4.396 |
Median | 2.583 | 8.620 | 9.835 | 0.853 | −4.605 | 4.397 |
Maximum | 2.880 | 8.840 | 9.934 | 3.123 | −3.058 | 4.439 |
Minimum | 2.357 | 8.181 | 9.686 | −1.940 | −4.707 | 4.338 |
Std. Dev. | 0.161 | 0.194 | 0.060 | 1.498 | 0.557 | 0.028 |
Skewness | 0.200 | −0.266 | −0.293 | −0.065 | 0.908 | −0.207 |
Kurtosis | 1.660 | 1.836 | 2.648 | 1.983 | 2.147 | 2.033 |
Jarque-Bera | 2.688 | 2.252 | 0.642 | 1.446 | 5.529 | 1.522 |
Probability | 0.261 | 0.324 | 0.725 | 0.485 | 0.063 | 0.467 |
Sum | 86.12 | 284.30 | 324.65 | 16.15 | −139.56 | 145.05 |
Sum Sq. Dev. | 0.828 | 1.209 | 0.116 | 71.773 | 9.932 | 0.025 |
CV | 6.17% | 2.25% | 0.61% | 306.34% | 13.17% | 0.64% |
Observations | 33 | 33 | 33 | 33 | 33 | 33 |
LNENF | LNENERG | LNGDPC | LNINDVAD | LNREN | LNURB | |
---|---|---|---|---|---|---|
LNENF | 1.000 | |||||
LNENERG | 0.900 | 1.000 | ||||
LNGDPC | 0.701 | 0.596 | 1.000 | |||
LNINDVAD | −0.052 | −0.211 | 0.180 | 1.000 | ||
LNREN | −0.279 | −0.043 | 0.091 | 0.017 | 1.000 | |
LNURB | 0.815 | 0.965 | 0.489 | −0.238 | 0.019 | 1.000 |
Variable | VIF | 1/VIF |
---|---|---|
Ln ENF | 1.66 | 0.602 |
Ln REN | 1.57 | 0.637 |
Ln ENERG | 2.34 | 0.427 |
Ln PGDP | 1.89 | 0.529 |
Ln INDVAD | 3.02 | 0.331 |
Ln URB | 1.45 | 0.69 |
Variable | Level T-Statistic | Level Prob | First Difference T-Statistic | First Difference Prob | Order of Cointegration |
---|---|---|---|---|---|
Ln PGDP | −2.052 | 0.264 | −6.179 | 0.000 | I(1) |
Ln EnF | −1.225 | 0.651 | −3.385 | 0.576 | I(1) |
Ln INDAVD | −5.418 | 0.000 | −6.291 | 0.000 | I(0) |
Ln REN | −1.266 | 0.633 | −4.872 | 0.001 | I(1) |
Ln ENERG | −0.583 | 0.800 | −4.710 | 0.001 | I(1) |
Ln URB | −0.323 | 0.910 | −5.663 | 0.000 | I(1) |
Test Statistic | Value | Signif | I(0) | I(1) |
---|---|---|---|---|
F-statistic | 26.36 | 10% | 2.75 | 3.79 |
K | 5 | 5% | 3.12 | 4.25 |
2.50% | 3.49 | 4.67 | ||
1.% | 3.39 | 5.23 |
FMOLS | DOLS | ROLS | CCR | |||||
---|---|---|---|---|---|---|---|---|
Coeff | t-Stats | Coeff | t-Stats | Coeff | z-Stats | Coeff | t-Stats | |
LNENERG | 0.82483 | 7.487409 | 0.7289 | 7.9331 | 0.846709 | 5.876167 | 0.86977 | 6.19835 |
LNPGDP | 4.45792 | 4.186441 | 5.6018 | 6.8802 | 3.362555 | 2.470193 | 4.967898 | 4.52174 |
LNINDVAD | 0.005393 | 1.567901 | 0.0134 | 2.2417 | 0.001822 | 0.426336 | −96.9674 | −4.4889 |
LNREN | −0.08078 | −8.68756 | −0.024 | −0.8292 | −0.08694 | −7.68205 | 0.00377 | 0.67328 |
LNURB | −1.47342 | −2.13669 | −5.549 | −4.6332 | −1.37821 | −1.52492 | −0.07922 | −8.4917 |
C | 425.2653 | 4.131107 | 552.74 | 6.6977 | 318.9391 | 2.424705 | −1.90459 | 0.0257 |
R-squared | 0.963997 | 0.999433 | 0.792008 | 0.9611 | ||||
Adjusted R2 | 0.955357 | 0.99671 | 0.744009 | 0.9518 | ||||
S.E. of Regre | 0.033137 | 0.009017 | 0.045505 | 0.0344 | ||||
DW stat | 2.796668 | 2.747657 | 1.7228 | |||||
Mean dep.V | 2.617559 | 2.626124 | 2.609662 | 2.6175 | ||||
S.D. dep.var | 0.156832 | 0.157204 | 0.045505 | 0.1568 | ||||
SS resid | 0.027452 | 0.000407 | 0.053839 | 0.0296 |
F-Statistic | χ2 | |
---|---|---|
Breusch–Godfrey Serial correlation Lm Test | 0.1408 (0.8699) | 0.611 (0.7367) |
AECH Heteroscedasticity | 1.390 (1.2800) | 1.419 (0.2342) |
Ramsey RESET | 5.9421 (0.0277) | - |
Jarque–Bera for Normality | - | 0.265 (0.8761) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mohammed, M.G.A.; Abdel-Gadir, S.E.M.; Alsulami, F.; Mannai, S.; Arfaoui, L.; Alharbi, K.; Qassim, A.A.; Alsafy, M.M. Exploring the Effects of Renewable Energy, Energy Consumption, and Industrial Growth on Saudi Arabia’s Environmental Footprint: An Autoregressive Distributed Lag Analysis. Energies 2024, 17, 6327. https://doi.org/10.3390/en17246327
Mohammed MGA, Abdel-Gadir SEM, Alsulami F, Mannai S, Arfaoui L, Alharbi K, Qassim AA, Alsafy MM. Exploring the Effects of Renewable Energy, Energy Consumption, and Industrial Growth on Saudi Arabia’s Environmental Footprint: An Autoregressive Distributed Lag Analysis. Energies. 2024; 17(24):6327. https://doi.org/10.3390/en17246327
Chicago/Turabian StyleMohammed, Mwahib Gasmelsied Ahmed, Sufian Eltayeb Mohamed Abdel-Gadir, Faizah Alsulami, Sonia Mannai, Lamia Arfaoui, Khalid Alharbi, Amal Abdulmajeed Qassim, and Mahmoud Mokhtar Alsafy. 2024. "Exploring the Effects of Renewable Energy, Energy Consumption, and Industrial Growth on Saudi Arabia’s Environmental Footprint: An Autoregressive Distributed Lag Analysis" Energies 17, no. 24: 6327. https://doi.org/10.3390/en17246327
APA StyleMohammed, M. G. A., Abdel-Gadir, S. E. M., Alsulami, F., Mannai, S., Arfaoui, L., Alharbi, K., Qassim, A. A., & Alsafy, M. M. (2024). Exploring the Effects of Renewable Energy, Energy Consumption, and Industrial Growth on Saudi Arabia’s Environmental Footprint: An Autoregressive Distributed Lag Analysis. Energies, 17(24), 6327. https://doi.org/10.3390/en17246327